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Abstract
Conceptual clustering combines two long-standing
machine learning tasks: the unsupervised group-
ing of similar instances and their description by
symbolic concepts. In this paper, we decouple the
problems of finding descriptions and forming clus-
ters by first mining formal concepts (i.e. closed
itemsets), and searching for the best k clusters that
can be described with those itemsets. Most ex-
isting approaches performing the two steps sepa-
rately are of a heuristic nature and produce results
of varying quality. Instead, we address the problem
of finding an optimal constrained conceptual clus-
tering by using integer linear programming tech-
niques. Most other generic approaches for this
problem tend to have problems scaling. Our ap-
proach takes advantageous of both techniques, the
general framework of integer linear programming,
and high-speed specialized approaches of data min-
ing. Experiments performed on UCI datasets show
that our approach efficiently finds clusterings of
consistently high quality.

1 Introduction
Data clustering is one of the foundational data mining tasks.
Whether it is for the purpose of “unsupervised classifi-
cation”, data reduction, or anomaly detection, identifying
groups of similar data points is an important task. Con-
ceptual clustering [Michalski and Stepp, 1983; Fisher, 1987;
Perkowitz and Etzioni, 1999; Pensa et al., 2005] provides
an additional aspect: the description of clusters by sym-
bolic concepts, typically the domain of concept learning.
Traditional approaches [Michalski and Stepp, 1983; Fisher,
1987] combine the formation of the clusters and of the de-
scriptions, having to trade off the demands of one versus
the other. Newer techniques [Perkowitz and Etzioni, 1999;
Pensa et al., 2005] have instead chosen to decouple finding
the descriptions – either before or after the clustering process
– and the clustering step.

Given the large search space to traverse, all those tech-
niques are heuristic, meaning that results are heavily influ-
enced by the initialisation conditions, typically requiring nu-
merous restarts, increasing computational costs. Once those

have been performed, an additional question is how to iden-
tify the relevant result, as we will illustrate in the experimen-
tal section (Section 6).

To address this problem, we combine two exact techniques:
we use closed itemset mining [Uno et al., 2004] (or formal
concept analysis) to discover candidates for descriptions, and
integer linear programming (ILP) to select the best clusters
(according to an objective function) that can be described by
those descriptions. This results in a single optimal solution to
the problem setting.

In ILP, this problem has been introduced as set partitioning
and set covering problems [Nemhauser and Wolsey, 1988],
applied to clustering tasks in [Hansen et al., 1994], and
adapted for constrained clustering in [Mueller and Kramer,
2010]. Exact techniques, such as the ones described in this
latter work and in [Guns et al., 2013] tend to have problems
scaling, and as a side-effect fix the number of clusters to make
the problem tractable. In contrast to this, our adoption of
closed itemsets cuts down on redundancy compared to other
ways of selecting candidate clusters and our use of advanced
ILP techniques give our approach additional flexibility.

Our contribution is therefore twofold: we propose an ef-
ficient technique for conceptual clustering, based on closed
itemsets, that

1. is more flexible in terms of the constraints that can be
enforced than existing approaches, and

2. gives more control and stronger guarantees to the user
than existing heuristic approaches.

The next section introduces the concepts used in this pa-
per. Section 3 describes how different clustering tasks can
be expressed as ILP problems, and Section 4 how to solve
them. We discuss related work in Section 5 before demon-
strating our technique’s performance in Section 6. Section 7
concludes and points towards future research directions.

2 Definitions
In this section we introduce the definitions and concepts that
we will use throughout this paper.

2.1 Formal concepts
Let I be a set of n distinct literals called items, an itemset
(or pattern) is a non-null subset of I. The language of item-
sets corresponds to LI = 2I\;. A transactional dataset is a
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Trans. Items
t1 A B D
t2 A E F
t3 A E G
t4 A E G
t5 B E G
t6 B E G
t7 C E G
t8 C E G
t9 C E H
t10 C E H
t11 C F G H

(a) Transactional dataset T .
Sol. P1 P2 P3

s1 {A, B, D} {C, F, G, H} {E}
s2 {B} {C} {A, E}
s3 {A} {C} {B, E, G}

(b) Three conceptual clusterings for k=3.

Table 1: Running example (1).

multi-set of m itemsets of LI . Each itemset, usually called
a transaction or object, is a database entry. For instance, Ta-
ble 1a gives a transactional dataset T with m=11 transactions
t1, . . . , t11 described by n=8 items A,B,C,D,E, F,G,H .

Let R be a binary relation between the set T of transac-
tions and the set I of items s.t. (t, i) 2 R if the transaction t
contains the item i : i 2 t. We denote by R = (T , I, R) the
tuple formed by these sets of transactions, items and the bi-
nary relation. R is called formal context [Ganter and Wille,
1997]. Two operators are defined:

• Let I ✓ I, ext(I) = {t 2 T | 8i 2 I, (t, i) 2 R}
• Let T ✓ T , int(T ) = {i 2 I| 8t 2 T, (t, i) 2 R}
ext(I) is the set of transactions containing all items in I .

int(T ) is the set of items contained by all transactions in T .
These two operators induce a Galois connection between 2T

and 2I , i.e. T ✓ ext(I) , I ✓ int(T ).
A pair such that (I = int(T ), T = ext(I)) is called for-

mal concept. This definition defines a closure property on
dataset T , closed(I) , I = int(ext(I)). An itemset I for
which closed(I) = true is called closed pattern.

Using ext(I), we can define the frequency of a concept:
freq(I) = |ext(I)|, and its diversity: divers(I) =P

t2ext(I) |{i 2 I | (i /2 I) ^ (i 2 t)}|. Addition-
ally, we can refer to its size: size(I) = |{i | i 2 I}|.

2.2 Conceptual clustering
Clustering is the task of assigning the transactions in the data
to relatively homogeneous groups. Conceptual clustering
aims to also provide a distinct description for each cluster –
the concept characterizing the transactions contained in it.

This problem can be formalized as: “find a set of k clusters,
each described by a closed pattern P1, P2, ..., Pk

, covering
all transactions without any overlap between clusters”. For
instance, Table 1b reports the various clusterings for k=3.

An evaluation function f is needed to express the good-
ness of the clustering. So, conceptual clustering looks for a
disjoint set of clusters of T that optimizes a given criterion of

clustering quality. For instance, for dataset T and k=3, min-
imizing f(P1, ..., Pk) =

P
1ik divers(Pi) provides one

clustering s1, with optimal value 18 (see Table 1b).

2.3 Other clustering settings
Other clustering settings [Berkhin, 2006], e.g. soft clustering,
co-clustering, and soft co-clustering, can also be expressed by
the relationship between transactions and closed patterns.
a. Co-clustering consists of finding k clusters covering both
the set of transactions and the set of items, without any over-
lap on transactions or on items. For instance, s1 provides a
co-clustering on the transactional dataset T (see Table 1b).
b. Soft clustering consists of relaxing:

• either the coverage relation: not all transactions are cov-
ered, but at least �

t

transactions must be covered, where
threshold �

t

 |T |(= m)

• or the non-overlap relation: small overlaps are allowed,
but a transaction t cannot occur in more than �

o

clusters,
where threshold �

o

� 1

c. Soft co-clustering consists of relaxing the coverage or the
non-overlap relations for transactions (as for soft clustering),
but also the coverage or the non-overlap relations for items:

• not all items are covered, but at least �
i

items must be
covered, where threshold �

i

 |I|(= n)

• small overlaps are allowed, but an item i cannot occur in
more than �

o

co-clusters, where threshold �
o

� 1

Example 1 For �
t

=6, �
o

=1, �
i

=7, �
o

=2, s
r

=
[{A,E}, {B,E,G}, {C,F,G,H}] is a soft co-clustering
since D is the only missing item, items E and G occur twice
and {t1, t7, t8, t9, t10} are the uncovered transactions.

2.4 Integer Linear Programming
Integer Linear Programming (ILP) [Nemhauser and Wolsey,
1988] is one of the most widely used methods for handling
optimization problems, due to its rigorousness, flexibility and
extensive modeling capability. An ILP program is a linear
program with the added restriction that all the variables must
be integer. Typically, an ILP model involves: (i) a set of deci-
sion variables, (ii) a set of linear constraints, where each con-
straint requires that a linear function of the decision variables
is either equal to, less than, or greater than, a scalar value,
and (iii) an objective function that assesses the quality of the
solution. Solving an ILP problem consists of finding the best
solution w.r.t. the objective function in the set of solutions
that satisfy the constraints. Formally, an ILP problem takes
the form:

Maximize or Minimize c

T
x

Subject to Ax (,=, or �) b
xi 2 Z, i = 1..n

(1)

where x represents the vector of decision variables, n is the
total number of integer variables, c

j

(1j n) are referred to
as objective coefficients, A is an m⇥n matrix of coefficients,
and b is an m ⇥ 1 vector of the right-hand-side values of the
constraints.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
t1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
t2 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0
t3 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1
t4 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1
t5 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1
t6 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1
t7 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1
t8 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1
t9 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0
t10 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0
t11 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1

(a) (at,c) matrix associated with dataset T .

Table 2: Running example (2).

3 ILP models
This section describes ILP models for the different clustering
problems introduced in the previous section.

3.1 Conceptual clustering
Let T be a dataset with m transactions defined on a set of
n items I. Let C be the set of p closed patterns (w.r.t. the
frequency measure). Let a

t,c

be an m⇥p binary matrix where
(a

t,c

= 1) iff c ✓ t, i.e., the transaction t belongs to the
cluster represented by the closed pattern c.

Hence, the conceptual clustering problem can be modeled
as an ILP (see Fig. 1) using p boolean variables x

c

, (c 2 C),
where (x

c

= 1) iff the cluster represented by the closed pat-
tern c belongs to the clustering. Constraints (1) state that
each transaction t must be covered by exactly one cluster c.
Constraint (2) restricts the number of clusters to k=k0 clus-
ters. The objective function is defined by associating to each
cluster c a value v

c

reflecting the interest (maximize) or cost
(minimize) of the cluster c, e.g. minimizing each concept’s
diversity or maximizing their size.

Optimize
P

c2C v

c

. x

c

Subject to (1)
P

c2C a

t,c

. x

c

= 1, 8t 2 T

(2)
P

c2C x

c

= k0

x

c

2 {0, 1}, c 2 C

Figure 1: ILP model for conceptual clustering (M1).

Optimize
P

c2C v

c

. x

c

Subject to (1)
P

c2C a

t,c

. x

c

= 1, 8t 2 T

(2) k =
P

c2C x

c

(20) k

min

 k  k

max

(3)
P

c2C w

i,c

. x

c

= 1, 8i 2 I

k 2 N, x

c

2 {0, 1}, c 2 C

Figure 2: ILP model for co-clustering (M2).

The quality measures we have introduced are related in-
dividually to the given patterns. The number of clusters k
can also be defined as a variable whose value will be deter-
mined by the ILP solver. Constraint (2’) illustrates how to
control k by specifying a lower bound k

min

and/or an upper

Optimize
P

c2C v

c

. x

c

Subject to (4) y

t


P

c2C a

t,c

. x

c

 �

o

. y

t

, 8t 2 T

(5)
P

t2T y

t

� �

t

(6) z

i


P

c2C w

i,c

. x

c

 �

o

. z

i

, 8i 2 I

(7)
P

i2I z

i

� �

i

k =
P

c2C x

c

k

min

 k  k

max

k 2 N,
x

c

2 {0, 1}, c 2 C

y

t

2 {0, 1}, t 2 T

z

i

2 {0, 1}, i 2 I

Figure 3: ILP model for soft co-clustering (M3).

bound k
max

. Relaxing k removes constraints on the cluster-
ing and hence enables finding results from a larger solution
space, giving our approach more flexibility (see Section 6.b).
Example 2 Consider the dataset T of Table 1a. The (a

t,c

)
matrix associated with T is outlined in Table 2a. If we con-
sider v

c

=size(c), then the solution that maximizes the ob-
jective function is x2=x12=x15=1, and all other variables
x
c

are equal to 0 (so, k=3). This solution corresponds to the
clustering s1 (see Table 1b).

3.2 Co-clustering
Co-clustering consists of finding k clusters covering both the
set of transactions and the set of items, without any overlap
on transactions and on items. Let w

i,c

be an n ⇥ p binary
matrix where (w

i,c

= 1) iff the item i belongs to the closed
pattern c. Fig. 2 depicts the ILP model. Constraints (3) state
that each item i must be covered by exactly one cluster c.
Example 3 The optimal solution x2=x12=x15=1 and all
other variables x

c

equal to 0, corresponding to s1 (see Ta-
ble 1b) is a co-clustering since the associated clusters cover
both sets I and T without overlap.

3.3 Soft clustering and soft co-clustering
For soft conceptual clustering (see Section 2.3b), we intro-
duce m boolean variables y

t

, (t 2 T ) such that (y
t

= 1)
iff transaction t belongs to at least one cluster. Fig. 3 de-
picts the ILP model. First, as

P
t2T y

t

indicates the number
of covered transactions, Constraint (5) states that at least �

t

transactions must be covered. Second, as a transaction t be-
longs to

P
c2C at,cxc

clusters, Constraint (4) states that each
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dataset #transactions #items density(%) Number of closed itemsets
Soybean 630 50 32 31,759

Primary-tumor 336 31 48 87,230
Lymph 148 68 40 154,220

Vote 435 48 33 227,031
tic-tac-toe 958 27 33 42,711
Mushroom 8124 119 18 221,524

Zoo-1 101 36 44 4,567
Hepatitis 137 68 50 3,788,341
Anneal 812 93 45 1,805,193

Table 3: Dataset characteristics.

transaction t must belong to at most �
o

clusters. Note that if
y
t

=0, then transaction t is not covered and Constraint (4) is
satisfied.

We proceed in the same way for soft co-clustering (see Sec-
tion 2.3c), by introducing n boolean variables z

i

, (i 2 I) such
that (z

i

= 1) iff item i belongs to at least one cluster. First,
as

P
i2I z

i

indicates the number of covered items, Constraint
(7) states that at least �

i

items must be covered. Second, as an
item i belongs to

P
c2C wi,c

x
c

clusters, Constraint (6) states
that each item i must belong to at most �

o

clusters. Note that
if z

i

=0, then item i is not covered and Constraint (6) is satis-
fied. Example 1 provides an example of soft co-clustering.

Additional constraints can be added in order to avoid un-
desired clusterings. For instance, one can specify extra con-
straints on the frequency of closed patterns (e.g. freq(c) > 1)
which leads to a more balanced clustering for the dataset
T , and may avoid outliers receiving their own clusters. In
this case, the optimal solution to our running example is
x4=x7=x8=1, and all other variables x

c

are equal to 0. It
corresponds to the conceptual clustering s3 (see Table 1b).

4 Preprocessing and solving
We have defined an ILP framework to express various kinds
of clusterings. The strength of this framework lies in its flexi-
bility in terms of the constraints that can be enforced. In Sec-
tion 3, we defined constraints that enforce global restrictions
on the clusters such as: clusters cover all of the transactions
(or a minimum number of them), clusters should be disjoint
(or have restricted overlaps), etc. But, in practice, there might
be local constraints that should be defined on each individual
closed pattern such as :
- minimum and maximum frequency constraints,
- MustLink(ti, tj) requires that transaction t

i

should be in the
same cluster as t

j

,
- CannotLink(ti, tj) requires that transaction t

i

should not
be in the same cluster as t

j

.
The more selective local constraints are, the fewer the num-

ber of closed patterns for the solving step. Finally, the whole
clustering process consists of the following two main steps:
- Preprocessing step: compute closed patterns using effi-
cient state-of-the-art extractors, e.g. LCM, and filter those
violating local constraints. Constraints like minimum fre-
quency and size are directly handled by the extractor. For
CannotLink(ti, tj), any cluster c s.t. t

i

and t
j

belongs to
ext(c) is removed. MustLink constraints are handled simi-
larly.
- Solving step: solve one of the ILP clustering models detailed
in Section 3 using efficient ILP solvers.

5 Related work

Conceptual clustering has been introduced in [Michalski,
1980], and extended in [Michalski and Stepp, 1983; Fisher,
1987]. Numerous approaches have been devised for tackling
this problem, e.g. of statistical, syntactic or hierarchical na-
ture [Schalkoff, 2008], with hierarchical conceptual cluster-
ing arguably the most prominent one among them [Fisher,
1987; Thompson and Langley, 1991].
Heuristic approaches Several methods have explored the
idea of decoupling cluster-formation from finding the concep-
tual descriptions. Notably, Pensa et al. [Pensa et al., 2005]
also begin by mining closed (or �-closed) patterns (itemsets)
and their extensions and then perform k-Means clustering on
them. Perkowitz and Etzioni [Perkowitz and Etzioni, 1999],
reverse the two phases: their cluster-mining first uses a clus-
tering technique to form clusters. From the resulting clus-
tering, descriptions are learned by a rule-learning technique.
Instances are matched to descriptions, potentially leading to
overlapping clusters. Finally, [Geerts et al., 2004] introduced
tiling. A tile is a formal concept, and in that work two settings
are considered: i) finding k tiles that cover as many transac-
tions as possible, and ii) finding the minimum number of tiles
that cover all transactions. Both are clearly conceptual clus-
tering settings but since tiles can overlap, so can clusters.
CP/SAT for pattern set mining. The CP-paradigm is at the
core of generic approaches to deal with k-pattern sets [Khiari
et al., 2010; Guns et al., 2013]. These methods allow to
model sets of patterns, satisfying properties on the whole set,
in a declarative and flexible way, such as conceptual cluster-
ing, k-tiling, to name a few, but they look for sets containing
a fixed number of patterns and tend to have problems scal-
ing. In [Métivier et al., 2012], the authors formulate the con-
ceptual clustering task as queries in given language. These
queries are then translated into SAT clauses and resolved by
a SAT solver. However, the proposed framework does not al-
low to express optimization criteria and has problems scaling.
ILP/CP for distance-based clustering. Distance-based clus-
tering relies upon dissimilarities (or similarities) between nu-
merical attributes. In this line, several declarative approaches
have been proposed. In [Dao et al., 2013], a CP approach has
been used. The proposed approach supports various kinds of
user constraints. In [Babaki et al., 2014], an exact approach,
which uses column generation in an ILP setting, is presented.
This approach extends the one proposed in [Aloise et al.,
2012]. In [Mueller and Kramer, 2010], a constrained clus-
tering approach using ILP is proposed. This approach takes
as input a set of possible base clusters and builds a clustering
by selecting a suitable subset. The number of clusters k must
be given upfront. In contrast, our proposal allows relaxing k
by specifying lower/upper bounds. In their experiments, the
set of base clusters is generated from frequent patterns. This
makes the approach less applicable, because the number of
base clusters is huge and selecting a suitable subset is chal-
lenging. Our adoption of closed patterns cuts down on redun-
dancy compared to other ways of selecting candidate clusters
and makes the solving step more efficient by reducing dra-
matically the number of candidate clusters.
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6 Experiments and Results
The experimental evaluation is designed to address the fol-
lowing questions:

1. How (in terms of CPU-times) does our approach
(CCLP) compare to the CP approach of Guns et al.
(KPatternSet) and the approach of Mueller et al.?

2. How do the resulting clusters compare w.r.t. different
objective functions?

3. In light of the exact nature of our approach, how do the
resulting clusters and their descriptions compare quali-
tatively with those resulting from existing heuristic ap-
proaches that operate in a similar framework? The two
approaches with which we compare ourselves are those
of Pensa et al. (CDKMeans) and Perkowitz et al. (CM).

Experimental protocol. Experiments were carried out on
the same datasets which were used in [Guns et al., 2013] and
available from the UCI repository. Table 3 shows the charac-
teristics of these datasets. All experiments were conducted on
AMD Opteron 6282SE with 2.60 GHz of CPU and 512 GB
of RAM. We used LCM to extract the set of all closed patterns
and CPLEX v.12.4 to solve the different ILP models. For all
methods, a time limit of 24 hours has been used.

Experiments have been performed without any local con-
straints on individual closed patterns. To evaluate the qual-
ity of a clustering, we test the coherence of a clustering,
measured by the intra-cluster similarity (ICS) and the inter-
clusters dissimilarity (ICD), both of which should be as large
as possible. Given a similarity measure s between two trans-
actions t and t0, where s : T ⇥ T 7! [0, 1], s(t, t0) = |t\t0|

|t[t0|

ICS(P1, ..., Pk) =
1
2

X

1ik

(
X

t,t02P
i

s(t, t0))

ICD(P1, ..., Pk) =
X

1i<jk

(
X

t2P
i

,t02P
j

(1� s(t, t0)))

(a) Comparing CCLP with KPatternSet. Figs. 4a and 4c
compare the performance of the two methods on model M1
for various values of k on different datasets w.r.t. the first
optimization setting (i.e. description size). The CPU-times
of CCLP-M1 include those for the preprocessing step. For
(k = 3), KPatternSet dominates CCLP-M1 except on
Soybean, Zoo-1 and Mushroom. But, for (k � 4), CCLP-M1
outperforms KPatternSet by several orders of magnitude
on all datasets. Finally, KPatternSet fails to find a solu-
tion within the time limit for (k > 5). On Audiology dataset,
both approaches were not able to find a solution. This is in
part explained by the number of closed patterns (106) in com-
parison to the other datasets (from 103 to 105). For the second
optimization setting (see Fig. 4b), the same observations can
be made. Note that on Tic-Tac-Toe no conceptual clustering
exists for (k = 4).
(b) Impact of relaxing k. To assess the interest of relaxing
k, Fig. 4d compares the performance of CCLP-M1 with k re-
laxed (CCLP-M1-relaxed) against CCLP-M1 in terms of
the best value found for k (Col. 2 vs. Col. 5) and CPU-times
(Col. 4 vs. Col. 7). Reported in Col. 5 are the best values

found for k (3k10) that maximize the description size.
Both settings obtain the same best value for k. Indeed, there is
a bias towards a k near k

max

when using the description size.
When comparing the CPU-times, CCLP-M1-relaxed is
often faster, particularly on the two most difficult datasets
Anneal and Hepatitis (speed-up of up to 3.84).

Contrary to Mueller et al., our approach allows to relax k.
To compare the two, we implemented the mean of inner clus-
ter similarities (i.e., s(x, y)), the objective function used by
that work, for fixed k (denoted CCLP-M1-Dist). Fig. 4d
compares CCLP-M1-relaxed with CCLP-M1-Dist in
terms of the best k found, and CPU-times. Both approaches
almost always agree on the best value for k and obtain compa-
rable CPU-times on the first 7 datasets, while on the two dif-
ficult datasets CCLP-M1-relaxed is clearly better. Fig. 5d
shows that clusterings found by relaxing k are close to those
found with fixed k

Finally, in Fig. 4d, one can see that the preprocessing step
is negligible as compared to the solving step, except on the
two last datasets due to the high number of closed patterns.
(c) Qualitative analysis of clusterings. To assess the quality
of clusterings, we have plotted their values according to mea-
sures ICS and ICD. Points (see Fig. 5) represent the optimal
clusterings obtained for different values of k on the selected
datasets. A specific color is assigned to each dataset. A la-
bel, representing the value of k, is associated to some points
with the same color. Moreover, we omitted to plot points that
are on the Pareto front in Figs. 5b and 5c since they are in-
comparable. Fig. 5a shows the two optimization criteria of
CCLP-M1. Except for the Vote and Tic-Tac-Toe datasets, the
diversity measure sacrifices ICS to achieve higher ICD val-
ues. This is indicative of more balanced clusters: the ICS is
necessarily limited by the number of instances per cluster but
the ICD increases if there are more instances in other clus-
ters to compare against. The size measure shows the opposite
behavior, which is indicative of one (or a few) large clusters,
and numerous smaller ones.

To compare with CDKMeans and CM, 1 we first have to
identify a good comparison clustering. To that end, (i) we ran
each technique 100 times to smooth out the random initial-
ization effects typical for k-Means, (ii) then we grouped the
resulting into equivalence classes, in which clusterings agree
on the composition of all clusters, (iii) finally, we chose the
largest equivalence class and used its representative (i.e. one
of the clusterings in it, since all have the same composition).
If there were several equally large equivalence classes, we
used a representative from each class.

The results show how difficult it can be to control the re-
sults of heuristic techniques: the representative clusterings of
the CM approach never cover all transactions in the data, and
often have overlapping clusters. Fig. 5b shows that the clus-
terings computed by CM have a qualitative disadvantage com-
pared to the clusterings found by CCLP-M1 (points of CM are
always dominated by those of CCLP-M1). For the sake of
fair comparison, we run CCLP-M3 with settings that allowed

1For CM we used SimpleKMeans and JRip in Weka.
We reimplemented CDKMeans : http://www.scientific-data-
mining.org/software/cdkmeans.zip.
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(c) Maximizing the description size.

Instance

CCLP-M1 with k relaxed –
maximizing the description

size

CCLP-M1 with k fixed –
maximizing the description

size

CCLP-M1-Dist
maximizing the mean of the

inner cluster similarities
[Mueller and Kramer, 2010]

best k CPU Time (s.) best k CPU Time (s.) best k CPU Time (s.)
(1) (2) (1) (2) (1) (2)

Soybean 10 0.74 15.52 10 0.74 21.31 10 0.74 8.52
Primary-tumor 10 1.98 40.62 10 1.98 35.84 8 1.98 35.4
Lymph 10 3.38 25 10 3.38 93.96 10 3.38 149.69
Vote 10 4.42 191.12 10 4.42 304.18 9 4.42 66.21
Zoo-1 10 0.07 6.22 10 0.07 2.73 9 0.07 0.35
Mushroom 10 17.1 154.75 10 17.1 163.67 10 17.1 169.04
Tic-Tac-Toe 10 0.38 420.75 10 0.38 398.86 10 0.38 209.4
Anneal 10 236.85 1,493.38 10 236.85 5,744.03 10 236.85 5,744.03
Hepatitis 10 113.84 20,825.8 10 113.84 40,014.5 10 113.84 37,745.7

(d) Impact of relaxing the number of clusters k ((1) Preprocessing step (2) Solving step).

Figure 4: Comparing CPU-times.

similar amounts of non-coverage. In case that several equally
large equivalence classes existed, we chose the clustering that
maximized ICS and ICD and used its coverage as constraint
for CCLP-M3. Figure 5c shows that our framework can ap-
proximate the results of the heuristic technique.

CDKMeans is even more difficult to control by the user:
when using all closed patterns, the algorithm usually assigns
all instances to one or two clusters, no matter k. Enforc-
ing frequency constraints improves this situation somewhat
even though |C|  k for k � 4. Additionally, the clusterings

occasionally fail to stabilize, resulting in 100 different clus-
terings. Finally, the particular representation of clusters in
CDKMeans can result in clusters that have descriptions yet
no transactions assigned to them.

7 Conclusions
We have proposed an efficient approach for conceptual clus-
tering that uses closed itemset mining to discover candidates
for descriptions, and ILP to select the best clusters. Closed
itemsets cut down on redundancy compared to other ways
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Figure 5: Comparing the quality of the resulting clusterings.

of selecting candidate clusters and ILP gives our approach
more flexibility than exact ones, and stronger guarantees to

the user than heuristic ones. We plan to exploit local search
techniques to enhance the solving step.
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