
Counting Linear Extensions of Sparse Posets⇤

Kustaa Kangas Teemu Hankala Teppo Niinimäki Mikko Koivisto
University of Helsinki, Department of Computer Science,

Helsinki Institute for Information Technology HIIT, Finland
{jwkangas,tjhankal,tzniinim,mkhkoivi}@cs.helsinki.fi

Abstract
We present two algorithms for computing the num-
ber of linear extensions of a given n-element poset.
Our first approach builds upon an O(2nn)-time
dynamic programming algorithm by splitting sub-
problems into connected components and recursing
on them independently. The recursion may run over
two alternative subproblem spaces, and we provide
heuristics for choosing the more efficient one. Our
second algorithm is based on variable elimination
via inclusion–exclusion and runs in time O(nt+4),
where t is the treewidth of the cover graph. We
demonstrate experimentally that these new algo-
rithms outperform previously suggested ones for a
wide range of posets, in particular when the posets
are sparse.

1 Introduction
Determining the number of linear extensions of a given poset
(equivalently, topological sorts of a directed acyclic graph)
is a fundamental problem in order theory, with applications
in areas such as sorting [Peczarski, 2004], sequence analy-
sis [Mannila and Meek, 2000], convex rank tests [Morton et
al., 2009], preference reasoning [Lukasiewicz et al., 2014],
and learning probabilistic models from data [Wallace et al.,
1996; Niinimäki and Koivisto, 2013].

Brightwell and Winkler [1991] showed that exact counting
of linear extensions is #P-complete and therefore not tractable
for general posets unless P = NP. By dynamic programming
over the lattice of upsets (see, e.g., De Loof et al. [2006]) lin-
ear extensions can be counted in time O(|U| · w), where U is
the set of upsets and w is the poset width. This implies the
worst case bound O(2nn) for a poset on n elements, which to
our knowledge is the best to date. Though exponential in n,
the algorithm can be very fast for posets with few upsets. In
particular, it holds that |U| = O(nw), since every poset can be
partitioned into w chains and an upset can be specified by the
number of elements it contains from each chain. Hence the
algorithm runs in polynomial time for bounded width. Con-
versely, the set U can be very large when the order relation is

⇤This work was supported in part by the Academy of Finland,
grants 125637, 255675, and 276864.

sparse, which raises the question if sparsity can be exploited
for counting linear extensions faster.

In this work we present two approaches to counting linear
extensions that target sparse posets in particular. In Section 2
we augment the dynamic programming algorithm by splitting
each upset into connected components and then computing
the number of linear extensions by recursing on each com-
ponent independently. We also survey previously proposed
recursive techniques for comparison.

In Section 3 we show that the problem is solvable in time
O(nt+4), where t is the treewidth of the cover graph. While
our result stems from a well-known method of nonserial dy-
namic programming [Bertelè and Brioschi, 1972], known
as variable elimination and by other names [Dechter, 1999;
Koller and Friedman, 2009, Chap. 9] global constraints in the
problem hamper its direct, efficient use. To circumvent this
obstacle, we apply the inclusion–exclusion principle to trans-
late the problem into multiple problems without such con-
straints, which are then solved by variable elimination.

In Section 4 experimental results are presented to compare
the two algorithms against previously known techniques. We
conclude with some open questions in Section 5.

1.1 Related Work
A number of approaches for breaking the counting task into
subproblems have been considered before. Peczarski [2004]
reports a significant gain on some families of posets by recur-
sively decomposing them into connected components and so
called admissible partitions; however, this procedure has an
unknown asymptotic complexity. Li et al. [2005] present an-
other algorithm that recursively splits a poset into connected
components and so called static sets.

Besides bounded width, polynomial-time algorithms exist
for several restricted families of posets such as series-parallel
posets [Möhring, 1989], posets whose cover graph is a poly-
tree [Atkinson, 1990], posets with a bounded decomposition
diameter [Habib and Möhring, 1987], and N-free posets of a
bounded activity [Felsner and Manneville, 2014].

Fully polynomial time randomized approximation schemes
are known for estimating the number of linear extensions
[Dyer et al., 1991; Bubley and Dyer, 1999].

For listing all linear extensions there exist algorithms that
spend O(1) time per linear extension on average [Pruesse and
Ruskey, 1994] and in the worst case [Ono and Nakano, 2007].

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

603

Figure 1: A poset (left) and its cover graph as a Hasse dia-
gram. The reflexive arcs in the poset are omitted for clarity.

1.2 Preliminaries
A partially ordered set or a poset is a pair (P,P), where
P is a set and P is an order relation on P , that is, a binary
relation that is reflexive, antisymmetric, and transitive. The
elements (a, b) of P are denoted simply a P b. Elements
a, b 2 P are comparable if a P b or b P a, and otherwise
incomparable, denoted a||P b. We say that a is a predecessor
of b, denoted a <P b, if a P b and a 6= b. Dually, b is
called a successor of a. An element with no predecessors or
successors is a minimal or maximal element, respectively.

We say that b covers a, denoted a �P b, if a <P b and
there is no c 2 P such that a <P c <P b. A poset is uniquely
identified by the cover relation �P and can be presented by
the cover graph (Figure 1), usually drawn as a Hasse diagram,
where an edge upwards from a to b implies a �P b.

A set of elements A ✓ P is called a chain if all pairs of
elements in A are comparable and an antichain if no pairs
are comparable. The width of P , denoted w(P) or simply
w, is the size of the largest antichain. A downset is a set of
elements D ✓ P such that for all b 2 D, a 2 P it holds that
a <P b implies a 2 D. Dually, an upset is a set U ✓ P such
that for all a 2 U, b 2 P it holds that a <P b implies b 2 U .

A linear extension of an n-element poset P is a bijection
� : P ! [n] that respects the order P , that is, a P b
implies �(a) �(b) for all a, b 2 P . Here and henceforth the
bracket notation [n] denotes the set {1, . . . , n}. An equivalent
condition is that � respects the cover relation, i.e., a �P b
implies �(a) < �(b). The number of linear extensions of P
will be denoted `(P).

We will typically identify a poset simply with the set of
elements P . Further, any subset A ✓ P will be implicitly
treated as a subposet (A,A) of P , that is, for all a, b 2 A it
holds that a A b if and only if a P b.

2 Counting by Recursion
We begin with a brief survey of known methods for counting
linear extensions by recursively decomposing the task into
subproblems. For the remainder of the section consider an
arbitrary non-empty poset P .

First, observe that each linear extension of P begins with
some minimal element x 2 P , and the number of extensions
that begin with x equals `(P \ x). Therefore, we have that

`(P) =
X

x2min(P)

`(P \ x) , (1)

where min(P) denotes the set of minimal elements of P .

A direct evaluation of recurrence 1 corresponds to enumer-
ation of all linear extensions. It is easy to see that the sets
U ✓ P for which `(U) is computed are exactly the upsets
of P . If we store these intermediate results so that each is
computed only once, we obtain the O(|U| · w) time dynamic
programming algorithm. The number of minimal elements is
bounded by w and they are found in O(w) time by simple
bookkeeping.

By symmetry recurrence 1 still holds if x are taken over
the maximal elements instead, in which case the algorithm
will run over the downsets of P . Since downsets are exactly
the complements of upsets, the running time is unchanged.

Second, we consider the admissible partitions used by
Peczarski [2004], formalized slightly differently here. For
an arbitrary element x 2 P , we say that a partition of P \ x
into a pair of sets (D,U) is admissible if D is a downset that
contains all predecessors of x (and U an upset that contains
all successors of x). Equivalently, a partition is admissible if
and only if there is at least one linear extension � such that
�(d) < �(x) < �(u) for all d 2 D and u 2 U . Choosing
a linear extension of P is equivalent to choosing such a par-
tition and ordering D and U independently. Thus, we have
that

`(P) =
X

(D,U)

`(D) · `(U) , (2)

where (D,U) runs over all admissible partitions.
While this holds for any choice of x 2 P , not all choices

are equally efficient. In general, it is preferable to choose an
x such that the number of admissible partitions is minimized,
which is exactly when P \ x has the maximum number of
elements comparable with x.

Third, we consider the decomposition into static sets. We
say that a non-empty set of elements S ⇢ P is a static set
if every element in S is comparable with every element in
P \ S and if no proper subset of S has this property. It is
known [Li et al., 2005] that either P has no static sets, or there
exists a unique partition of P into static sets S1, . . . , Sk. If
the partition exists, a linear extension is obtained by ordering
each Si independently, and therefore it holds that

`(P) =
kY

i=1

`(Si) . (3)

Li et al. give an efficient algorithm that either finds the parti-
tion or determines that it does not exist.

Finally, if the graph representation of P is disconnected,
i.e., if P can be partitioned into sets A and B such that a||P b
for all a 2 A and b 2 B, then taking a linear of extension of
P is equivalent to ordering A and B independently and then
interleaving them. Thus, in this case we have

`(P) = `(A) · `(B) ·
✓
|P |
|A|

◆
. (4)

Each of the rules 1–4 breaks the poset into one or more
subposets whose linear extensions are counted recursively. It
is easy to see that some rules are more effective for breaking
certain kinds of subposets into parts than others, which sug-
gests an algorithm that uses a combination of multiple rules.

604

Figure 2: Left: A poset where all upsets are connected. Right:
A poset where all upsets and downsets are connected.

One such algorithm was given by Peczarski [2004] who ap-
plies rule 4 whenever the poset is disconnected and rule 2
otherwise. Li et al. [2005] propose another algorithm, which
applies rules 4 and 3 (in this order) when possible and falls
back to enumeration when neither rule is applicable.

We propose an algorithm that augments the dynamic pro-
gramming over upsets by applying rule 4 whenever the poset
is disconnected and rule 1 in all other cases. When combining
these two rules, we observe that it can make an exponential
difference whether rule 1 is applied to minimal or maximal
elements. For instance, consider a poset on n elements with
n� 1 minimal elements (Figure 2, left) and notice that all of
its upsets are connected. Therefore, if rule 1 is applied to min-
imal elements, rule 4 will never be applicable and the algo-
rithm needs to consider O(2n) upsets separately. On the other
hand, if we remove the lone maximal element, the remainder
of the poset breaks into singletons, and linear extensions are
efficiently counted by applying rule 4.

Given an arbitrary poset P , it is not obvious which choice
of rule 1 leads to a smaller number of subproblems that need
to be solved. A very simple heuristic is to remove minimal
elements if P has less minimal than maximal elements, and
vice versa. We also propose a second heuristic that computes
an estimate e(P) of the number of subproblems and makes
the choice for which the estimate is smaller. The estimate is
computed recursively as follows. If P is connected, we set
e(P) = 2|M |+ e(P \M), where M is the set of minimal (re-
spectively, maximal) elements of P . If P has the connected
components P1, . . . , Pk, we set e(P) = e(P1)+ · · ·+ e(Pk).
The intuition here is that for a connected poset we must
(roughly) consider all subsets of minimal elements and then
solve the subproblems in the remaining poset.

In certain cases (e.g. Figure 2, right) it can be effective to
alternate the choice between minimal and maximal elements.
However, our preliminary experiments suggest that on most
posets it is preferable to make the choice once only and then
apply it consistently. Intuitively this is because changing the
choice breaks the property that all subproblems are either up-
sets or downsets, thus expanding the total space of possible
subproblems. In practice this means that the recursion cannot
reuse already computed subproblems as often, thus requiring
a greater number of subproblems to be solved.

We also consider augmenting the algorithm further by ap-
plying rule 3 when possible. This can also be seen as an im-
provement of the algorithm of Li et al. where the raw enu-
meration is replaced by rule 1.

In Section 4 we present an experimental comparison of
these proposals against other recursive algorithms. We will
show in particular that on randomly generated posets both of
the suggested heuristics almost always pick the better choice.

3 Counting by Variable Elimination
In this section we show the following result.
Theorem 1 Given a poset P , the number `(P) can be com-
puted in time O(nt+4), where n = |P | and t is the treewidth
of the cover graph of P .

We give a proof in the form of an algorithm. The key idea is
to formulate the counting problem as a sum of products that
factorize over the edges in the cover graph, and then apply
the variable elimination scheme (see, e.g., Dechter [1999])
for computing the sum.

Let (P,P) be a poset on n elements. To simplify nota-
tion, we assume without loss of generality that P = [n]. On
all (not necessarily bijective) mappings of form � : [n] ! [n],
define the function

�(�) =
Y

i,j2[n]
i�P j

'(�(i),�(j)) ,

where we define '(x, y) = 1 if x < y and '(x, y) = 0
otherwise. Recall that a linear extension of P is a bijection
� : [n] ! [n] that respects the cover relation �P . Therefore,
for all bijections � : [n] ! [n] it holds that �(�) = 1 if � is a
linear extension and �(�) = 0 otherwise. As a consequence,
we have that

`(P) =
X

�:[n]![n]
bijection

�(�) .

This form does not immediately admit variable elimination
due to the global constraint that � must be bijective. By ap-
plying the inclusion–exclusion principle, we can rewrite the
sum as

=
X

X✓[n]

(�1)n�|X|
X

⌧ :[n]!X

�(⌧) ,

which removes the undesired constraint from the inner sum
but introduces a summation over all subsets of [n]. We now
make use of the property of � that for all X ✓ [n] of fixed
size k = |X| there are equally many ⌧ : [n] ! X such that
�(⌧) = 1. Hence, it suffices to sum over all possible k:

=
nX

k=1

✓
n

k

◆
(�1)n�k

X

⌧ :[n]![k]

�(⌧) .

The inner sum is now of the desired form
X

⌧1,...,⌧n

Y

i�P j

'(⌧i, ⌧j) , (5)

where we have expressed the summation over ⌧ : [n] ! [k]
as a sum over the variables ⌧1, . . . , ⌧n, each of which runs
over the values 1, . . . , k. A summation problem of this form
is associated with an interaction graph, an undirected graph
on the variables ⌧1, . . . , ⌧n, where two variables are joined
by an edge if there is at least one function '(⌧i, ⌧j) in the
product that depends on both of them. It is well known that
with variable elimination such a sum can be computed in time
polynomial in n and exponential in the treewidth t of the in-
teraction graph, which in this case is exactly (the undirected
variant of) the cover graph of P .

605

Figure 3: A poset with a cover graph of treewidth 2.

To establish the exact running time of our algorithm, we
illustrate variable elimination with a simple example. Con-
sider a poset on the elements {a, b, c, d, e} with a cover graph
as shown in Figure 3. In this example the summation task is

X

d,e,a,b,c

'(a, c)'(a, d)'(b, d)'(c, e)'(d, e) ,

where we have picked the elimination ordering d, e, a, b, c for
the variables. Variables are summed out in the reverse order
from right to left. To eliminate c, we organize the sum as

=
X

d,e,a,b

'(a, d)'(b, d)'(d, e)
X

c

'(a, c)'(c, e) ,

placing every function that does not depend on c outside the
inner sum. The set of functions that do depend on c is called
the bucket of c. Carrying out the inner summation produces a
new function �c(a, e) =

P
c '(a, c)'(c, e) that depends on

every variable appearing in the bucket except c.
We put the new function in place of the sum and continue

eliminating variables in this manner,

=
X

d,e,a

'(a, d)'(d, e)�c(a, e)
X

b

'(b, d)

=
X

d,e

'(d, e)�b(d)
X

a

'(a, d)�c(a, e)

=
X

d

�b(d)
X

e

'(d, e)�a(d, e)

=
X

d

�b(d)�e(d)

= �d ,

until we are left with a constant function whose value equals
expression 5.

We first analyze the time required to eliminate a single vari-
able x. Let m be the number of functions in the bucket of x
and let q be the number of variables at least one of the func-
tions depends on. From a computational point of view every
function is simply an array that contains a value for each in-
stantiation of its domain. Hence, eliminating x to produce �x

involves iterating over all kq instantiations of the q variables,
and for each instantiation the product of all m functions is
computed. Thus eliminating x requires O(kq ·m) time.

It is immediate that m = O(n), since in the beginning at
most n � 1 functions depend on x and variable elimination
produces at most n � 1 other such functions. On the other
hand, the maximum value of q over all variables depends on
the elimination ordering and is called its induced width. An
elimination ordering is called optimal if it has the minimum
induced width among all possible orderings. It is known that

the induced width of an optimal elimination ordering is ex-
actly t + 1 [Dechter, 1999]. Thus, given such an ordering,
eliminating all n variables takes O(n2 · kt+1) time. Due to
the inclusion–exclusion, expression 5 is evaluated by variable
elimination for all k = 1, . . . , n, which brings the final run-
ning time to O(nt+4).

It remains to note that an optimal elimination ordering can
be found in O(nt+2) time [Arnborg et al., 1987].

4 Experiments
We have implemented all algorithmic techniques described in
Sections 2 and 3 for experimental evaluation. The following
five (combinations of) techniques were considered:

• R1: Dynamic programming over upsets (rule 1 only).
• R14: Our proposal (applies rules 1 and 4).
• R24: The algorithm of Peczarski (rules 2 and 4).
• R134: Applies rules 1, 3, and 4.
• VEIE: Variable elimination via inclusion–exclusion.

For R14 we consider the following two variants:
• R14-a: The simple heuristic is used to decide whether

rule 1 is applied to minimal or maximal elements.
• R14-b: The recursive heuristic is used instead.

For comparison, we also consider R14-best and R14-worst,
two hypothetical variants of R14 that always make the best
or the worst choice, respectively.

All posets used in these experiments were produced by ran-
domly sampling directed acyclic graphs (DAGs) and taking
for each DAG the corresponding partial order. The program
LEcount,1 comprising all implementations, was written in
C++ and run on machines with Intel Xeon E5540 CPUs.
Hashing was used in all implementations for storing the com-
puted subproblems. All algorithms were given up to 20 min-
utes of CPU time and 30 GB of RAM on each poset.

4.1 Recursive Algorithms
In the first set of experiments we compare the first four algo-
rithms against each other.

We generated two classes of sparse DAGs, parameterized
by the number of vertices n 2 {30, 32, 34, . . . , 100} and
a density parameter k 2 {2, 3, 4, 5, 6}. In both classes a
DAG was generated by picking a random ordering on the ver-
tices and then adding edges compatible with the ordering. In
the first class k is the expected average degree, achieved by
adding each possible edge with probability k/(n� 1). In the
second class k is the maximum indegree, achieved by choos-
ing for each vertex at most k parents among the preceding
vertices in the ordering. This class is motivated by applica-
tions in learning Bayesian networks [Niinimäki and Koivisto,
2013], where the indegree is typically bounded.

We also generated a third class of dense bipartite graphs
on n 2 {30, 32, 34, . . . , 60} vertices and a density parameter
p 2 {0.2, 0.5}. These were produced by splitting the vertices

1The LEcount program and all experiment posets are available
at www.cs.helsinki.fi/u/jwkangas/lecount/.

606

10�1 100 101 102 103

Running time of R14-worst (s)

10�1

100

101

102

103

R
un

ni
ng

tim
e

of
R

14
-b

es
t(

s)

10�1 100 101 102 103

Running time of R14-a (s)

10�1

100

101

102

103

10�1 100 101 102 103

Running time of R14-b (s)

10�1

100

101

102

103

Figure 4: Comparison of running times between the variants of R14 on posets of all three classes. Left: the difference between
making the better or worse choice between minimal and maximal elements. In the middle and right is shown how close the two
heuristics are to optimal behavior. Cases where the time or memory limit were exceeded are shown as 20 minutes.

10�1 100 101 102 103

Running time of R1 (s)

10�1

100

101

102

103

R
un

ni
ng

tim
e

of
R

14
-a

(s
)

10�1 100 101 102 103

Running time of R24 (s)

10�1

100

101

102

103

10�1 100 101 102 103

Running time of R134 (s)

10�1

100

101

102

103

Figure 5: The running time of R14-a compared to R1, R24, and R134 on all three classes of posets.

into two sets A and B of size n/2 and adding the edge (a, b)
for all a 2 A and b 2 B with probability p.

A comparison between the variants of R14 is presented in
Figure 4. As suggested earlier, the choice between removing
minimal or maximal elements has a huge impact on perfor-
mance. It turns out, however, that even the simple heuristic
is able to pick the better choice for a vast majority of random
posets. The recursive heuristic improves upon this even fur-
ther and appears to deviate less from the better choice even
when it makes a mistake.

In light of this we only compare the variant R14-a to the
other recursive algorithms (Figures 5 and 6). We observe that
R14-a outperforms the other algorithms on every poset of
the three classes. It beats R24 by a large margin and greatly
improves upon the baseline set by R1, suggesting that rule 1
is in general better equipped for breaking a poset into con-
nected components than rule 2. In algorithm R134 we used
the simple heuristic for rule 1 to make it directly comparable
with R14-a. A closer analysis of this algorithm reveals that
rule 3 was applicable only to a handful of subproblems and
thus could not compensate for the overhead of detecting static
sets. We conclude that the addition of rule 3 does not improve
upon the performance on R14.

0 20 40 60 80 100
Percentage of posets solved

10�1

100

101

102

103

Ti
m

e
(s

)

R14-a
R134
R1
R24

Figure 6: The number of posets on which the recursive algo-
rithms finished computation within a certain amount of time.

The advantage of R14 over the other algorithms is most
pronounced on the posets of bounded indegree (Figure 7). For
the dense bipartite graphs its behavior is closer to R1 as most
of the subposets are connected.

607

0 20 40 60 80 100
Percentage of posets solved

10�1

100

101

102

103
Ti

m
e

(s
)

Small average degree

R14-a
R1
R24

0 20 40 60 80 100
Percentage of posets solved

10�1

100

101

102

103
Small maximum indegree

0 20 40 60 80 100
Percentage of posets solved

10�1

100

101

102

103
Bipartite

Figure 7: The number of posets on which R14, R1, and R24 finished within a certain time, on each class of posets separately.

30 40 50 60 70 80 90 100
Poset size (n)

10�1

100

101

102

103

Ti
m

e
(s

)

t = 2

VEIE
R1
R14-a

30 40 50 60 70 80 90 100
Poset size (n)

10�1

100

101

102

103
t = 3

30 40 50 60 70 80 90 100
Poset size (n)

10�1

100

101

102

103
t = 4

Figure 8: The running time of VEIE on grid trees with respect to the number of elements n, compared to R14 and R1.

4.2 Variable Elimination
In the second set of experiments we compare the variable
elimination algorithm VEIE against R14 and R1 on a set of
grid trees on n 2 {30, 32, 34, . . . , 100} vertices and treewidth
t 2 {2, 3, 4}. Such a grid tree is constructed by randomly
joining t by t grid posets along the edges, orienting the edges
so that no directed cycles are introduced. Finding an optimal
elimination ordering for a grid tree is easy and this step is
omitted from the evaluation.

For a fixed value of t the running time of VEIE exhibits the
expected polynomial behavior with respect to n (Figure 8).
By contrast, the recursive algorithms are highly sensitive to
other features of the poset structure and therefore display
more erratic running times. On average their behavior is still
exponential, allowing VEIE to surpass them on sufficiently
large posets of low treewidth. We can observe this happen-
ing for t = 2, but for larger treewidth even R1 remains faster
within the 20-minute time limit. We remark that the recur-
sive algorithms typically run out of memory around this point,
thus making VEIE the most viable option thereafter.

5 Conclusion
We have proposed two algorithms for counting linear ex-
tensions of posets, exploiting recursive decomposition into
connected components and low treewidth, respectively. We
demonstrated with experiments that the recursive algorithm
beats previously proposed methods on a range of both sparse
and dense posets, and that for large posets of low treewidth
our second algorithm can be even faster. We also showed that

simple heuristics often suffice to determine the better variant
of the recursive algorithm.

As a conclusion, we raise some questions for future work.
First, we note that one can easily construct specific examples
where our recursive algorithm performs poorly compared to
the other techniques. For instance, the poset in Figure 2, right,
and larger posets with a similar structure, can be effectively
decomposed into admissible partitions or static sets, whereas
our algorithm requires an exponential time. While this is a
very extreme example, it is natural to ask if there are notable
classes of posets where the counting problem is nontrivial but
solved effectively by applying multiple recursive techniques
together. In particular, does any such class benefit from using
both variants of rule 1 together, an approach that we rejected
in general? Can further generalizations of rule 1 (e.g. Edel-
man et al. [1989]) yield even faster algorithms?

Second, the derivation of our O(nt+4) time algorithm
required the trick of running variable elimination through
inclusion–exclusion to avoid global constraints. Is this the
natural best way to deal with the constraints or can a direct
dynamic programming over a tree decomposition yield an
equally or more efficient algorithm?

Lastly, in terms of parameterized complexity [Downey and
Fellows, 2012], the running time of form nf(t) places the
problem of counting linear extensions in the class XP when
parameterized by the treewidth of the cover graph. A strictly
better running time of form f(t) ·nO(1) would place the prob-
lem in the class FPT or fixed-parameter tractable. Does such
an algorithm exist for the treewidth of the cover graph or
some other poset parameter?

608

Acknowledgments
We would like to thank the anonymous reviewers for expand-
ing our knowledge on related literature and other valuable
comments for improving the presentation.

References
[Arnborg et al., 1987] S. Arnborg, D. G. Corneil, and

A. Proskurowski. Complexity of finding embeddings in
a k-tree. SIAM J. Algebraic Discrete Methods, 8(2):277–
284, 1987.

[Atkinson, 1990] M. D. Atkinson. On computing the number
of linear extensions of a tree. Order, 7(1):23–25, 1990.

[Bertelè and Brioschi, 1972] U. Bertelè and F. Brioschi.
Nonserial Dynamic Programming. Academic Press, 1972.

[Brightwell and Winkler, 1991] G. Brightwell and P. Win-
kler. Counting linear extensions. Order, 8(3):225–242,
1991.

[Bubley and Dyer, 1999] R. Bubley and M. Dyer. Faster ran-
dom generation of linear extensions. Discrete Mathemat-
ics, 201(13):81–88, 1999.

[De Loof et al., 2006] K. De Loof, H. De Meyer, and
B. De Baets. Exploiting the lattice of ideals representation
of a poset. Fundamenta Informaticae, 71(2,3):309–321,
2006.

[Dechter, 1999] R. Dechter. Bucket elimination: A uni-
fying framework for reasoning. Artificial Intelligence,
113(12):41–85, 1999.

[Downey and Fellows, 2012] R. G. Downey and M. R. Fel-
lows. Parameterized Complexity. Springer, 2012.

[Dyer et al., 1991] M. Dyer, A. Frieze, and R. Kannan. A
random polynomial-time algorithm for approximating the
volume of convex bodies. J. ACM, 38(1):1–17, 1991.

[Edelman et al., 1989] P. Edelman, T. Hibi, and R. P. Stan-
ley. A recurrence for linear extensions. Order, 6(1):15–18,
1989.

[Felsner and Manneville, 2014] S. Felsner and T. Man-
neville. Linear extensions of N-free orders. Order,
32(2):147–155, 2014.

[Habib and Möhring, 1987] M. Habib and R. H. Möhring.
On some complexity properties of N-free posets and posets
with bounded decomposition diameter. Discrete Mathe-
matics, 63(2):157–182, 1987.

[Koller and Friedman, 2009] D. Koller and N. Friedman.
Probabilistic Graphical Models: Principles and Tech-
niques. MIT press, 2009.

[Li et al., 2005] W. N. Li, Z. Xiao, and G. Beavers. On com-
puting the number of topological orderings of a directed
acyclic graph. Congressus Numerantium, 174:143–159,
2005.

[Lukasiewicz et al., 2014] T. Lukasiewicz, M. V. Martinez,
and G. I. Simari. Probabilistic preference logic networks.
In Proc. of the 21st European Conference on Artificial In-
telligence (ECAI), volume 263 of Frontiers in Artificial

Intelligence and Applications, pages 561–566. IOS Press,
2014.

[Mannila and Meek, 2000] H. Mannila and C. Meek. Global
partial orders from sequential data. In Proc. of the Sixth In-
ternational Conference on Knowledge Discovery and Data
Mining (KDD), pages 161–168. ACM, 2000.

[Möhring, 1989] R. H. Möhring. Algorithms and Order,
chapter Computationally tractable classes of ordered sets,
pages 105–193. Springer, 1989.

[Morton et al., 2009] J. Morton, L. Pachter, A. Shiu,
B. Sturmfels, and O. Wienand. Convex rank tests
and semigraphoids. SIAM J. on Discrete Mathematics,
23(3):1117–1134, 2009.

[Niinimäki and Koivisto, 2013] T. Niinimäki and
M. Koivisto. Annealed importance sampling for structure
learning in Bayesian networks. In Proc. of the 23rd
International Joint Conference on Artificial Intelligence
(IJCAI). IJCAI/AAAI, 2013.

[Ono and Nakano, 2007] A. Ono and S.-I. Nakano. Constant
time generation of linear extensions. In Proc. of the First
Workshop on Algorithms and Computation (WALCOM),
pages 151–161. Bangladesh Academy of Sciences, 2007.

[Peczarski, 2004] M. Peczarski. New results in minimum-
comparison sorting. Algorithmica, 40(2):133–145, 2004.

[Pruesse and Ruskey, 1994] G. Pruesse and F. Ruskey. Gen-
erating linear extensions fast. SIAM J. Computing,
23(2):373–386, 1994.

[Wallace et al., 1996] C. S. Wallace, K. B. Korb, and H. Dai.
Causal discovery via MML. In Proc. of the 13th Inter-
national Conference on Machine Learning (ICML), pages
516–524. Morgan Kaufmann, 1996.

609

