Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

Comparing Search Algorithms Using
Sorting and Hashing on Disk and in Memory

Richard E. Korf
Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90095
korf@cs.ucla.edu

Abstract

We compare sorting and hashing for implicit graph
search using disk storage. We first describe ef-
ficient pipelined implementations of both algo-
rithms, which reduce disk I/O. We then compare
the two algorithms and find that hashing is faster,
but that sorting requires less disk storage. We also
compare disk-based with in-memory search, and
surprisingly find that there is little or no time over-
head associated with disk-based search. We present
experimental results on the sliding-tile puzzles, Ru-
bik’s Cube, and the 4-peg Towers of Hanoi.

1 Introduction and Overview

Best-first graph searches, such as breadth-first and A* [Hart,
Nilsson, and Raphael, 1968], store all generated nodes. As
a result, they are memory-limited, often exhausting available
memory in minutes. External storage offers much higher ca-
pacity at much lower cost than random-access memory. For
example, magnetic disks with up to six terabytes cost about
50 dollars per terabyte. Several existing graph-search algo-
rithms store nodes on disk, allowing them to run for days or
weeks at a time. We use magnetic disks here, but since our
interface to the disk is a standard file system, all these tech-
niques apply to solid state drives as well, which are interme-
diate in cost between memory and magnetic disk.

Storage is used primarily to detect duplicate nodes, which
represent the same state reached via different paths. This can
be done with a hash table in memory, but a hash table is
impractical on disk, since random access can take up to ten
milliseconds. The fundamental problem is how to implement
search on disk with only sequential access. For simplicity, we
use breadth-first search here, but these techniques also apply
to heuristic search, as we will explain.

We focus here on delayed duplicate detection (DDD),
the most general disk-based search paradigm. Within this
paradigm, there are two fundamentally different approaches.
The most common one sorts a set of nodes by their state rep-
resentation, bringing duplicate nodes to adjacent positions,
allowing them to be merged in a linear scan. Alternatively,
hashing has also been used to detect duplicate nodes. With
one exception noted below, we are unaware of any experi-
mental comparison of these two methods.
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First, we briefly describe several approaches to disk-based
search. We then describe DDD using both sorting and hash-
ing in detail, and apply the general idea of pipelining to hash-
based algorithms to reduce disk I/O. Previously, it has only
been applied to sorting-based algorithms. We then show that
hashing is faster than sorting. On the other hand, we show
that sorting uses significantly less disk storage than hashing.
Finally, we show that there is little or no time overhead associ-
ated with disk-based search, compared to in-memory search.
We found this result surprising.

2 General Approaches to Disk-Based Search

Previous approaches to disk-based search include explicit
graph search, two and four-bit breadth-first search, structured
duplicate detection, and delayed duplicate detection (DDD).

2.1 Explicit vs. Implicit Graph Search

There is a significant literature on external-memory search of
explicit graphs, where the entire graph is stored on disk (e.g.
[Ajwani, Demetiev, and Meyer, 2006]). By contrast, we focus
on combinatorial search, where the graph is defined implic-
itly, and adjacent nodes are generated by a successor function.

2.2 Two and Four-Bit Breadth-First Search

These algorithms represent the complete problem space by
a single array on disk, using two bits [Robinson, Kun-
kle, and Cooperman, 2007; Kunkle and Cooperman, 2007;
Korf, 2008b], or four bits [Sturtevant and Rutherford, 2013]
per state. They require a one-to-one function from states to
array indices, and enough space to store the entire problem
space. They are not applicable to searches of larger spaces,
and use much more space than frontier search (see below).

2.3 Structured Duplicate Detection

In structured duplicate detection (SDD) [Zhou and Hansen,
2004; 2006b; 2007a; 2007b], nodes are stored in separate files
based on common state features. The features are chosen so
that when expanding nodes in a given file, the children are
contained in a small number of other files, which are tem-
porarily stored in memory. SDD requires this structure in the
problem space, and is not applicable to problem spaces with-
out this structure, such as Rubik’s Cube, for example.



2.4 Delayed Duplicate Detection (DDD)

In delayed duplicate detection (DDD), [Korf, 2004; Korf and
Schultze, 2005; Korf, 2008a] duplicate checking is not done
as each node is generated, but only periodically, such as after
expanding all nodes of a given cost. We focus exclusively on
DDD here, since it is the most general approach.

2.5 Frontier Search

Frontier search [Korf et al., 2005] can reduce the storage
needed by orders of magnitude in some spaces. Rather than
storing all generated nodes, only the nodes in one or two lev-
els of the search are stored at any time. Generating a solution
path requires only a small amount of additional work.
Frontier search can be implemented on undirected graphs
by storing with each node “used operator bits” indicating the
operators used to generate that node. When expanding a node,
we don’t apply the inverses of the used operators, preventing
the generation of the parent of a node as one of its children.

3 Sorting-Based Delayed Duplicate Detection

We first consider the special case of problem spaces where
all cycles have even length, such as the sliding-tile puzzles.
Since the blank cannot move diagonally, to return to the same
position it must move an even number of times. Thus, any set
of duplicate nodes must be at the same depth, or separated by
an even number of levels.

3.1 Problem Spaces with Only Even-Length Cycles

We begin each iteration with a single file of unique nodes at
depth d. We read this file into memory in chunks, expand each
node, and write the child nodes at depth d + 1 to another file,
without any duplicate checking. This is called the expansion
phase. We then sort the file of child nodes by their state rep-
resentation, bringing duplicate nodes to adjacent positions.
Finally, we linearly scan the sorted file, merging adjacent du-
plicate nodes together, and unioning their used-operator bits.
These unique nodes are written to a separate file at depth d+1.
This is called the merge phase.

To sort a file of generated nodes, we can read in memory-
size chunks, sort each chunk, and then write out the sorted
chunks. Then we read all the sorted chunks in parallel, per-
form a multi-way merge using a heap in memory, and write
out a file of unique nodes. For efficiency, chunks of generated
nodes are sorted and merged during the expansion phase, be-
fore writing them to files to be merged in the merge phase.

3.2 Pipelining

Each iteration above has an expansion phase that writes sorted
files of generated nodes, followed by a multi-way merge of
the sorted files. During the merge phase, a sorted file of
unique nodes is written to disk, and then read right back into
memory in the next expansion phase. This is inefficient.

The solution is an idea called pipelining, which has been
used in explicit [Ajwani, Demetiev, and Meyer, 2006] and
implicit [Jabbar, 2008] sorting-based disk search, but not to
our knowledge in hash-based disk algorithms. The alternating
expansion and merge phases are combined into one phase,
reducing disk I/O. Each iteration starts with a set of files
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of sorted nodes at depth d, including duplicates across files.
These files are read in parallel, duplicates are merged in a
multi-way merge, and each unique node is immediately ex-
panded to generate its children at depth d+ 1. The child nodes
are buffered in memory, the buffer is sorted and merged, and
then written to disk. This results in a set of files of sorted
nodes at depth d + 1.

3.3 Breaking Single Files into Multiple Segments

Unfortunately, this algorithm can double the disk space re-
quired. In the multi-way merge, the files are read in parallel,
and a file cannot be deleted until it has been read completely.
Thus, in the worst case, we cannot delete any of the input
files until the multi-way merge is complete, and all the files
of nodes at the next depth have already been written out. This
may require enough space for the largest two consecutive lev-
els of the search, rather than just the largest level.

The solution is to write each file as a sequence of separate
file segments. Then, as each segment is read into memory, it
is deleted from disk. This reduces the maximum storage to
approximately that required for the largest search level.

3.4 Problem Spaces with Arbitrary-Length Cycles

In the general case of problem spaces with both odd and even-
length cycles, such as Rubik’s Cube or the Towers of Hanoi,
duplicate nodes can appear at consecutive depths, as can be
seen from a triangle of three mutually adjacent nodes. Thus,
in each iteration, we write to disk the unique nodes at depth
d, and when merging nodes at depth d + 1, we read the file
of nodes at depth d, and delete any that also appear at depth
d + 1, using separate file segments as described above. This
requires storing two levels of the search at one time.

3.5 Sorting and Merging Algorithm

Most of the time of this algorithm is spent sorting, so we opti-
mized the sort. The fastest algorithm was our implementation
of a hybrid between merge and insertion sort. At the highest
levels, merge sort was used, while for 30 or fewer nodes, we
used insertion sort. Merging duplicate nodes was done only
during the top-level merge.

4 Hash-Based Delayed Duplicate Detection

An alternative to sorting to detect duplicate nodes is hashing
[Korf, 2008al. This relies on two orthogonal hash functions.
The file hash function hashes states to different files, while
the memory hash function hashes the states in a given file into
memory locations. For simplicity, we begin with only even-
length cycles and separate expansion and merge phases, then
consider pipelining and finally arbitrary-length cycles.

4.1 Problem Spaces with only Even-Length Cycles

In the expansion phase, each generated node is hashed to a
file using the file hash function, hashing duplicate nodes to
the same file. In the merge phase, each file is processed sep-
arately. Each node is hashed to a location in memory, using
the memory hash function. Duplicate nodes hash to the same
location, where they are merged. The resulting unique nodes
from the file are then written to a separate file. Each file must
be small enough that its unique nodes fit into memory.



4.2 Pipelining

As with sorting, we can use pipelining to reduce the amount
of disk I/O. Rather than separate expansion and merge phases,
there is a single phase for each iteration. It starts with a set of
generated nodes, including duplicates, in a set of files at depth
d. After the nodes in a given file are hashed into memory, the
hash table is scanned, the unique nodes are expanded, and
their children are hashed to a set of files at depth d + 1.

4.3 Problem Spaces with Arbitrary-Length Cycles

In problem spaces with arbitrary-length cycles, the unique
nodes at depth d are written to a file as they are expanded.
Then, after hashing into memory the generated nodes at depth
d + 1 in the next iteration, the corresponding file of unique
nodes at depth d with the same file hash value is read, and
those nodes are deleted from the hash table before expanding
the unique nodes at depth d + 1.

4.4 Important Implementation Decisions

There are several choices that must be made in any hash-
based disk search, including the number of files, the size of
the hash tables, the hash functions, and the collision mecha-
nism. These choices were based on numerous experiments.

Number of Files

Most search spaces start with one node, increase to a maxi-
mum size at some depth, and then decrease again. In sorting-
based DDD, the number of files is easily varied over the
course of the search, but this doesn’t work well for hash-based
DDD with arbitrary-length cycles, however.

With arbitrary-length cycles, we have to keep two sets of
files at two successive depths, hashed with the same file hash
function. If we change the number of files, we have to change
the file hash function, then read and rehash the nodes at the
previous depth to a new set of files. We implemented this
scheme, but it didn’t perform as well as using a constant num-
ber of files throughout the search, since there is little overhead
associated with small files at the start and end of the search.

There must be enough files so that at the maximum size
of the search space, each file can be hashed in memory. Since
we rarely know the maximum size in advance, we can assume
the search will occupy the entire disk. On our machine, this
resulted in about 500 files. Surprisingly, using extra files usu-
ally improved performance, since smaller files allow smaller
hash tables, resulting in better cache performance.

Size of Hash Tables

Our original hash-based algorithm [Korf, 2008a] used a sin-
gle maximum size hash table for every file, based on the
amount of memory. To avoid scanning a large sparse table
when hashing small files, the input file buffer was saved, and
once the nodes were hashed into memory and those at the pre-
vious depth deleted, the nodes in the input buffer were hashed
again to find the occupied locations. Instead, we adjust the
hash table size based on the size of each input file.

File and Memory Hash Functions
The simplest hash function takes the state description mod-
ulo a prime number. This produces a uniform distribution of
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states, and accommodates almost any size hash table. Com-
puting the mod function with a non-constant modulus is rel-
atively expensive, however, since it requires integer division.
With a modulus known at compile time, this computation is
optimized by the compiler and hence is much more efficient.

A simple alternative is to multiply two halves of the state
description to mix the bits, and use the middle bits of this
product as the hash value. This is efficient, but restricts the
hash table sizes to powers of two.

Since we use a constant number of files known at compile
time, we use the mod function for the file hash function, and
the above product function for the memory hash function.

Hash Collisions

There are three standard ways to deal with different states
hashing to the same location. One is to keep a linked list
of items that hash to each location. This requires additional
memory for pointers, and has poor locality, since successive
elements can be far apart in memory. A second scheme is
to rehash a colliding state to a different location. This re-
quires additional hash functions, and also has poor locality.
Our choice, called open addressing, places colliding entries
in the next successive empty location. This provides excel-
lent locality, but requires keeping some of the table empty to
avoid long runs of occupied locations. Our hash table sizes
were at least twice the number of nodes in each file.

5 Comparing Sorting and Hashing on Disk

How do sorting and hashing compare for disk-based search
with DDD? The relevant measures are running time, amount
of disk I/O, and the maximum storage needed.

5.1 Previous Work

The only previous performance comparison of sorting and
hashing for disk search appears in one paragraph of an earlier
paper [Korf, 2004]. We found that our hash-based algorithm
was 40% faster than our sorting-based algorithm on the 20-
disc 4-peg Towers of Hanoi. There are several important dif-
ferences between our earlier work and this work. Previously
we did not use pipelining, used only a single domain. and
only considered running time. Previously we used quicksort,
while we found merge sort to be faster. The hash functions
we used were special-purpose rather than the general-purpose
functions used here. Our earlier file hash function was based
on the 6 largest discs, and our memory hash function was
based on the 14 smallest discs. Since the state of the 6 largest
discs was encoded in the file names, the 14 smallest discs
and 4 used-operator bits could be stored in 32 bits, while we
use 64 bits per state here. Thus, our earlier experiments re-
quired only half the disk I/O of our current work. Finally, our
sorting-based algorithm took over 18 days to search the 20-
disc problem 12 years ago, while our current algorithm takes
just over one day on this problem.

5.2 Running Time

Sorting runs in O(n log n) time, where O(n) is the number of
nodes, while hashing runs in linear time. On the other hand,
hashing has very poor cache performance compared to merge
sort. Thus, their relative speed remains an empirical question.



5.3 Amount of Disk I/0

Let u be the number of unique states in a search, and g be
the number of generated nodes, including duplicates. In some
problems, such as the sliding-tile puzzle, u is the number of
vertices in the graph, and g the number of edges. In other
problems, however, g is less than the number of edges, due
to move-pruning rules such as don’t rotate the same Rubik’s
Cube face twice in a row, or don’t move the same Towers of
Hanoi disc twice in a row.

The total disk I/O of the original hash-based algorithm on
problems with only even length cycles is 2g + 2u, as each
generated and unique node is written and read once. In prob-
lems with odd-length cycles, this increases to 2g 4 3u, since
unique nodes are read again to delete them from the generated
nodes at the next depth. Pipelining reduces these to 2g with
only even-length cycles and 2g + 2u with odd-length cycles.

For the sorting-based algorithms, the g term is further re-
duced. As nodes are generated, they are buffered in memory.
Once the buffer is full, the nodes are sorted, and duplicate
nodes are merged before the buffer is written to disk. This re-
duces the disk I/O by the number of duplicates found within
each buffer. In those iterations where all generated nodes fit
in a single file, no duplicate nodes are written to disk.

The hash-based algorithm doesn’t achieve this reduction.
When expanding nodes, there is a separate buffer in mem-
ory for each file of generated nodes. While individual buffers
could be hashed in memory to merge duplicates before they
are written to disk, this is not done for two reasons. One is
that the same nodes will have to be hashed again when the
entire file is merged, resulting in extra running time.

The second reason is that this would remove very few du-
plicates, as we will see. In all our domains, a state is repre-
sented by a vector of variables, each representing the position
of a sliding tile, the position of a Towers of Hanoi disc, or the
position and orientation of an edge cubie in Rubik’s Cube.
In the sliding-tile puzzles and Towers of Hanoi, only one tile
or disc is affected by each move, while in Rubik’s Cube, one
third of the edge cubies are affected by each move. Thus, ex-
cept for moves that change the high-order bits of the state
representation, most of the children of a node will be close to
their parent and each other in a sorted order. Thus, when ex-
panding a set of adjacent parents, most children will be close
as well, resulting in a significant number of duplicate nodes.
This doesn’t happen with hashing, since the file hash function
is designed to spread the children randomly among the files.
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For the same reason, the maximum amount of disk space
needed by the sorting-based algorithm is significantly less
than for the hash-based algorithm. For problem spaces with
only even-length cycles, the hash-based algorithm stores the
number of generated nodes at each depth, and the maxi-
mum storage needed is the maximum value of g;, the num-
ber of generated nodes at depth ¢, times the space for a single
node. The sorting-based algorithm stores these nodes minus
any duplicates detected in memory. In problem spaces with
arbitrary-length cycles, the maximum storage needed for the
hash-based algorithm is the maximum value of u;_1 + g; over

Maximum Storage Needed
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all depths ¢, with a smaller value for the sorting-based algo-
rithm. Pipelining has no effect on this. Thus, the sorting-based
algorithm requires both less disk I/O and less maximum stor-
age than the hash-based algorithm, as we will see below. This
is in contrast to our earlier claim [Korf, 2008a] that sorting
and hashing have the same I/O complexity and by implica-
tion the same maximum storage requirements.

6 Experimental Results

DDD requires a problem space with groups of nodes that
can be expanded in any order. For example, in a breadth-first
search, nodes at the same depth can be expanded in any order.
For simplicity and reproducibility, we use exhaustive breadth-
first searches in our experiments. These results should also
apply to heuristic searches as well. For example, breadth-first
heuristic search [Zhou and Hansen, 2006a] is the most space-
efficient heuristic search, and expands nodes in breadth-first
order, pruning nodes when their g + h values exceed a cost
threshold for each iteration. As another example, A*[Hart,
Nilsson, and Raphael, 1968] can expand nodes of the same
cost in any order. Both exhaustive breadth-first and heuris-
tic searches produce search spaces with similar shapes. The
number of nodes as a function of depth increases exponen-
tially initially, reaches a maximum, and then decreases. For
breadth-first search, the decrease is due to exhausting unique
nodes, whereas for heuristic search it is due to increased
heuristic pruning with increased depth. Another advantage
of exhaustive breadth-first search is that the total number of
unique states is known, which greatly facilitates debugging.
We chose three standard combinatorial problems: sliding-
tile puzzles, Rubik’s Cube, and Towers of Hanoi. The sliding-
tile puzzles have only even-length cycles, while the others
two have odd-length cycles as well. The limiting resource
for the sliding-tile and Towers of Hanoi problems is running
time, while for Rubik’s Cube it is disk capacity. The largest
sliding-tile puzzle we searched is the 3x5 Fourteen Puzzle.
The 4-peg Towers of Hanoi adds an extra peg to the stan-
dard 3-peg version. It’s an interesting search problem because
the optimal solution is not known for an arbitrary number of
discs. Our initial state has all discs on one peg. Permuting
the three non-initial pegs results in equivalent states, and this
symmetry reduces the search space by almost a factor of six.
The largest problem we searched is the 21-disc version. While
the Fifteen Puzzle and the 22-disc Towers of Hanoi have been
searched exhaustively, to compare the running times of mul-
tiple different algorithms we used smaller-sized problems.
The 3x3x3 Rubik’s Cube problem space is much too large
to search exhaustively, so we used subspaces defined by the
edge cubies. The largest of these that could be searched with
10 terabytes of disk space is based on 10 of the 12 edge cu-
bies. The full 12 edge cubie subspace is four times larger.
Our machine is an Intel Xeon dual processor running at 3.3
gigahertz, with 48 gigabytes of memory. All our algorithms
were implemented serially. We have five two-terabyte disks
striped in a level-0 raid, which appears as a single 10-terabyte
disk. In all our experiments, most of the time was spent merg-
ing duplicate nodes, rather than expanding nodes.
Table 1 summarizes our main experimental results. The



Rubik’s Cube column refers to the 10 edge-cubie subspace.
The first three data rows of the table show the maximum
depth, the number of unique states in the problem space, and
the total number of nodes generated in an exhaustive search
of the space, including duplicates. For the Towers of Hanoi,
the number of states includes all symmetric states, while the

number of nodes doesn’t count symmetric states.

Problem | Sliding Tile | Rubik’s Cube | Tower Hanoi
Size 14 Puzzle 10 cubies 21 discs
Depth 84 13 341
States 6.54 x 1011 | 2.45 x 10! | 4.40 x 10'2
Nodes 9.59 x 1011 | 2.02 x 1012 | 2.21 x 102
Sort-P 36:18:55 123:45:00 107:27:10
Hash-P 19:57:47 52:15:20 56:20:13
Hash-NP 29:02:21 81:46:49 61:26:55
S space 340 GB 6726 GB 283 GB
H space 524 GB 8919 GB 415 GB
Diskn/s | 13.34 x 10 | 10.71 x 10% | 10.87 x 106
Size 13 Puzzle 8 cubies 19 discs
Depth 108 12 257
States 4.36 x 1019 5.11 x 10° | 2.75 x 10!
Nodes 5.92 x 1010 | 4.05 x 101° | 1.38 x 10!
In-Mem 1:19:00 1:03:47 3:05:57
Memn/s | 12.48 x 106 | 10.57 x 105 | 12.35 x 106

Table 1: Summary of Main Experimental Results

6.1 Running Time of Pipelined Algorithms

The 4th and 5th data rows of Table 1 compare the
running times of pipelined versions of the sorting and
hashing based algorithms. Times are shown in the form
hours:minutes:seconds. On the Fourteen Puzzle, the hash-
based algorithm, using 29 files, was 45% faster than the
sorting-based algorithm. On the 10 edge-cubie subspace of
Rubik’s Cube, the hash-based algorithm, using 500 files, was
58% faster than the sorting-based algorithm. On the 21-disc
4-peg Towers of Hanoi problem, the hash-based algorithm,
using 11 files, was 48% faster than the sorting-based algo-
rithm. This is consistent with our results in [Korf, 2004], but
for more efficient pipelined versions of the algorithms, using
general-purpose hash functions, on two more domains.

6.2 Pipelined vs. Non-Pipelined Algorithms

To determine the effect of pipelining on running time, we
compared the original hash-based algorithm with separate ex-
pansion and merge phases to the pipelined version. The 6th
data row of Table 1 shows the running times of the origi-
nal algorithm without pipelining. The pipelined algorithm is
31% faster on the Fourteen Puzzle, 36% faster on the Rubik’s
Cube, and 8% faster on the 21-disc Towers of Hanoi.

6.3 Maximum Disk Space Used

In all three domains, a state was encoded in eight bytes. The
7th and 8th data rows of the table show the maximum amount
of disk space in gigabytes (10”) used by the sorting and hash-
based algorithms, respectively. These values are underesti-
mates, since they only count space for the nodes themselves,
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and not the overhead of the file system. The sorting-based al-
gorithm used 35% less on the Fourteen Puzzle, 25% less on
Rubik’s Cube, and 32% less on the Towers of Hanoi problem.

We also modified the hash-based algorithm to merge du-
plicate nodes before writing them to disk. On Rubik’s Cube,
which required the most disk space, this algorithm only re-
duced the maximum number of nodes stored by 0.3%, com-
pared to the 25% reduction for the sorting-based algorithm.
Furthermore, this algorithm took 79:10:13 to run, compared
to 52:15:20 for the standard hash-based algorithm, or 52%
slower. On the Fourteen puzzle, this algorithm only reduced
the maximum storage needed by 0.8%, compared to 35% for
the sorting-based algorithm, but took 31:07:28 to run com-
pared to 19:57:47 for the standard version, or 56% slower. On
the 21-disc Towers of Hanoi problem, this algorithm reduced
the maximum storage needed by 1.16%, compared to 32% for
the sorting-based algorithm, but took 80:21:56 to run, com-
pared to 56:20:13 for the standard algorithm, or 43% slower.
Thus, sorting-based disk search uses significantly less space
than the hash-based algorithm. Furthermore, modifying the
hash-based algorithm to merge duplicate nodes before writ-
ing them to disk does not lead to a significant space reduction,
at the cost of a large penalty in running time.

7 Disk-Based vs. In-Memory Search

How fast is disk-based search compared to in-memory
search? We ran them both on the largest size problems that
fit in memory. These were the 2x7 Thirteen Puzzle, the Ru-
bik’s Cube subspace based on eight corner cubies, and the 19-
disc 4-peg Towers of Hanoi problem. In all three domains, the
disk-based algorithm was faster, but this is not a fair compari-
son, since the operating system buffers small files in memory
and doesn’t actually use the disk. A much better comparison
is to run the best in-memory algorithms on the largest size
problems that fit in memory, and compare their node gener-
ation rates with the corresponding rates for the largest prob-
lems solved on disk. The third row from the bottom of Table
1 shows the speed of our pipelined hash-based disk algorithm
in each of our domains, in node generations per second. These
values are the 3rd data row divided by by the 5th data row.
The standard in-memory frontier-search algorithm keeps
all nodes in a single hash table. For problems with only even-
length cycles, each iteration starts with the unique nodes at
depth d. The table is scanned linearly, each node at depth
d is expanded, its children at depth d + 1 are hashed into
the table, merging duplicate nodes, and the parent node is
deleted. For problems with arbitrary-length cycles, the algo-
rithm starts each iteration with the unique nodes at depths
d — 1 and d. Each iteration linearly scans the table, deleting
nodes at depth d — 1, expanding nodes at depth d, and storing
new nodes generated at depth d + 1 or merging them with du-
plicates, if they don’t also appear at depth d. This leaves the
nodes at depth d and d + 1 in the table at the end of the iter-
ation. Note that deleting a node from an open-addressed hash
table leaves a hole which will terminate the search for any
node that follows it, if its target location precedes the hole.
Thus, any such states must be moved back in the table. This
algorithm took 2:04:10 on the Thirteen Puzzle, 1:35:36 on the



Rubik’s Cube subspace of 8 edge cubies, and 3:48:53 on the
19-disc Towers of Hanoi problem.

Our fastest in-memory frontier-search algorithm uses an
explicit open list in addition to the hash table. Each iteration
starts with the set of unique nodes at depth d in the open list.
Each node is expanded, and the children at depth d + 1 are
hashed into the hash table, merging duplicate nodes. Then,
for problems with only even-length cycles, the hash table is
scanned linearly, the unique nodes at depth d + 1 are moved
to the open list, overwriting the previous nodes, and the ta-
ble is cleared. For problems with arbitrary-length cycles, after
all the nodes in the open list are expanded and their children
hashed into the table, each node in the open list is hashed into
the table, and if a match is found, that node is marked for
deletion. It isn’t immediately deleted since that would leave a
hole in the table. Finally, the hash table is scanned, the entries
not marked for deletion are moved to the open list, overwrit-
ing the previous entries, and the hash table is cleared.

This algorithm avoids the cost of deleting individual nodes
from an open-addressed hash table. It also allows variable-
size hash tables, since nodes are rehashed every iteration,
avoiding scanning a sparse table in the early and late itera-
tions. Furthermore, for problems with arbitrary-length cycles,
it uses less memory than the standard algorithm. Let m be the
maximum number of nodes at any depth. Assume our hash ta-
bles are set to twice the size of the number of nodes stored, to
avoid long runs of occupied locations. The standard algorithm
keeps two levels of the search in the hash table at once, re-
quiring a hash table of size 4m. The open-list algorithm only
stores one level of the search in the hash table (2m), plus the
open list (m), for a total size of 3m. This open-list algorithm
is our fastest in-memory algorithm in all three domains.

We also implemented DDD using sorting in memory, but
it is slower than hashing, and requires more memory, since
duplicate nodes are stored before they are merged, whereas
hashing never stores duplicate nodes.

The bottom part of Table 1 shows the maximum search
depth, the number of unique states, and the number of nodes
generated by a complete breadth-first search for smaller prob-
lems. For the Towers of Hanoi, the states include all symmet-
ric states, but the nodes generated only count their canoni-
cal representatives. It also shows the running times of our
fastest in-memory algorithm, and its speed in node genera-
tions per second. Comparing the two node generation rates,
our pipelined hash-based disk algorithm is slightly faster than
our best in-memory algorithm on the sliding-tile puzzles and
Rubik’s Cube, and only 12% slower on the Towers of Hanoi.
We found it quite surprising that storing nodes on disk instead
of memory does not impose any significant time overhead.

It may be tempting to claim that disk-based search is faster
than in-memory search on some problems, but it’s not. Given
enough memory, we can simulate any disk-based algorithm
by storing the files in memory. For small problems, the oper-
ating system does exactly this by buffering files in memory.

8 Summary and Conclusions

The dominant paradigm for external-memory search uses
sorting to merge duplicate nodes. A popular text on heuris-
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tic search [Edelkamp and Schroedl, 2012] devotes an entire
chapter to this approach, but only one page to hashing.

We first describe efficient implementations of both sorting
and hash-based algorithms, using pipelining to reduce disk
1/0. To our knowledge, pipelining has not been used before in
hash-based disk search. Our pipelined hash-based algorithm
is 8% faster on the 21-disc 4-peg Towers of Hanoi problem,
31% faster on the Fourteen Puzzle, and 36% faster on the
subspace of Rubik’s Cube defined by ten edge cubies, com-
pared to the non-pipelined hash-based algorithm. We also
provide guidance on several implementation choices for the
hash-based algorithm, including hash functions, collision res-
olution, the size of hash tables, and the number of files. Un-
like the original hash-based algorithm [Korf, 2008al, we use
hash tables whose sizes are adapted to the file size. We found
that adapting the number of files to the number of nodes at
a given depth is not worthwhile, since with arbitrary-length
cycles it requires rehashing existing nodes. Furthermore, we
found that the minimum number of files doesn’t produce the
best performance, since more files result in smaller files, al-
lowing smaller hash tables with better cache performance.

We then show that hashing is significantly faster than sort-
ing. Our pipelined hash-based algorithm is 45% faster on the
Fourteen Puzzle, 48% on the Towers of Hanoi, and 58% on
Rubik’s Cube, compared to our pipelined sorting-based al-
gorithm. We previously reported a speedup of 41% [Korf,
2004] on the Towers of Hanoi, using less efficient algorithms
without pipelining, with special-purpose hash functions, on a
slower machine and a smaller problem size.

We also show that the sorting-based algorithm requires less
disk I/O and uses less storage than the hash-based approach.
The savings were 35% on the Fourteen Puzzle, 25% on Ru-
bik’s Cube, and 32% on the Towers of Hanoi. Thus, if a search
is limited by the available disk storage rather than running
time, sorting may be a better choice.

Finally, we compare disk-based to in-memory search. In all
three domains, our disk-based search was faster than the stan-
dard in-memory search using only a hash table. Our fastest
in-memory frontier-search algorithm uses an explicit open
list in addition to a hash table. On the Fourteen Puzzle and
10 edge-cubie Rubik’s Cube, the node generation rate of our
pipelined hash-based disk search was slightly faster than our
in-memory open-list algorithm on the Thirteen Puzzle and
8 edge-cubie Rubik’s Cube, respectively. On the Towers of
Hanoi, our disk-based algorithm on the 21-disc problem was
about 12% slower than our best in-memory algorithm on the
19-disc problem. Thus, our disk-based search allows us to
solve problems several orders of magnitude larger than our
best in-memory algorithm, with little or no time overhead in
terms of nodes per second. The main drawback is the addi-
tional complexity of the code.

In a heuristic search, running time includes node gener-
ation, heuristic evaluation, and duplicate detection. In our
brute-force searches of these simple domains, duplicate de-
tection took most of the time. In heuristic searches of domains
with more expensive node generation and evaluation, the rela-
tive running times of hashing and sorting should be closer to-
gether. For the same reason, the running times of in-memory
and disk-based algorithms should be closer as well.
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