
Markov Chain Analysis of Noise and Restart in Stochastic Local Search

Ole J. Mengshoel
Electrical and Computer Engineering

Carnegie Mellon University
ole.mengshoel@sv.cmu.edu

Youssef Ahres
Electrical Engineering

Stanford University
yahres@stanford.edu

Tong Yu
Electrical and Computer Engineering

Carnegie Mellon University
tong.yu@sv.cmu.edu

Abstract
Stochastic local search (SLS) algorithms have
proven to be very competitive in solving hard com-
putational problems. This paper investigates the
foundations of SLS algorithms. We develop a sim-
ple SLS algorithm, MarkovSLS, with three search
operators: greedy, noise, and restart. The search
operators are controlled by probability parameters,
leading to soft (probabilistic) rather than hard (de-
terministic) restarts. We consider two special cases
of the MarkovSLS algorithm: SoftSLS and Adap-
tiveSLS. In SoftSLS, the probability parameters are
fixed, enabling analysis using standard homoge-
neous Markov chains. We study the interaction
between the restart and noise parameters in Soft-
SLS, and optimize them analytically in addition to
the traditional empirical approach. Experimentally,
we investigate the dependency of SoftSLS’s per-
formance on its noise and restart parameters, val-
idating the analytical results. AdaptiveSLS dynam-
ically adjusts its noise and restart parameters dur-
ing search. Experimentally, on synthetic and fea-
ture selection problems, we compare AdaptiveSLS
with other algorithms including an analytically op-
timized version of SoftSLS, and find that it per-
forms well while not requiring prior knowledge of
the search space.

1 Introduction
Stochastic local search (SLS) algorithms are greedy opti-
mizers that also make noisy (random) search steps to im-
prove their performance. The SLS paradigm is simple but
broadly applicable [Hoos and Stützle, 2005], and underlies
strong algorithms for satisfiability [Selman et al., 1992; 1994;
Gu et al., 1997; Hoos and Stützle, 2005] as well as comput-
ing the most probable explanation [Kask and Dechter, 1999;
Mengshoel, 2008; Mengshoel et al., 2011b] and the maxi-
mum a posteriori hypothesis [Park and Darwiche, 2004] in
Bayesian networks. Restart, often combined with powerful
initialization heuristics, has proven to be essential in many
SLS algorithms [Selman et al., 1992; Gent and Walsh, 1993;
Ruan et al., 2002; Ryvchin and Strichman, 2008; Mengshoel
et al., 2011b; 2011a; Audemard and Simon, 2012].

Despite the empirical success of SLS algorithms, their
mathematical foundation is in general under-developed [We-
gener, 2001; Mengshoel, 2008]. For example, hard restart
as implemented in most classic SLS algorithms [Selman
et al., 1992; Gent and Walsh, 1993; Selman et al., 1994;
Gu et al., 1997; Hoos and Stützle, 2005; Mengshoel, 2008;
Mengshoel et al., 2011b] violates the assumption of a ho-
mogeneous Markov chain as we discuss further below. This
makes a Markov chain analysis that takes classic restart into
account quite complex.

Evolutionary algorithms (EAs) including genetic algo-
rithms (GAs) have been studied using Markov chains [Gold-
berg and Segrest, 1987; Suzuki, 1995; Yu and Zhou, 2008].
Among EAs, the (1+1)EA [Wegener, 2001; Droste et al.,
2002] may appear similar to our MarkovSLS approach.
These EAs, however, do not integrate the greedy, noise, and
restart steps typically found in SLS algorithms. For example,
the (1+1)EA does not have greedy or restart steps and can
during mutation flip multiple bits per search step, assuming
that the search space is a bit string. Our MarkovSLS algo-
rithm, on the other hand, only flips one bit per search step but
integrates greedy, noise, and restart steps.

There is also related research on Las Vegas algorithms,
which always compute the correct answer but have a random
running time. Luby et al. develop a universal restart strategy
for Las Vegas algorithms [Luby et al., 1993]. However, this
work does not integrate noise and restart, which is our focus.

More broadly, most previous research on SLS is limited in
at least one of the following ways. It (i) is typically either
strictly empirical or strictly theoretical; (ii) investigates the
impact of a single algorithmic operator (noise, restart, or mu-
tation) to complement greedy search but not several; (iii) does
not adapt operator parameters at run-time; or (iv) focuses on
problems other than feature selection (for example SAT).

This paper seeks to jointly address all issues (i)–(iv)
through a simple algorithm MarkovSLS, which has two spe-
cial cases SoftSLS and AdaptiveSLS. Issue (i): Using de-
ceptive problems and Markov chains, SoftSLS enables us to
develop a theoretical foundation to optimize the parameters
analytically by means of expected hitting times as opposed
to the traditional empirical way. Experimentally, we show
the combined impact of the SoftSLS and problem instance
parameters on the average running time, validating our ex-
pected hitting time results. Issue (ii): We study a probabilistic

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

639

SLS restart approach, which we call soft restart, and embed
it into MarkovSLS. Due to the use of soft restart, and in con-
trast to the classic hard restart, SoftSLS does not violate the
homogeneous Markov chain property. We can therefore in-
vestigate analytically how restart and noise interact.1 Issue
(iii): The novel AdaptiveSLS algorithm, which dynamically
adjusts its noise and restart parameters, is shown to have ro-
bust performance on several different problem instances. Is-
sue (iv): In small-scale experiments, we investigate feature
selection problems using SoftSLS and AdaptiveSLS.

In addition, we hope that this work will provide a foun-
dation for future work, both on SLS algorithms and on in-
tegrating SLS more tightly with Markov decision processes
(MDPs) and other techniques based on Markov chains.

2 Preliminaries and Notation
We consider problem instances as bitstrings b 2 {0,1}n and
define N(b), the neighbors of b, to be all bitstrings with a
Hamming distance of one to b. Without loss of generality,
we study maximization problems. For simplicity, we assume
a unique optimal solution b⇤ in our analysis. We construct
a one-to-one mapping b from the original search space as
follows: 1 means a correct value (relative to b⇤) and 0 an
incorrect value (relative to b⇤). Under these assumptions,
b (b⇤) = 1...1 is the unique optimal solution.

We use Markov chains to formalize SLS algorithms.
Definition 1. (Markov chain) A Markov chain M = (S,V,P)
has a set S = {s1, ...,sn} of states, an initialization vector V =
(p1, ..,pn), and an n⇥n transition probability matrix P. M is
homogeneous if P(Xt+1 = j | Xt = i) = pi j is independent of
t, else it is inhomogeneous.

In this paper, “Markov violation” or “violation of the
Markov property” is an abbreviation of “violation of the as-
sumption of a homogeneous Markov chain.”

The optimal state s⇤ is what SLS seeks to find. We now
define first passage time for s⇤.
Definition 2. (First passage time) Consider a Markov chain
M = (S,V,P) with a unique optimal state s⇤ 2 S. The first
passage time T into s⇤ is given by: T = min(j � 0 : Xj = s⇤).
The expected value of T given an initial state si 2 S is:

mi = E[T | X0 = si].

Using the definition of first passage time, the expected hit-
ting time for a Markov chain is defined.
Definition 3. Given a Markov chain M = (S,V,P), the ex-
pected hitting time is:

h =
n

Â
i=1

E[T | X0 = i]Pr(X0 = i) =
n

Â
i=1

mipi. (1)

The expected hitting time of an SLS algorithm is the an-
alytical counterpart to average running time as measured for
an implementation of that algorithm [Mengshoel, 2008].2

1While very interesting, Luby et al.’s paper, for example, leaves
this issue unanswered.

2An alternative to using hitting times is to introduce, for optima,
absorbing states in the Markov chain and study absorption times
[Zhou et al., 2009; Ermon et al., 2014].

Data: pr, pn, f , n, t , ar, an
Result: s0, g0, t

1 t 1; g0 0;
2 while g0 < t do
3 s INIT(n); g f (s);
4 if g� g0 then g0 g; s0 s ;
5 restart f alse;
6 while !restart and g0 < t do
7 next NEXT STEP(pr, pn);
8 if next = oG then
9 old s s; s GREEDY STEP(s);

10 if old s = s then
11 pr = pr + p̄rar;
12 pn = pn + p̄nan;
13 else
14 pr = pr(1�ar/2);
15 pn = pn(1�an/2);
16 end
17 end
18 if next = oN then s NOISE STEP(s);
19 if next = oR then restart true;
20 g f (s);
21 if g� g0 then g0 g; s0 s ;
22 t t +1;
23 end
24 end
25 Return s0, g0, t
Algorithm 1: MarkovSLS is an algorithm where noise
probability pn and restart probability pr can be adapted.

Our deceptive functions, used to evaluate restart, are in-
spired by deceptive problems [Goldberg, 1987; Whitley,
1991; Deb and Goldberg, 1991; Mengshoel, 2008]. Decep-
tive problems typically contain a global optimum and a dis-
tinct local optimum, also called a deceptive attractor.
Definition 4. (Deceptive function) Let n,g,µ,d ,x2N and d :
x!R, where 0 x n. A deceptive function d(x;n,g,µ,d),
abbreviated d(x), with 0  d < µ < g  n is defined as fol-
lows: there is a unique global maximum d⇤ = d(g), a local
(but non-global) maximum d(d), and a local minimum µ (the
slope-change location). Formally, we have: d(x+ 1) > d(x)
for x < d or µ  x < g; d(x+ 1) < d(x) for d  x < µ or
x > g; and d(µ +1)> d(µ�1).

A deceptive function helps to improve the understanding of
the interaction between problem instance difficulty and pa-
rameters of stochastic optimization algorithms [Mengshoel,
2008], as reflected in our Markov chain analysis of SoftSLS
in Section 4. The parameters n,g,µ,d of these deceptive
functions can easily be varied to study the restart aspect of
SLS algorithms. This is important, given our focus on the
soft (probabilistic) restart mechanism.

The notation p̄ = (1� p) is used in this paper.

3 The MarkovSLS Algorithm
Our MarkovSLS algorithm is presented in Algorithm 1, with
these inputs and outputs. The inputs are: restart probability
pr; noise probability pn; pseudo-boolean fitness function f :

640

{0,1}n ! R; bitstring length n; termination threshold t 2
R with t  f (s⇤); restart adaptation parameter ar 2 [0,1];
and noise adaptation parameter an 2 [0,1]. The outputs are:
approximate maximum s0; approximately maximal fitness g0
= f (s0)� t; and search step counter t.

MarkovSLS has two main advantages relative to previ-
ous work: First, it allows a deeper theoretical analysis of its
search by randomizing the restart procedure via pr, so-called
soft restart. Second, it introduces a novel parameter adap-
tation mechanism that adapts both the noise and the restart
probabilities pn and pr based on information collected about
the optimization landscape.

Explanation. We first explain the key variables and func-
tions used in MarkovSLS in Algorithm 1. The variables s, s0,
and old s in Algorithm 1 are bitstrings of length n. INIT(n)
creates a bitstring of length n, according to an initialization
method. Sampling uniformly at random is such an initial-
ization method. GREEDY STEP(s) and NOISE STEP(s) flip
one bit in their input s when creating their output, which is
then assigned to s. NEXT STEP(pr, pn) randomly decides
the next search operator O according to this definition.

Definition 5. (MarkovSLS search operators) The restart op-
erator oR has probability P(O = oR) = pr; the noise oper-
ator oN has probability P(O = oN) = (1� pr)pn = p̄r pn;
and the greedy operator oG has probability P(O = oG) =
(1� pr)(1� pn) = p̄r p̄n.

In a GREEDY STEP(s), the best-fit neighboring state u⇤
of s, among u 2 N(s), is picked as the next state. If there are
k candidates u⇤1, u⇤2, . . ., u⇤k , such that f (u⇤1) = f (u⇤2) = · · · =
f (u⇤k), one of them is picked as the next step, uniformly at
random. In a NOISE STEP(s), a neighboring state u 2 N(s)
is picked, uniformly at random, as the next step (regardless of
f (u)). To simplify analysis, MarkovSLS runs until an achiev-
able input threshold t is reached.

Soft restart. In classic SLS algorithms, restart is hard
(or deterministic) and happens after a fixed number, often
called MAX FLIPS, of search steps [Selman et al., 1992;
Gent and Walsh, 1993; Selman et al., 1994; Hoos, 2002;
Hoos and Stützle, 2005; Mengshoel, 2008; Mengshoel et al.,
2011b]. Since hard restart violates the Markov property, it is
difficult to analyze the impact of restart in these classic algo-
rithms. Instead of having a hard boundary on MAX FLIPS
and always restart once we reach it, MarkovSLS uses a prob-
ability pr to restart at each step. This is what we refer to as
probabilistic (or soft) restart. With soft restart, the effect of
restart on the expected hitting time can be better understood,
see Section 4.

Parameter adaptation. MarkovSLS updates pr and pn ac-
cording to the values of the adaptation parameters ar and an.3
The increments are defined by pr = pr +(1� pr)ar and pn =
pn +(1� pn)an, while the decrements are pr = pr(1�ar/2)
and pn = pn(1�an/2). The increase rate is more aggressive
than the decrease rate: once stagnation is detected, we deduce

3Similar to AdaptiveNoise [Hoos, 2002], we optimized them em-
pirically for a small set of problem instances and then fixed them
for the rest of the study. In this paper, their optimized values are:
an = 0.2 and ar = 0.1.

that we are trapped in a local (but perhaps not global) maxi-
mum and increase the probabilities pn and pr to escape it. To
detect search stagnation, we simply store the last state visited
and compare it with the current state, i.e., a self-loop.

Depending on the values of ar and an, we have different
variants of MarkovSLS. In this paper we investigate SoftSLS
(using ar = an = 0 in MarkovSLS) and AdaptiveSLS (using
ar > 0 and an > 0 in MarkovSLS).

3.1 SoftSLS: MarkovSLS with ar = 0, an = 0
For ar = an = 0, it is easy to see that pr and pn remain at
their respective input values in MarkovSLS. There is no adap-
tation. We define this MarkovSLS variant as SoftSLS in ref-
erence to the soft restart mechanism.

In extreme cases, the behavior of SoftSLS can easily be de-
duced. If pr = 0 and pn = 1, it is a random walk. If pr = 1,
we restart without any greedy or noisy steps, and perform ran-
dom sampling according to INIT(n). However, we are most
interested in the interaction between pn and pr in general,
where 0 pn  1 and 0 pr  1, as we now discuss.

Restart in most SLS algorithms, which we will call clas-
sic SLS algorithm, works like this: after a number of steps
defined by MAX FLIPS, the search process deterministically
restarts. Cleary, this violates the homogeneous Markov chain
property. Let ClassicSLS be the same as the SoftSLS, ex-
cept it has deterministic restart. The SoftSLS and ClassicSLS
algorithms have, in a certain sense, similar behavior if we
carefully choose their respective input parameters.

Proposition 1. Let pr > 0 and 1/pr 2N+. Consider the Clas-
sicSLS algorithm with parameters (pn,MAX FLIPS), where
MAX FLIPS is the number of flips before restart, and Soft-
SLS with parameters (pn, pr). Let MAX FLIPS = 1/pr . Then
the expected time to restart is the same for ClassicSLS and
SoftSLS.

Proof. Given the MarkovSLS pseudo-code, the number of
steps before restarting follows a geometric distribution with a
parameter pr. Thus, its expectation is 1/pr . Using the Weak
Law of Large Number, we conclude that SoftSLS restarts on
average after 1/pr steps. Under the assumption that classic
SLS has restart parameter MAX FLIPS = 1/pr , clearly the
expectations of the restart times are the same.

For SoftSLS, since pr and pn are fixed, we have homoge-
neous Markov chains, analyzed in Section 4.

3.2 AdaptiveSLS: MarkovSLS with ar > 0, an > 0
The SoftSLS presented above can be mathematically ana-
lyzed to extract optimal parameters for a given problem.
However, in practice, we have limited information about the
fitness landscape, making the optimization very challeng-
ing. Thus, we propose a second special case of MarkovSLS,
namely AdaptiveSLS with ar > 0 and an > 0.

For ar > 0,an > 0, pr and pn are being adapted in
MarkovSLS; we define this MarkovSLS variant as Adap-
tiveSLS. AdaptiveSLS initializes MarkovSLS with parame-
ters pn and pr; MarkovSLS increases them when search stag-
nates, and decreases them otherwise. The adaptive mecha-
nism in AdaptiveSLS, while relatively simple, appears to be

641

highly competitive with optimized SoftSLS as we will show
experimentally.

To our knowledge, previous work has not adapted both
noise and restart like AdaptiveSLS. Hoos explored adaptive
noise [Hoos, 2002] but not adaptive restart. Luby, Sinclair,
and Zuckerman, in contrast, vary restart in their universal
strategy but do not investigate adaptive noise [Luby et al.,
1993]. Ryvchin and Strichman advocate a related concept,
namely localized restarts [Ryvchin and Strichman, 2008].

For AdaptiveSLS, the homogeneous Markov chain prop-
erty is violated, since pr and pn are changing. Consequently,
the analysis in Section 4 refers to SoftSLS, where pr and pn
are fixed (giving a homogeneous Markov chain) and not to
AdaptiveSLS (giving an inhomogeneous Markov chain).

4 Markov Chain Analysis of SoftSLS
SLS has been analyzed within a Markov chain framework
[Mengshoel, 2008]. However, a main constraint of this pre-
vious analysis is that the process never restarts: MAX FLIPS
= •. In practice, however, restart typically plays an essential
role in SLS. The soft restart in SoftSLS enables us to analyze
SLS using homogeneous Markov Chains, taking into consid-
eration the whole SLS process including restart.

4.1 Exact Markov Chain Model
We now analyze SoftSLS, and in particular find the transition
probabilities in its Markov chain.
Proposition 2. SoftSLS induces a Markov chain M =
(S,V,P) where S = {s|s2 {0,1}n}, V is given by INIT(n), and
P is as follows. Let oG define a greedy operator, oR a restart
operator, and oN a noise operator. Let P(O = o) be the prior,
where o 2 {oG,oR,oN}. Let SoftSLS be in state m at iteration
i, and suppose that m,k 2 {1,2, . . . ,2n}. The probability of a
transition to state k is:

P(Xi+1 = k | Xi = m) = p̄n p̄rP(Xi+1 = k | Xi = m,O = oG)

+ pn p̄rP(Xi+1 = k | Xi = m,O = oN)

+ prP(Xi+1 = k | Xi = m,O = oR).

Proof. S and V are obvious, and we turn to P. The three
possible SoftSLS operators (restart oR, greedy oG, and noise
oN) are mutually exclusive. Thus, using the law of total prob-
ability, we calculate the probability P(Xi+1 = k | Xi = m) of
a new state k by adding up the products of the probability
P(Xi+1 = k | Xi = m,O = o) for o 2 {oG,oR,oN} and their
respective priors P(O = oG), P(O = oR), and P(O = oN).

An exact Markov chain analysis of SoftSLS would be most
accurate, since it is performed over all {0,1}n states. How-
ever, this state space grows exponentially in n, which makes
the analysis difficult even for small problem instances.

4.2 Deceptive Markov Chain Model
We now introduce approximate Markov chains, giving a bet-
ter opportunity to analyze and optimize the SoftSLS algo-
rithm. We introduce deceptive Markov chains, used to evalu-
ate the behavior of SoftSLS as its parameters vary.
Definition 6. (Deceptive Markov chain) An n-bit deceptive
Markov chain (DMC) with local optimum d , global optimum

Figure 1: Deceptive Markov Chain: DMC(pn, pr;5,3,0) with
transition probabilities.

g = n, local minimum µ , probability of noise step pn and
probability of restart pr, abbreviated DMC(pn, pr;g,µ,d), is
defined as follows. It has n+ 1 states, S = {0, ..,n}, and the
initial distribution V is defined for i 2 S, as pi = (n

i)/2n . State
transition probabilities are for 0 x< d or µ  x< n defined
as:

P(Xi+1 = x+1 | Xi = x) = p̄r(1�
x
n

pn)+ prpx+1,

for d  x < µ:

P(Xi+1 = x+1 | Xi = x) = p̄r(
n� x

n
pn)+ prpx+1,

for 0 < x d or µ  x n:

P(Xi+1 = x�1 | Xi = x) = p̄r(
x
n

pn)+ prpx�1,

for d < x < µ:

P(Xi+1 = x�1 | Xi = x) = p̄r(1�
n� x

n
pn)+ prpx�1,

and for x = 0 or x = n:

P(Xi+1 = x | Xi = x) = p̄r p̄n.

The above equations divide the transitions into regions: the
first two regions consist of increasing slopes between 0 and
the local optimum d and between local minimum µ and the
global maximum g = n. (We have generally assumed, in this
paper, that g = n for simplicity.) The third region consists
of a decreasing slope between d , the deceptive optimum, and
the local minimum µ . Within each of these two regions, SLS
moves forward (toward g) or backward (away from g) accord-
ing to the above equations.
Proposition 3. If INIT(n) in SoftSLS(pr,pn, f ,n t) is initial-
ization uniformly at random and f is a deceptive function
d(x;n,g,µ,d), then the Markov chain induced by SoftSLS for
t = f (n) is a DMC, DMC(pn, pr;g,µ,d).

Proof Sketch. This follows from the definitions of Soft-
SLS and of a deceptive function. We start by formulating a
Markov chain, then using the fact that f is a deceptive func-
tion, we divide the Markov chain into regions: two ascend-
ing slope regions and a descending slope region as explained
above. It is then easy to deduce the probability to go to a
given state using pn and pr, resulting in DMC(pn, pr;g,µ,d).

Figure 1 shows as an example DMC(pn, pr;5,3,0), where
each directed edge is a probabilistic transition. When pr > 0
in SoftSLS, each node should be connected to all other nodes,

642

since restart can lead the search from a node to any other
node. To improve readability, we omit these restart edges.

Generally, we are interested in the influence that the prob-
lem difficulty parameters µ and d in a DMC have on the ex-
pected hitting time, and their interaction with the SoftSLS
parameters (pn, pr).
Proposition 4. Let M be a vector of expected first passage
times for a DMC(pn, pr;g,µ,d); mi for 0  i  n. Clearly,
mn = 0 as we assumed g = n. We obtain the following. For
i = d :

mi = 1+ p̄r(
n�d

n
pnmd+1 +

d
n

pnmd�1 + p̄nmd)+ pr⇥MVt ,

for d < i < µ:

mi = 1+ p̄r(
n� i

n
pnmi+1 + (1� n� i

n
pn)mi�1) + pr ⇥MVt ,

for 0 < i < d or µ  i < n:

mi = 1 + p̄r((1 �
i
n

pn)mi+1 +
i
n

pnmi�1) + pr ⇥ MVt ,

and if i = 0 and d 6= 0:
mi = 1+ p̄rmi+1 + pr⇥MVt .

For the same reason as in Definition 5, the above equations
are divided into two regions. We see that the expressions for
mi greatly depend on µ , d , pr, and pn in addition to the cur-
rent state i. Thus, we use the notation mi,µ,d (pn, pr) to more
fully characterize the equations.

Following (1), the expected hitting time for a DMC prob-
lem of size n and difficulty parameters µ and d is:

hn,µ ,d (pn, pr) =
n

Â
i=0

pimi,µ,d (pn, pr). (2)

From (2), the expected hitting time for a particular deceptive
Markov chain, formally denoted as DMC(pn, pr;g,µ,d), can
be computed. An example is provided in Section 4.3.

4.3 Markov Chain Optimization
The above formulation establishes a framework to analyze
the performance of SoftSLS on a given search landscape. In
this section, we show how we can utilize it to optimize the
SoftSLS parameters on that particular landscape. Then, we
propose a strategy to generalize this optimization approach to
non-trivial problems and unknown landscapes.

An Optimization Example
Let us consider how to solve a DMC and find an optimal pair
(p⇤n, p⇤r). We use a small DMC, with n = 5.

Consider the DMC(pn, pr;5,3,0) as shown in Figure 1
along with its transition probabilities. We will now de-
rive h5,3,0(pn, pr). The Markov chains initialization vec-
tor is V = (p0,p1,p2,p3,p4,p5) and we define the vector
M = (m0,m1,m2,m3,m4,m5) where m5 = 0 and:

m0 = 1+ p̄r((1� pn)m0 + pnm1)+ pr⇥MVt

m1 = 1+ p̄r((1� (4/5)pn)m0 +(4/5)pnm2)+ pr⇥MVt

m2 = 1+ p̄r((1� (3/5)pn)m1 +(3/5)pnm3)+ pr⇥MVt

m3 = 1+ p̄r((1� (3/5)pn)m4 +(3/5)pnm2)+ pr⇥MVt

m4 = 1+ p̄r((4/5)pnm3 +(1� (4/5)pn)m5)+ pr⇥MVt .

Table 1: Datasets for feature selection experiments.
Dataset # features # instances
Diabetes 8 768
Breast Cancer 9 700
Wine 13 178
Australian 14 690

Assuming uniform restart in SoftSLS, we have pi = (5
i)/25 .

By solving, we obtain mi for i 2 {0,1,2,3,4,5} as a func-
tion of pn and pr. Then, we compute Â5

0 E[T | X0 = i]P[X0 =
i] = Â5

0 mipi to obtain the expected hitting time h5,3,0(pn, pr).
Given that they are bivariate, the expression for this solution
is quite space-consuming, even for this small 5-bit problem.
It is thus omitted here.

Using the solution expression for h5,3,0(pn, pr) and the
active-set algorithm [Nocedal and Wright, 2006], we can de-
duce an optimal pair (p⇤n, p⇤r) = (0,0.346) that minimizes the
expected hitting time of the Markov chain.

An optimal value of p⇤n = 0 may seem surprising, since
it goes against the idea of escaping from local optima via
noise. However, p⇤n = 0 is a direct consequence of the decep-
tive function studied, which mainly stresses the restart aspect
of MarkovSLS as discussed in Section 2. In fact, p⇤n 6= 0 for
many real-world and synthetic problems.4

Towards Optimization in General
Above, we formulated a Markov chain and found the optimal
(p⇤n, p⇤r) for a known 5-bit problem. However, in practice, we
may not know the shape of the search space or its character-
istics such as the number of local optima or their locations.
Therefore, a procedure to generalize the analysis presented
above is necessary for it to inform applications. A very sim-
ple, yet potentially powerful, strategy consists of using min-
imal knowledge of the problem and optimize the parameters
over a set of DMCs. For instance, by knowing problem size
n, we can solve the DMC(pn, pr;g,µ,d) for combinations of
(g,µ,d). This makes a strong assumption about the nature of
the problem instance, which may or may not be appropriate.
However, the approach has a cubic complexity and there is
opportunity for pre-processing.

5 Experimental Results
In experiments with synthetic and real-world problems,
we compare SoftSLS, AdaptiveSLS, AdaptiveNoise [Hoos,
2002], and Simulated Annealing [Kirkpatrick et al., 1983].

5.1 Methods and Data
We use both synthetic (deceptive Markov chains) and real-
world datasets (feature selection) in our experiments. Table 1

4For real-world examples, we refer to feature selection problems
in Section 5.4. There are also synthetic problems where p⇤n 6= 0 (in
the optimal pair). In fact, for deceptive functions with n � 10, this
is usually the case. For a family of deceptive functions and their
corresponding DMCs, we found an average of pn = 0.075 and pr =
0.0388 over optimal pairs, when averaging over a range of values of
d and µ .

643

Figure 2: Experimental contour plots of the average running time on a logarithmic scale for varying noise and restart probabil-
ities pn and pr for synthetic DMC problems. Each contour plot shows pn on the x-axis and pr on the y-axis.

Table 2: Average running time results for optimized SoftSLS,
AdaptiveSLS, AdaptiveNoise (AN), and Simulated Anneal-
ing (SA) on synthetic DMC problems.
(d ,µ) SoftSLS AdaptiveSLS AN SA
(0,3) 7.80 6.57 6.78 984.31
(0,6) 23.65 23.14 21.02 1036.12
(2,5) 14.42 11.36 12.47 1004.67
(2,7) 45.19 46.70 37.51 956.78
(5,6) 45.64 44.24 46.56 966.13
(5,7) 44.70 45.32 48.91 989.48
(7,9) 339.37 385.57 298.30 1022.22

presents the real-world datasets used for feature selection.5
In experiments we use t = f (s⇤) as input to MarkovSLS.

Consequently, both average running time and expected hitting
time refer to a global optimum, and fitness or accuracy when
terminating does not vary between experiments. Difference
in fitness or accuracy is not a confounding factor here.

For apples-to-apples comparisons with analytical results,
we measure the average running time, via MarkovSLS’s out-
put t. An average over 500 experiments is computed, giving
an empirical estimate of the expected hitting time. We also
include experimental results for AdaptiveNoise (AN) [Hoos,
2002] and Simulated Annealing (SA) [Kirkpatrick et al.,
1983].

5.2 SoftSLS on Synthetic Problems
We now study deceptive Markov chains DMC(pn, pr;n,µ,d)
with d = 0. Using different values for pr, pn, and µ , we study
the performance of SoftSLS. Figure 2 reflects the behavior of
SoftSLS for varying pn on the x-axis and varying pr on the
y-axis.

The two experimental plots shown leftmost in Figure 2 (for
n = 10) correspond well to the expected hitting time results
found analytically.6 This validates our Markov chain analy-
sis. The rightmost two plots show similar behavior for n= 15.
Another interesting result is the behavior of the average run-
ning time for small values of pn. For very small and very
large values of pr, SoftSLS performs poorly. However, by

5Please see https://archive.ics.uci.edu/ml and http://www.liacc.
up.pt

6Due to space restrictions, we do not show the analytical con-
tour plots corresponding to Figure 2 here. The analysis was done as
discussed in Section 4.3.

Table 3: Average running time results for optimized SoftSLS,
AdaptiveSLS, and AdaptiveNoise (AN) on real-world feature
selection problems.

Dataset SoftSLS AdaptiveSLS AN
Diabetes 18.36 22.92 23.03
Breast Cancer 19.72 26.45 21.85
Wine 29.31 33.62 43.05
Australian 34.43 43.55 52.93

carefully choosing pr, we can drastically reduce the running
time. The contour plots in Figure 2 highlight this behavior.
This shows how crucial the restart parameter can be to opti-
mize the running time of SLS algorithm.

5.3 AdaptiveSLS on Synthetic Problems
We investigate the performance of AdaptiveSLS, including
its response to varying synthetic problem parameters. The
DMC problem size is n = 10, and results are averaged over
500 experiments. In order to perform a stringent compari-
son, we optimized SoftSLS mathematically using its Markov
chain analysis.

Table 2 shows a summary of our results. Perhaps surpris-
ingly, AdaptiveSLS sometimes performs better than an opti-
mized SoftSLS. The intuition behind this is that AdaptiveSLS
adapts its pr and pn parameters given the current state of
search, whether stagnated or not, without knowing the glob-
ally optimal values of the parameters. On the other hand,
SoftSLS keeps its globally optimized parameters (p⇤n, p⇤r) in-
dependently of the current state, which may cause poor per-
formance if it is stuck searching close to a local optimum.

5.4 Use Case: Feature Selection Problems
We now study the performance of SoftSLS and AdaptiveSLS
on the real-world problem of feature selection. The goal of
the experiment is to investigate, in a randomized wrapper
approach to feature selection [Stracuzzi, 2007; Kohavi and
John, 1997], whether AdaptiveSLS can achieve comparable
results to SoftSLS, without intensive parameter optimization.
For each MarkovSLS bitstring s we have a corresponding fea-
ture subset. A 0-bit in s means that the corresponding feature
is not included in the feature subset; a 1-bit means that it is.

We trained a Decision Tree, on varying feature subsets
and computed the cross-validation accuracy. In feature selec-
tion, the goal is to find a bitstring s⇤ with the maximal cross-
validation accuracy. Thus, we set a bitstring s’s fitness f (s) as

644

Figure 3: Experimental contour plots of the average running time on a logarithmic scale for varying noise and restart proba-
bilities pn and pr for real-world feature selection problems, from left to right: Diabetes, Breast Cancer, Wine, and Australian.
Each contour plot shows pn on the x-axis and pr on the y-axis.

Figure 4: Typical behaviors of AdaptiveSLS on Wine and Australian data in four experiments. The x-axis shows the number of
AdaptiveSLS search steps (t in Algorithm 1), and the y-axis shows pr, pn and cross validation accuracy.

its cross-validation accuracy, using 2-fold cross-validation.7
For each dataset, we searched exhaustively to predetermine
the globally optimal feature subset s⇤, and passed t = f (s⇤)
to both SoftSLS and AdaptiveSLS. Both algorithms terminate
when finding a globally optimal feature subset.

In the comparison between AdaptiveSLS and SoftSLS in
the feature selection problems, the results of SoftSLS with
empirically optimized parameters are reported. We report the
average results of SoftSLS and AdaptiveSLS over 500 exper-
imental runs, to reduce noise.

Table 3 and Figure 3 summarize the average running time
results. In general, when the dataset’s dimension is larger,
the running time is larger as reflected in Table 3. As shown
in Figure 3, the approximately optimal pairs are: Diabetes:
p⇤r = 1/4, p⇤n = 2/100; Australian: p⇤r = 1/4, p⇤n = 0; Wine:
p⇤r =

1/4, p⇤n =
6/100; and Breast Cancer: p⇤r =

1/4, p⇤n =
4/100.

These pairs were found by grid search over 9⇥ 51 = 459
points (51 values pn 2 {0, 2/100, 4/100, . . .} and 9 values pr 2
{1, 1/2, 1/4, 1/8, 1/16, . . .}). As we can see in Figure 3, the
near-optimal pairs of pn and pr form a region. In this re-
gion, we have (pn, pr) giving either exactly the same or very
similar performance to the optimal pair (p⇤n, p⇤r). For Wine, a
relatively high pr is necessary in order to minimize average
running time, even after considering this region.

Note that AdaptiveSLS does not rely on prior knowledge
about p⇤r and p⇤n, which can save substantial computing time.
On Diabetes, Wine and Australian, AdaptiveSLS can also
beat AdaptiveNoise [Hoos, 2002] where only noise pn is
adapted, in terms of average running time. This demonstrates

7In multi-class problems, like the Wine dataset, if the number of
folds is too large, validation performance will degrade due to imbal-
ance between different folds.

the potential of adapting both the restart and noise probabili-
ties as done in AdaptiveSLS.

Figure 4 shows the evolution of pr and pn in AdaptiveSLS
during search, after initialization pr = pn = 0. Generally, we
can divide the search process into two phases: In the first
phase, the algorithm often gets stuck in a local optimum.
Thus, pr and pn are increased. Due to these high probabil-
ities for pr and pn, we are able to get out of the trap. Then, a
second phase starts where we converge towards an optimum
while the probabilities decrease. The two phases may repeat,
as shown in the rightmost plot of Figure 4. At the end of
search, the found pr and pn for Wine and Australian match
well with the optimal regions shown in Figure 3.

6 Conclusion
This paper presents a simple SLS algorithm, MarkovSLS. We
study two special cases of the algorithm: SoftSLS and Adap-
tiveSLS. SoftSLS avoids violating the homogeneous Markov
chain property by modifying the deterministic restart ap-
proach of most SLS algorithms, and using instead a prob-
abilistic restart. This probabilistic restart enables a broad
Markov chain and hitting time analysis, including finding the
global optima of the noise and restart parameters, for syn-
thetic problems. Experimentally, we study the impact of vary-
ing the use of the greedy, noise, and restart operators on the
time it takes SoftSLS to find an optimal solution. In contrast
to SoftSLS, AdaptiveSLS, dynamically adjusts the probabil-
ity parameters. Experimentally, we find that the AdaptiveSLS
algorithm behaves very well compared to optimized SoftSLS,
both for synthetic deceptive problems and for real-world fea-
ture selection problems.

645

References
[Audemard and Simon, 2012] G. Audemard and L. Simon.

Refining restarts strategies for SAT and UNSAT. In Princi-
ples and Practice of Constraint Programming, pages 118–
126. 2012.

[Deb and Goldberg, 1991] K. Deb and D. E. Goldberg. An-
alyzing deception in trap functions. In Foundations of Ge-
netic Algorithms, pages 93–108. Morgan Kaufmann, 1991.

[Droste et al., 2002] S. Droste, T. Jansen, and I. Wegener. On
the analysis of the (1+1) evolutionary algorithm. Theoret-
ical Computer Science, 276(12):51 – 81, 2002.

[Ermon et al., 2014] S. Ermon, C. P. Gomes, A. Sabharwal,
and B. Selman. Designing fast absorbing Markov chains.
In Proc. of AAAI-14, pages 849–855, 2014.

[Gent and Walsh, 1993] I. P. Gent and T. Walsh. Towards
an understanding of hill-climbing procedures for SAT. In
Proc. of AAAI-93, pages 28–33, 1993.

[Goldberg and Segrest, 1987] D. E. Goldberg and P. Segrest.
Finite Markov chain analysis of genetic algorithms. In
Proc. of the Second International Conference on Genetic
Algorithms and Their Application, pages 1–8, 1987.

[Goldberg, 1987] D. E. Goldberg. Simple genetic algorithms
and the minimal deceptive problem. In L. Davis, editor,
Genetic algorithms and simulated annealing, pages 74–
88. Pitman, 1987.

[Gu et al., 1997] P. W. Gu, J. Purdom, J. Franco, and B. W.
Wah. Satisfiability Problem: Theory and Applications,
chapter Algorithms for the Satisfiability SAT Problem:
A Survey, pages 19–152. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. Ameri-
can Mathematical Society, 1997.

[Hoos and Stützle, 2005] H. H. Hoos and T. Stützle.
Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann, San Francisco, 2005.

[Hoos, 2002] H. H. Hoos. An adaptive noise mechanism for
WalkSAT. In Proc. of AAAI-02, pages 655–660, 2002.

[Kask and Dechter, 1999] K. Kask and R. Dechter. Stochas-
tic local search for Bayesian networks. In Proc. of
AISTATS-99, pages 113–122, 1999.

[Kirkpatrick et al., 1983] S. Kirkpatrick, C. D. Gelatt, and
M. P. Vecchi. Optimization by simulated annealing. Sci-
ence, 220:671–680, 1983.

[Kohavi and John, 1997] R. Kohavi and G. H. John. Wrap-
pers for feature subset selection. Artificial Intelligence,
97(1-2):273–324, 1997.

[Luby et al., 1993] M. Luby, A. Sinclair, and D. Zuckerman.
Optimal speedup of Las Vegas algorithms. Information
Processing Letters, 47:173–180, 1993.

[Mengshoel et al., 2011a] O. J. Mengshoel, D. Roth, and
D. C. Wilkins. Portfolios in stochastic local search: Effi-
ciently computing most probable explanations in Bayesian
networks. Journal of Automated Reasoning, 46(2):103–
160, 2011.

[Mengshoel et al., 2011b] O. J. Mengshoel, D. C. Wilkins,
and D. Roth. Initialization and restart in stochastic lo-
cal search: Computing a most probable explanation in
Bayesian networks. IEEE Transactions on Knowledge and
Data Engineering, 23(2):235–247, 2011.

[Mengshoel, 2008] O. J. Mengshoel. Understanding the role
of noise in stochastic local search: Analysis and experi-
ments. Artificial Intelligence, 172(8-9):955–990, 2008.

[Nocedal and Wright, 2006] J. Nocedal and S. J. Wright.
Numerical Optimization (2nd Edition). Springer, 2006.

[Park and Darwiche, 2004] J. D. Park and A. Darwiche.
Complexity results and approximation strategies for MAP
explanations. Journal of Artificial Intelligence Research
(JAIR), 21:101–133, 2004.

[Ruan et al., 2002] Y. Ruan, E. Horvitz, and H. Kautz.
Restart policies with dependence among runs: A dynamic
programming approach. In Proc. of the Eighth Inter-
national Conference on Principles and Practice of Con-
straint Programming, pages 573–586, 2002.

[Ryvchin and Strichman, 2008] V. Ryvchin and O. Strich-
man. Local restarts in SAT. Constraint Programming Let-
ters (CPL), 4:3–13, 2008.

[Selman et al., 1992] B. Selman, H. Levesque, and
D. Mitchell. A new method for solving hard satisfi-
ability problems. In Proc. of AAAI-92, pages 440–446,
1992.

[Selman et al., 1994] B. Selman, H. A. Kautz, and B. Cohen.
Noise strategies for improving local search. In Proc. of
AAAI-94, pages 337–343, 1994.

[Stracuzzi, 2007] David J Stracuzzi. Randomized feature se-
lection. In Computational Methods of Feature Selection,
pages 41–62. CRC Press, 2007.

[Suzuki, 1995] J. Suzuki. A Markov chain analysis on sim-
ple genetic algorithms. IEEE Trans. Systems, Man, and
Cybernetics, 25(4):655–659, 1995.

[Wegener, 2001] Ingo Wegener. Theoretical aspects of evo-
lutionary algorithms. In Proc. of ICALP-01, pages 64–78,
2001.

[Whitley, 1991] L. D. Whitley. Fundamental principles of
deception in genetic search. In Foundations of Genetic
Algorithms, pages 221–241. Morgan Kaufmann, 1991.

[Yu and Zhou, 2008] Y. Yu and Z.-H. Zhou. A new approach
to estimating the expected first hitting time of evolutionary
algorithms. Artificial Intelligence, 172(15):1809 – 1832,
2008.

[Zhou et al., 2009] Y. Zhou, J. He, and Q. Nie. A compar-
ative runtime analysis of heuristic algorithms for satisfi-
ability problems. Artificial Intelligence, 173(2):240–257,
2009.

646

