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Abstract

Inductive definitions and justifications are well-
studied concepts. Solvers that support inductive
definitions have been developed, but several of their
computationally nice properties have never been
exploited to improve these solvers. In this paper,
we present a new notion called relevance. We de-
termine a class of literals that are relevant for a
given definition and partial interpretation, and show
that choices on irrelevant atoms can never benefit
the search for a model. We propose an early stop-
ping criterion and a modification of existing heuris-
tics that exploit relevance. We present a first imple-
mentation in MinisatID and experimentally eval-
uate our approach, and study how often existing
solvers make choices on irrelevant atoms.

1

Since the addition of conflict-driven clause learning
[Marques-Silva and Sakallah, 1999], SAT solvers have made
huge leaps forward. Now that these highly-performant SAT-
solvers exist, research often stretches beyond SAT by ex-
tending the language supported by SAT with richer lan-
guage constructs. Research fields such as SAT Modulo
Theories (SMT) [Barrett et al., 2009], Constraint Program-
ming (CP) [Apt, 2003] in the form of lazy clause gener-
ation [Stuckey, 20101, or Answer Set Programming (ASP)
[Marek and Truszczynski, 1999] could be seen as following
this approach. In this paper, we focus on the logic PC(ID):
the Propositional Calculus extended with Inductive Defini-
tions [Marién et al., 2007]. The satisfiability problem for
PC(ID) encodings is called SAT(ID) [Marién et al., 2008].
SAT(ID) can be formalised as SAT modulo a theory of induc-
tive definitions and is closely related to answer set solving. In
fact, all the work we introduce in this paper is also applicable
to so-called generate-define-test answer set programs.

In this paper we introduce an alternative criterion to deter-
mine satisfiability of a PC(ID) theory. Instead of searching
for a variable assignment that satisfies the PC(ID) theory, we
search for a partial assignment that contains sufficient infor-
mation to guarantee satisfiability. Our approach is based on
the notion of justifications [Denecker and De Schreye, 1993;
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Denecker et al., 2015]. As a small example, consider the fol-
lowing theory.

bt
praAb.

a <—dV-eVf.
b +cV-gVh.
e «—fV-hVi.

This theory contains one constraint, that p; must hold, and
a definition (between ‘{’ and ‘}’) of ps in terms of variables
a to ¢. One way to check satisfiability would be to generate an
assignment of all variables that satisfies the above theory (this
is the classical approach to solving such problems). What we
do, on the other hand, is to search for a partial assignment to
these variables such that py is justified in that partial assign-
ment. Consider for example the partial assignment where pr,
a, b, c and d are true and everything else is unknown. In this
assignment, a and b are justified because d and c hold respec-
tively; p7 is justified because both a and b are justified. This
suffices to determine satisfiability of the theory, without con-
sidering the definition of e for instance.

We introduce the notion of relevance. Intuitively, a literal
is relevant if it can contribute to justifying the theory. In the
above example, as soon as d is assigned frue, the variable e
becomes irrelevant. From that point onwards, search should
not take e’s defining rule into account.

Based on this notion of relevance, we define two exten-
sions of existing SAT(ID) solvers. The first is to modify the
decision heuristics: we show that deciding on irrelevant liter-
als never affects any possible justification for p7. Hence, we
propose to only choose on relevant literals, otherwise leav-
ing the heuristics unchanged. The second is to implement
an early stopping criterion that allows a solver to decide the
theory is satisfiable in a partial assignment.

The main contributions of this paper are (1) the formal
identification of the set of relevant literals, (2) showing that
assigning a value to an irrelevant literal does not affect sat-
isfiability, (3) proving correctness of the new early stopping
criterion, and (4) experimentally evaluating the proposed ap-
proach.

The rest of this paper is structured as follows. In Section 2
we present some necessary preliminaries. In Section 3, we
present our new theory, essentially introducing relevance, the



new algorithms and the associated correctness theorems. We
experimentally evaluate our proposed approach in Section 4
and conclude in Section 5.

2 Preliminaries
PC(ID)

In this section, we briefly recall the syntax and semantics of
Propositional Calculus extended with Inductive Definitions
(PC(D)) [Marién, 2009].

A truth value is one of {t,f,u}; t represents true, f false
and u unknown. The truth order <; on truth values is given
by f <;u <, t, the precision order <, is given by u <, f and
u <, t. Let X be a finite set of symbols called atoms. A literal
[ is an atom p or its negation —p. In the former case, we call [
positive, in the latter, we call [ negative. We use X to denote
the set of all literals over 3. If [ is a literal, we use |I| to denote
the atom of [, i.e., to denote p if | = porl = —p. We use ~I[ to
denote the literal that is the negation of [, i.e., ~p = —p and
~—p = p. A partial interpretation T is a mapping from X
to truth values. We use the notation {pt, ... . pt ¢f, ... ¢f }
for the partial interpretation that maps the p; to t, the g; to
f and all other atoms to u. We call a partial interpretation
two-valued if it does not map any atom to u. If Z and 7’ are
partial interpretations, we say that Z is less precise than 7’
(notation Z<,Z') if forall p € ¥, Z(p) <, Z'(p). If p is a
propositional formula, we use ¢’ to denote the truth value (t,
f or u) of ¢ in Z, based on the Kleene truth tables [Kleene,
1938]. If 7 is a partial interpretation and [ a literal, we use
Z[l : t] to denote the partial interpretation equal to Z, except
that it interprets [ as t (and similar for f, u). With ¢ a set of
symbols, we use the notation Z|,, to indicate the restriction of
7 to symbols in 0. Le., Z|s(p) = uifp ¢ o and Z|,(p) =
Z(p) otherwise.

A two-valued interpretation I is a subset of 3. We identify
an interpretation / with the two-valued partial interpretation
that mapsp € Jtotandp € ¥\ I to f.

An inductive definition A over X is a finite set of rules
of the form p <~ ¢ where p € ¥ and ¢ is a propositional
formula over 3. We call p the head of the rule and ¢ the body
of the rule. We call p defined in A if p occurs as the head of a
rule in A. The set of all symbols defined in A is denoted by
defs(A). All other symbols are called open in A. The set of
open symbols in A is denoted opens(A). We say that a literal
I is defined in A if |l| € defs(A). We use the parametrised
well-founded semantics for inductive definitions [Denecker
and Vennekens, 2007]. That is, interpretation I is a model
of A (denoted I = A) if I is the well-founded model of A in
context [| opens(A)- We call an inductive definition fotal if for
every interpretation I of the open symbols, the well-founded
model in context I is a two-valued interpretation.

A PC(ID) theory T over X is a set of propositional formu-
las, called constraints, and inductive definitions over >. In-
terpretation [ is a model of 7 if I is a model of all definitions
and constraints in 7. Without loss of generality [Marién,
20091, we assume that every PC(ID) theory is in the DEFNF
normalform, where 7 = {p7, A} and

e p7 is an atom,

e A is an inductive definition defining p7,
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e every rule in A is of the formp < [, ©® --- ® [,,, where
® is either A or V, p is an atom, and each of the [; are
literals,

e every atom p is defined in at most one rule of A.

A rule in which ©® is A, respectively V is called a conjunc-
tive, respectively disjunctive, rule. The rules in a definition A
impose a direct dependency relation, denoted dd A, between
literals, defined as follows. For literals from and to, it holds
that (from, to) € dda in Aifthereisarulep + 1 ®---Ol,
in A such that for some i, either from = p and to = [; or
from = ~p and to = ~I;. The dependency graph of A is
the graph Gao = (X, dda). For the remainder of the paper,
we assume that some PC(ID) theory 7 = {p7, A} is fixed;
hence, we will often omit A and/or T from the notations.

It has been argued many times before [Denecker, 1998;
Denecker and Ternovska, 2008; Denecker and Vennekens,
2014] that all sensible definitions in mathematical texts are
total definitions. Following these arguments, in the rest of
this paper we assume A to be a total definition.

The satisfiability problem for PC(ID), i.e., deciding
whether a PC(ID) theory has a model, is called SAT(ID). This
problem is NP-complete [Marién et al., 2008].

Justifications

Consider graph G = (V, E), with V the set of nodes and E
the set of edges. If the graph contains an edge from [ to [’
(i.e., (I,I') € E), we say that [ is a parent of I’ in G and that
" is a child of [ in G. A node [ is called a leaf of G if it
has no children in GG; otherwise it is called internal in G. Let
G’ = (V', E’) be another graph. We define the union of two
graphs (denoted G U G’) as the graph with vertices V U V'
that contains only edges that were already in G or G'.

Suppose [ is a literal with p = |I| and p € defs(A) with
definingrule p <~ [ ®--- ®1,,. A set of literals Jy is a direct
Justification of [ in A if one of the following holds:

o l=p OisAand Jg = {l1,...,ln},

e [ =p ®isV,and J; = {l;} for some i,

e [ =-p,®is A, and Jy = {~I;} for some i,

o [=-p @isV,and Jg = {~l1,...,~l,}.

Note that a direct justification of a literal can only contain
children of that literal in the dependency graph.

A justification [Denecker and De Schreye, 1993] J of a
definition A is a subgraph of G o, such that each internal node
[ € J is a defined literal and the set of its children is a direct
justification of [ in A. We say that J contains [ if | occurs
as node in J. A justification is tofal if none of its leaves are
defined literals. A justification can contain cycles.! A cycle
is called positive (resp. negative) if it contains only positive
(resp. negative) literals. It is called a mixed cycle otherwise.

If J is a justification and Z a (partial) interpretation, we
define the value of .J in Z, denoted Vz(J) as follows:

e Vz(J) = fif J contains a leaf [ with [Z = f or a positive

cycle (or both).

o Vz(J) = uif Vz(J) # f and J contains a leaf [ with

7 = u or a mixed cycle (or both).

'In this text, we assume that A is finite; in this case cycles are
simply loops in the graph.The infinite case is a bit more subtle, and
an adapted definition of cycle is required to maintain all results pre-
sented below.



e Vz(J) = t otherwise (all leaves are t and cycles, if any,

are negative).

A literal [ is justified (in Z, for T) if there exists a total
justification J (of A) that contains [ such that Vz(J) = t. In
this case, we say that such a J justifies [ (in Z, for 7). We say
that J minimally justifies [ if J justifies [ and there exists no
subgraph J’ of J that also justifies /.

Denecker and De Schreye [1993] showed that many se-
mantics of logic programs can be captured by justifications.
We recall their major result on the well-founded semantics.

Theorem 2.1 (Denecker and De Schreye [1993]). Let J be a
Jjustification of definition A.
o Suppose I and T’ are partial interpretations. If T <, T’
then Vz(J) <, Vz:(J).
e Suppose T is an opens(A)-interpretation and T' is the
well-founded model of A in context I. For each defined
literal l, it holds that

= rn<ax{VI(J) | J a total justification containing l}
=t

3 Relevance

Observations

The central observation in this paper is the fact that classical
SAT(ID) solvers such as for example MINISAT(ID) [Marién
et al., 2008; De Cat et al., 2013] or the related ASP sys-
tems such as clasp [Gebser et al., 2012] or DLV [Leone et
al., 2006] fail to exploit an important property. Recall that a
PC(ID) theory 7 = {p7, A} is assumed to be fixed through-
out the text. Systems such as MINISAT(ID) search for an
interpretation I such that I |= 7T, while in fact they could
search for a partial interpretation Z and a justification J that
justifies pyin Z. Our claim is that even though in theory both
tasks are of the same complexity, for practical applications,
the latter task possesses some important advantages. Before
discussing these, we provide the formal basis for our theory.

Theorem 3.1. T is satisfiable if and only if there exists a
partial interpretation I and a J that justifies p in L.

Proof. First assume that 7 is satisfiable. Then there ex-
ists an interpretation I such that p7/ = t and I = A.
Theorem 2.1 (2) then yields that t = max<, {V;(J) |
J is a total justification that justifies p7}. Hence, there must
exist a justification .J that contains p for which V;(J) = t,
i.e. J justifies p in I. The result then follows by taking
7 = I and using J as justification.

On the other hand assume that there exists a partial inter-
pretation Z and a justification .J such that .J justifies p7 in Z.
Now, let Z’ be any partial interpretation such that 7' >, 7 and
T’ is two-valued in opens(A). From Theorem 2.1 (1) follows
that Vz/(J) >, Vz(J), since ' >, Z. Because J justifies pr,
we also know Vz(J) = t, which implies Vz-(J) = t. Fur-
ther, V71|, .. (J) = Vz/(J) since the value of a justifica-
tion only depends on the edge relations in J (unchanged) and
the values of open atoms (also unchanged). Let I’ denote the
well-founded model of A in context Z'|,,ens(a). I' exists be-
cause we assume A to be a total definition. From Theorem
2.1 (2) we know that p! " = t, because justification J al-
ready maps to the maximal value in the <; order, thus the
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value of the set expression in the theorem is fixed. Hence T
is indeed satisfiable: I’ is a model of 7. O

We will now identify which literals are relevant.

Definition 3.2 (Relevant). Given a PC(ID) theory T
{p7, A} and a partial interpretation Z, we define the set of
relevant literals, denoted R (Z), as follows
e pr is relevant if p is not justified,
o ifl € Ry(Z), (I,I') € dda and I is not justified, then
I’ is relevant.

Intuitively, a literal is relevant if making it true can help
justify py. If a partial structure is made more precise, literals
may become irrelevant because they can no longer contribute
to any justification that justifies pr. Often, we assume 7 is
clear from the context and simply state that [ is relevant in
Z. We define the set of relevant literals and not the set of
relevant atoms because, in a further stadium, one can exploit
the information that e.g., a literal [ is relevant, but ~{ is not.

Using relevance, we aim to obtain three advantages over
classical SAT(ID) solvers.

(1) We can avoid irrelevant parts of the search space.

(2) We can stop searching once a partial interpretation is
found in which p7 is justified, instead of searching for a
total interpretation.

(3) We can make solvers more robust for wrong choices.

We illustrate each of these three advantages in the following
example.

Example 3.3. Let 7 = {pr, A} denote the theory where

pr<aAib.
—dV-eV f.
+—-hVj.
<—c/A\g.
—1iVh.

— .

OIS S

Let 7, be the partial interpretation {p7t, at, bt, d*, ct, ¢f}. In
this case, d is justified in Z;, hence so is a. This means that the
value of e and f cannot influence whether or not « is justified.
Hence, giving a value to e or to f cannot help justifying pr,
illustrating advantage (1).

Let Z, be Zy [j : t]. In this case py is justified in Z,, hence
Theorem 3.1 yields that 7 is satisfiable and we do not need
to search an assignment for the remaining (irrelevant) atoms,
illustrating advantage (2).

Let 75 be Zo[e : f]. It can be seen that there exists no
model of 7 that is more precise than Z3. Indeed, e is true in
every model of 7 because 7 as well as =i make e true. It is
possible that the solver make the choice ef early on. Theorem
3.1 shows that since p7 is justified in Z3 a model must exist
(even though the current interpretation is incompatible with
that model), illustrating advantage (3).

Example 3.4 (Example 3.3 continued). The set of relevant
literals for Z; is R (Z1) = {p1,b,—h,j,i}. py is relevant
in Z; because it is not justified. b is relevant in Z; since it is
not justified and since p7, which is not justified, depends on



it. ~h and j are relevant in Z; since they are not justified and
potentially useful to justify b. i is relevant in Z; since it is not
justified and might be used to justify —h. p7 is justified in
7> and 73, which means there are no relevant literals in these
partial interpretations.

Using these observations, we show how to exploit rele-
vance to reduce the search space.

Exploiting Relevance

In order to exploit relevance, we assume that some search
algorithm for SAT(ID) is given; we assume this algorithm
searches for an interpretation [ such that I = 7. We im-
plemented our techniques in a conflict-driven clause learning
DPLL solver. However, it deserves to be stressed that all ideas
developed here are independent of the choice of search strat-
egy or heuristic. We propose the following modification to
such a solver: choose only on relevant literals and stop search
early if there are no unassigned relevant literals in the cur-
rent search state. Note that if there are no unassigned relevant
literals left, p is justified if and only if there is a model (ac-
cording to Theorem 3.1). In order to prove correctness of our
modification, we will use the following result.

Theorem 3.5. Let T = {py, A} be a PC(ID) theory. Sup-
pose T is a partial interpretation and 1" a literal such that
Z()l'""|) = wand 1" is not relevant in L. If pr is justified in
some partial interpretation T' more precise than L, then pr
is also justified in Z'[I'""" : £] and in T'[I"™" : .

Proof. Let J be a justification that minimally justifies p in
T'. Note that leaves in J are open and true in Z’; cycles, if
any, are negative.

J1 is derived from J as follows: for each defined literal
z in J that is justified in Z: remove the edges from z to its
children. Finally, remove all parts not reachable from p;. By
construction, the leafs of .J/ are either open literals, or defined
literals justified in Z.

Let J, be a justification that contains only literals justified
in Z and that justifies all these literals. Now, define J' as
J1 U J. Since J;’s internal nodes are not justified in Z, and
all literals in J, are justified in Z, this union introduces no
new loops not already in J; or in Jy. Additionally, J' only
contains open literals already in J; or in J. This means J’
is a justification that justifies p7 in Z’, since J' contains pr,
leaves in J’ are open and true in Z'; cycles, if any, are nega-
tive.

J' cannot contain """ in the part that originated from .J1,
because those are all literals that were relevant in Z. Any
occurence of /" in any part that originated from .J, has to be
an internal node, since Vz(J2) = t, which demands that all
leafs are true. Hence, any occurrence of '™ cannot be a leaf
in J', which means that changing its interpretation does not
affect the value of J' in Z’. Therefore, p7 is also justified in
Z'[l'" : f] and Z'[I7" : t]. O

Theorem 3.5 shows that any search algorithm that can ar-
rive in a state in which p7 is justified by deciding on a literal
[ that is irrelevant in its current partial interpretation, can also
arrive in such a state without deciding on [. Hence, if a literal [
is irrelevant, it is useless to choose on that literal if the goal is
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to justify p. This is exactly what our proposed solver modi-
fication does; we restrict the choices of a search algorithm to
the set of relevant literals.

4 Experimental evaluation

In order to empirically evaluate our proposed approach, we
adjusted the IDP3 system [De Cat ef al., 2016] and its un-
derlying solver MINISAT(ID) [De Cat et al., 2013] to take
relevance into account. Integrating relevance into the search
process is simple: it is a non-intrusive modification to the
search heuristic to not choose on certain literals. However,
calculating which literals are relevant requires a tight inte-
gration with the solver being adapted. Detailed information
about the solver state, such as the dependency graph and the
justification status for literals, are required in order to calcu-
late which literals are relevant. For the purpose of this paper,
we opted for a simple and non-intrusive implementation that
had the drawback of significant overhead. Therefore, our ex-
periments are based on search space metrics rather than ab-
solute solving time. This performance overhead is not inher-
ent to maintaining relevance. Large parts of the bookkeeping
we do now is discovering information that is already present
somewhere in the solver internally. However, extracting all
the necessary information is an engineering task we did not
complete yet. In this section, we will answer the following
questions to evaluate whether it is worth investigating rele-
vance further:

(Q1) How often does the VSIDS, the current state-of-the-art

heuristic for SAT, make irrelevant decisions?
(Q2) Can we improve the performance of SAT(ID) solvers
using relevance?

The complete set of experiments and information on how
to run them can be found at https://dtai.cs.kuleuven.be/static/krr/
files/experiments/idp_relevance_experiments.tar.gz .

For these experiments we selected problems from previous
ASP competitions that could be encoded without the use of
aggregates and functions, since we do not yet support these
language constructs. We ran these problems on an Intel(R)
Xeon(R) CPU E5645 @ 2.40GHz CPU, using a time limit
of 7200 seconds and a memory limit of 8GiB.

2

Problem # Mirrd 07 d Mirre  Ojppe
GG 0/30 - - - -
HP 102/102 | 27.37% 2.87% | 36.99% 7.88%
NQueens 14/29 | 22.55% 0.11% | 0.43% 0.00%
PPM 13/30 | 22.93% 5.10% | 4.98% 0.00%
RR 0/30 - - - -
Sokoban 4/30 | 4820% 7.62% | 096% 0.01%
Solitaire 17/27 | 13.32% 0.13% | 3.95% 0.19%
SM 27/30 | 96.40% 0.13% | 0.01% 0.00%
Visit All 19730 | 15.02% 2.16% | 16.45% 3.42%

Table 1: Statistics per problem: the columns represent num-
ber of instances solved, percentage of irrelevant decisions
(mean y and variance o2), and percentage of irrelevant de-
cisions in conflicts (mean y and variance 02). GG = Graceful
Graphs, HP = Hamiltonian Path, PPM = Permutation Pattern
Matching, RR = Ricochet Robots, SM = Stable Marriage.



To answer (Q1) we ran all the above problems and their
instances with a solver configuration that uses the VSIDS
heuristic while keeping track of relevance. We keep track
of whether the decision made by VSIDS is relevant without
actually preventing decisions on irrelevant literals (i.e., the
search behaviour is not affected). Table 1 shows the problems
and their number of successfully solved versus total number
of instances (second column). In this table we show the mean
(1) and variance (o2) of (1) irr?: the ratio between the ir-
relevant decisions made by VSIDS and the total number of
decisions, and (2) irr¢: the ratio between the number of ir-
relevant decisions involved in conflicts and total number of
decisions involved in conflicts. In order to obtain the latter
statistic, we analyse the conflicts that occur during solving by
applying full resolution on them. The resulting clause only
contains decision literals. We then count the total number of
decisions as well as the number of decision literals that were
irrelevant at the time they were made.

Due to our significant performance overhead in keeping
track of relevance, we were not able to solve a single instance
of the Graceful Graphs and the Ricochet Robots problems.
We observe that, on average, the VSIDS heuristics chooses
a considerate amount of irrelevant literals. There is even an
outlier in the Stable Marriage problem where more than 96%
of the choices were irrelevant. Therefore we can say for (Q1)
that, on average, VSIDS selects a significant amount of irrel-
evant choice literals on the classical benchmarks.

On the other hand, irr¢ is generally significantly lower
than 7%, meaning that the irrelevant decisions that are made
by VSIDS hardly ever lead to conflicts. In order to further
inspect the behaviour of relevance we discuss cactusplots for
the behaviour of the experimental runs in Table 1 for instances
that were solved both by VSIDS (labeled “NR”, for “No Rel-
evance”) and by our proposed solver modification (labeled
“R”, for “Relevance”).

Cactusplot Decisions

600000

—8— NR decisions —&— R decisions

450000

300000

# decisions

150000

instances
Figure 1: Cactusplot of # decisions

Figure 1 shows that we succeeded in reducing the number
of decisions made, and Figure 2 shows that this did not affect
the number of conflicts for these benchmarks. This initial
observation is not encouraging, since the number of conflicts
is often taken as a measure for the size of the search space
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Cactusplot Conflicts

&0000
—8— MR conflicts

—b— R conflicts

45000

30000

#eonfiicts

15000

instances
Figure 2: Cactusplot of # conflicts

traversed. In what follows, we
(1) argue that in certain applications, reducing the number
of decisions is itself already a desirable property
(2) investigate why we observe no reduction in the number
of conflicts.

Reducing decisions: a contribution on its own Even if
we did not manage to significantly reduce the number of con-
flicts, reducing the number of decisions is already a signifi-
cant achievement for certain applications. To illustrate this,
we consider lazy model expansion [De Cat et al., 2015]. The
approach of lazy model expansion is to interleave the ground-
ing and the search space. That is, a first-order theory is not
translated to propositional logic a priori. Instead, depending
on the search of a SAT(ID) solver, certain parts of the ground-
ing are generated. This approach works (roughly) as follows.
A PC(ID) theory 7 is initialised as py. Each time a literal
that has no definition in 7 is assigned a value, some external
procedure is called and the definition of that literal is added
to 7. This approach is particularly fruitful in applications
with very large (possibly infinite) domains where it is simply
infeasible to generate the entire grounding.

Adding more definitions to 7 is possibly a costly operation
and should be avoided as much as possible. If we combine
lazy grounding with our proposed relevance approach we will
greatly benefit from the reduced number of decisions made,
because avoiding non relevant decisions results in fewer vari-
ables that are assigned a value (also propagations that follow
from irrelevant decisions!) and hence less grounding.

Analysing the conflict behaviour We noticed that, while
VSIDS makes lots of choices on irrelevant literals, the num-
ber of conflicts did not increase significantly. One possible
explanation for this behaviour is that in the examples we used,
the irrelevant parts of the search space are not strongly con-
strained. One real-world example of a problem where irrele-
vant parts of the search space are still heavily constrained is
a scheduling problem for a trucking company, such that each
scheduled truck can solve a packing problem. Solutions to
such problems are often hand-made in such a way that they



take relevance into account (i.e., first solving the scheduling
and then only trying to solve the relevant packing problems),
because the current generation of solvers cannot handle this
problem directly. An instance of such a problem and its so-
lution is given by Verstichel [2013]. In order to test the hy-
pothesis that underconstrained problems are indeed at the root
of this behaviour, we construct a small encoding in which
we force irrelevant literals to represent that a combinatorially
hard probem is satisfiable:

Vz[l.n] : XOR(z) & (P(z) & —Q(x)).
Vz[l..n] : XOR(z) = pigeony k.
Vz[l.n] : ~XOR(x) = pigeong j11.

Figure 3: Hand-made encoding showing the use of relevance.
For ease of reading, a first-order version of the encoding is
presented.

Figure 3 encodes the following problem. Predicates P and
@ can be chosen freely (they are opens of the underlying def-
inition). For each domain element d, X OR(d) holds if and
only if exactly one of P(d) and Q(d) holds. Next, if XOR(d)
is f, an encoding of an unsatisfiable pigeonhole must be sat-
isfied. If XOR(d) is t, an encoding of a satisfiable pigeon-
hole problem must be satisfied. Thus, the problem can only
be solved by making XOR(d) t for all instances. At any
point during search, VSIDS can make choices on the vari-
ables occurring in the encoding of the pigeonhole problems.
As soon as XOR is decided, the relevance heuristic, on the
other hand, only makes choices on variables in the relevant
subproblem. If unlucky, VSIDS behaviour can lead to a great
deal of time wasted and a great number of unnecessary con-
flicts during search.

In order to test the behaviour of VSIDS on this problem we
used the same setup as in Table 1. This time we also measured
the solving time and memory needed, as well as the total
number of decisions and conflicts. We ran the above encod-
ing with the domain of size n = 250 and k = 9. The results,
presented Table 2, show that there are problems where tak-
ing relevance leads to a greatly reduced number of conflicts,
which means a reduction of the search space. Increasing the
domain size only widened the gap between VSIDS and rele-
vance. Runtime statistics of such additional experiments are
omitted here, for brevity concerns. These observations lead
to a definite positive answer to (Q2).

VSIDS | Relevance
Running time (ms) 35691 12523
Memory (MB) 192 217.1
# decisions 10317218 150851
# conflicts 116434 20900
% irr? 96.15% 0.00%
% irre 96.49% 0.00%

Table 2: Performance of VSIDS vs. Relevance on the hand-
made problem encoding shown in Figure 3
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5 Conclusion

In this paper we formally identified a set of literals called rel-
evant;, we showed that irrelevant literals cannot influence the
justification status of a PC(ID) theory and hence that mak-
ing choices on irrelevant literals is useless with regards to
proving the satisfiability of the given PC(ID) theory. We
proposed two simple solver modifications: choosing only on
relevant literals and stopping early. In this paper we pro-
vided a preliminary experimental evaluation using a simple
and non-intrusive implementation of these proposed modifi-
cations. We compared our algorithms with the VSIDS heuris-
tics, the current state-of-the-art heuristic for SAT-solvers.

Our conclusions are that, in the benchmarks that we ran,
VSIDS was observed to choose on a significant amount of ir-
relevant literals; as such, our proposed solver modification to
VSIDS successfully managed to decrease the number of de-
cisions made. However, we were not able to significantly re-
duce the number of conflicts, which would mean a reduction
in the search space. Our hypothesis as to why the number
of conflicts did not decrease with the number of decisions
was confirmed using a crafted example. Furthermore, we
sketched situations in which the decrease in the number of
decisions alone is significant enough to improve performance
compared to the current state-of-the-art.

Our notion of irrelevance is closely related to “don’t care
atoms” in satisfiability solving [Fu et al., 2005]. However,
there is an important difference between don’t cares and ir-
relevant literals. To complete a partial structure with don’t
cares, any value may be assigned to a don’t care literal; to an
irrelevant literal, on the other hand, we only know that some
value can be found for it. The value for irrelevant literals can
be found as follows: first, any value can be assigned to the
irrelevant atoms that are open in A. Given these values to
the opens, the (parametrised) well-founded model of A can
be computed in polynomial time. The value of any other ir-
relevant literal is its value in the well-founded model. This is
exactly what happens in the proof of Theorem 3.1.

We believe that further research into relevance will be of
great value and see several topics for future work. First of
all, the current theory is limited to PC(ID); further language
extensions such as aggregates and arithmetic are not yet sup-
ported. Second, our theory also applies to generate-define-
test ASP programs; experimentally evaluating relevance in a
native ASP solver can yield interesting results. Third, engi-
neering a more efficient algorithm to keep track of relevant lit-
erals can shed light on the possible (time-wise) performance
gains from using relevance. Fourth, experimentally evaluat-
ing relevance in the context of lazy grounding is needed to
verify our hypothesis that relevance can mean great improve-
ments there.
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