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Abstract
The subpath planning problem (SPP) is a branch of
path planning problem, which has widespread ap-
plications in automated manufacturing process as
well as vehicle and robot navigation. This problem
aims to find the shortest path or tour subject to cov-
ering a set of given subpaths. By casting SPP to
a graph routing problem, we propose a determinis-
tic 2-approximation algorithm finding near optimal
solutions, which runs in O(n3) time.

1 Introduction
The path planning problem is a fundamental problem in arti-
ficial intelligence and robotics with applications also in other
areas such as computer animation and computer games. Due
to its applications, several variants of this problem, including
planning subject to spatial constraints, have been proposed
over the past few years [Nash et al., 2009; Kapadia et al.,
2013; Jaillet and Porta, 2013; Surynek, 2015].

In this paper, we focus on Subpath Planning Problem
(SPP), which is a constraint path planning problem. Given
a set of subpaths, the goal of SPP is to find the shortest tour
that travels all given subpaths. SPP is an NP-hard prob-
lem with widespread applications. For example, in polishing
robot [Tong-ying et al., 2004] the target is to polish nicks on a
surface of a workpiece. Nicks, which can be considered as the
subpaths, are often extracted by using image processing tech-
niques and the goal is to polish all nicks with minimum arm
movement. Also, SPP has applications in electronic print-
ing [Gyorfi et al., 2010], where the continuous-spray pro-
cesses are used to deposit electrically functional material onto
flexible substrate. Moreover, SPP can be used in search and
rescue operations as well as aerial image using UAV, where
the robot must traverse some specific paths. Fig. 1.a and
Fig. 1.b show a toy example of SPP workspace and its op-
timal solution, respectively. A formal definition of SPP can
be found in [Gyorfi et al., 2010].

However, not much attention has been paid to solving this
special widely used problem. Only a few approaches have
been proposed, which are all meta-heuristic based. For in-
stance, in [Tong-ying et al., 2004] and [Gyorfi et al., 2010]
two algorithms based on Genetic Algorithm (GA) [Goldberg,
1989] are proposed for solving SPP in polishing robots and

Figure 1: a) A toy example of SPP workspace (subpaths are
shown in dashed lines), b) The optimal solution for the given
workspace, c) Graph G, d) Graph G0.

electronic printing, respectively. The major deficiency of
such techniques is that, they cannot guarantee any bound on
their final output due to their meta-heuristic (and random) na-
ture. More importantly, GA needs considerable amount of
time in order to converge to a sub optimal solution, especially
for large-scale problems.

In its graph theoretical abstraction, SPP is a graph rout-
ing problem with close connections to the Travelling Sales-
man with Neighbours (TSPN) [Papadimitriou, 1977; Safra
and Schwartz, 2006], Rural Postman Problem (RPP) [Eiselt
et al., 1995b; Orloff, 1974], and Stacker Crane Problem
(SCP) [Coja-Oghlan et al., 2006; Frederickson, 1979]. How-
ever, SPP is different from these graphical problems in some
aspects, which makes their solutions not applicable to the
SPP.

The present paper addresses the deficiencies of meta-
heuristic methods for solving SPP by proposing an approx-
imation algorithm with a constant approximation bound and
efficient polynomial time complexity.

As the first step, given n subpaths, we transform the SPP
to the general Travelling Salesman Problem (TSP). By trans-
forming SPP to TSP, it may seem easy to apply the existing
constant-factor approximation algorithms of TSP for solving
SPP. However, this is not feasible, as the edge weights in the
graph of SPP are not metric, i.e., they do not necessarily sat-
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isfy the triangle inequality. To mitigate this problem, in the
second step, we propose an algorithm, called Imperfectly Es-
tablish the Triangle Inequality (IETI), which establishes the
triangle inequality for a large subset of violating triangles (the
triangles that violates the triangle inequality in the graph of
SPP). We show that solving SPP on the original graph would
be equivalent to solving TSP on the modified graph. The IETI
algorithm runs in O(n2) time and is a fundamental step for
designing an algorithm with a constant approximation factor
for solving SPP.

Nonetheless, a subset of triangles may still violate the tri-
angle inequality in the graph returned by IETI algorithm.
To tackle this problem, in the third step, we propose a 2-
approximation algorithm, called Christofides for SPP (CSPP)
that is in a O(n3) time complexity. The CSPP bears some
similarities to Christofides algorithm [Christofides, 1976] and
is adapted to work for all outputs of the IETI algorithm.
Christofides algorithm is a well-known 1.5-approximation al-
gorithm for solving TSP due to its small approximation factor
and polynomial time complexity (O(n3)).

In addition to complexity analysis and proving the ap-
proximation bound of CSPP, we empirically compare it with
the method proposed in [Gyorfi et al., 2010] over various
workspaces with different numbers of subpaths. The results
indicate that CSPP is more efficient than the other existing
methods both in terms of cost of the solution and running
time.

The rest of the paper is organized as follows: Sections 2, 3,
and 4 discuss the transformation, IETI, and CSPP algorithms,
respectively. Section 5, presents the experimental results and
analysis. Section 6 concludes the paper and presents some
potential future directions. Due to the space limitation, some
details including the full proofs of the theorems are not de-
scribed in the paper. We refer the interested reader to the ac-
companying techinical report [Safilian et al., 2016] for more
details.

2 Transformation of SPP to TSP
The solutions of an SPP problem are the tours that travel all
subpaths and an optimal solution is a tour with the minimum
length. Each solution is a sequence of connected subpaths.
Since each pair of subpaths can be connected to each other
in two ways, the total number of feasible solutions would be
n!2n where n is the number of subpaths.

In the recent decades, various approximation and combina-
torial optimization methods have been proposed for solving
TSP [Arora, 1996; Dumitrescu and Mitchell, 2001; Lin and
Kernighan, 1973]. Thus, transforming of SPP to TSP facili-
tates applying such methods for solving SPP.

Consider an SPP instance with n subpaths indexed with the
set I = {1, ..., n}. The transformation procedure of SPP to
TSP, includes two stages. In the first stage, a complete graph
G is constructed using the following steps:

1. For each i-th subpath (i 2 I), consider two nodes si and
ei corresponding to its starting and end points, respec-
tively.

2. For each i 2 I , consider an edge between si and ei
with the weight equal to the length of i-th subpath in the

workspace. Let us call this edge the i-th subpath edge.

3. For each pair of subpaths such as i and j (i 6= j), we
add edges siej , eisj , sisj and eiej to the graph. We also
consider the weights of these newly added edges equal to
the corresponding Euclidean distances in the workspace.
Let us call these edges the connecting edges.

The TSP tour of G is not necessarily a solution for the
given SPP instance, since the TSP tour of G may not cover
all subpath edges (such as siei). To make sure that the TSP
tour would travel all subpaths, a complete graph, denoted by
G0, is constructed based on G as follows:

4. For each i-th subpath, a node mi is added to the graph,
called the middle node of i-th subpath.

5. For each i-th subpath, two edges simi and miei are
added to the graph, the weights of which are equal to
the half of the subpath length. These edges are called
i-th double subpath edges.

6. For each middle node mi, the edge miv, where v /2
{si, ei}, is added to the graph with infinite weight.

Fig. 1.c and Fig. 1.d show the graphs G and G0 for a problem
with 4 subpaths, respectively.
Theorem 1 A solution of SPP on a given instance corre-
sponds to a solution of TSP in G0.

Proof: It is clear that there is a finite Hamiltonian tour in G0

(see Fig. 1.d). The TSP tour over G0 is a Hamiltonian tour
with the minimum weight. Therefore, the TSP tour over G0
is finite. The TSP tour of G0 visits all the middle nodes since
for each i, it contains two edges crossing the node mi. There
are only two finite edges, namely simi and miei, connected
to mi. Hence, the TSP tour over G0 must contain simi and
miei for each i. Since simi and miei together are equivalent
to the i-th subpath in the workspace, the TSP tour of G0 is the
minimum weight which travels all subpaths. We can conclude
that solving SPP is equivalent to finding the TSP tour in G0.
It is easy to show that the cost of constructing graph G and
G0 is O(n2). ⇤

3 Imperfectly Establish the Triangle
Inequality

Using any existing approximation method for the TSP, re-
quires triangle inequality to be satisfied over the entire graph.
Two sets of triangles in G0 may violate triangle inequality:
V1: The set of triangles with a subpath edge as one of their
edges, i.e, triangles in the form of4sieiv, where v 6= mi.
V2: The set of triangles with only one infinite edge. In such
triangles, one of the edges is either simj or eimj (i 6= j).

Other triangles in G0 do not violate the triangle inequality
condition and can be grouped into the following sets:
V3: Triangles that have more than one infinite edge.
V4: Triangles in which all of the edge weights are equal to
their corresponding Euclidean distances.
V5: Triangles that are of the form4simiei.

As mentioned in the Introduction, we tackle the triangle
inequality violation in G0 in two steps. First, we propose an
algorithm to establish the inequality for some triangles. Then,
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we propose another algorithm that finds the approximate so-
lution in the resulting non-Eulcidean graph.

3.1 IETI: The Procedure
The IETI algorithm takes the output of the transformation
procedure (G0) as its input and deals with the violating tri-
angles in V1. This algorithm makes a set of modifications to
the weight of edges in G0 to construct the graph G00 such that
TSP tours in G0 and G00 are the same (see Theorem 3) and
V1 = ?, i.e., there is no violating triangles in the set V1 in
G00 (see Theorem 2).

IETI is an iterative algorithm which loops over all sub-
paths. In each iteration, say i, we define a variable called
i-th degree of violation, denoted by dvi, to find triangles in
V1 that violate the triangle inequality. The value of dvi is
defined as:

dvi = 0.5(min
d

(w(si, d) + w(ei, d))� w(si, ei)),

8 d 2 V (G0) \ {si, ei},
(1)

where V (H) and w(a, b) denote the set of vertices of graph
H and the weight of the edge ab, respectively. Negative val-
ues of dvi implies that at least one of the triangles with eisi,
as one of their edges, violates the triangle inequality. In such
cases, the weight of edges are updated by the following equa-
tions:

w(si, ei) w(si, ei)� |dvi|
w(si,mi) w(si,mi)� |dvi|/2
w(ei,mi) w(ei,mi)� |dvi|/2

(2)

w(q, ei) w(q, ei) +
|dvi|
2

, w(q, si) w(q, si) +
|dvi|
2

,

8q 2 V (G0) \ {si, ei,mi}
(3)

These changes satisfy the triangle inequality in triangles
containing the i-th subpath. The appeal of using the proposed
updates is that it does not make other triangles, which already
satisfy the triangle inequality, violating the condition. This
claim is proven in Theorem 2.

Theorem 2 After the execution of IETI, all triangles in G00

that are not in V2 satisfy the triangle inequality .

Proof: Let n be the number of subpaths of the original
workspace. Consider the i-th step of IETI. Let G00i denote
the resulting graph after execution of the i � th step of IETI
on G0. It is clear that G000 and G00n are equal to G0 and G00,
respectively. Now, we prove the following statement:

(statement): A violating triangles in G00i either: 1) is a
member of V2 or 2) is a triangle such as 4sjejv in V2 with
j > i.

We use an inductive reasoning to prove the above state-
ment:

(base case): It is evident that the above statement holds in
G000 (which is equal to G0).

(hypothesis): Assume that, for some t with 1  t < i,
the statement holds for G000 , ..., G00t�1, now it suffices to show

that the statement also holds for G00t . This is shown in the
inductive step.

(inductive step): G00t�1 can be in one of following forms.
We show in each of them the G00t satisfies the statement.

1. “In G00t�1, the triangles with the edge stet do not violate
the triangle inequality condition.”

It means that for any j  t, the triangles in G00t�1 with an
edge sjej do not violate the triangle inequality. In this case,
during the t � th step, no modification will be made to the
graph G00t�1. Thus, G00t would be equal to G00t�1. This means
that for any j  t, the triangles in G00t with an edge sjej do
not violate the triangle inequality. Therefore, the statement
holds for G00t .

2. “There are some triangles in G00t�1 with an edge stet,
which violates the triangle inequality.”

In this case the weights of edges are updated according to
equations (2) and (3). Each triangle 4abc in G00t falls into
one of the seven following categories. The validity of triangle
inequality in all categories will be investigated. In particular,
we consider the inequalities wt(a, c) + wt(b, c) � wt(a, b)
and wt(a, b) + wt(b, c) � wt(a, c), where wt(a, b) denotes
the weight of the edge ab in G00t

1.

(a) “The edge ab is equal to stet.”
In this case, the weight of the edge ab decreases by |dvt|
and the weights of the edges ac and bc increases by |dvt|

2 .
The equations (5) and (9) show that the triangles in this
category satisfy the triangle inequality after modifica-
tions:

wt(a, c) + wt(b, c)

= wt(st, c) + wt(et, c)

= wt�1(st, c) + |dvt|/2 + wt�1(et, c) + |dvt|/2
= wt�1(st, c) + wt�1(et, c) + 2|dvt|� |dvt|.

(4)

By replacing 2|dvt| with q where q = wt�1(st, et) �
min8d[wt�1(st, d) + wt�1(et, d)], we would have:

wt(a, c) + wt(b, c)

= wt�1(st, c) + wt�1(et, c) + q � |dvt|
� wt�1(st, et)� |dvt| = wt(st, et) = wt(a, b).

(5)

Also, we have:

wt(a, b) + wt(b, c)

= wt(st, et) + wt(et, c)

= wt�1(st, et)� |dvt|+ wt�1(et, c) + |dvt|/2.
(6)

By replacing |dvt| with q/2, we would have:

wt(a, b) + wt(b, c) = wt�1(st, et) + wt�1(et, c)

� q/2 + |dvt|/2
= wt�1(st, et)/2 + |dvt|/2
+ min

d
[wt�1(st, d) + wt�1(et, d)]/2 + wt�1(et, c).

(7)

1Validity of equations wt(a, b) + wt(a, c) � wt(b, c) is similar
to of wt(a, b) +wt(b, c) � wt(a, c) can be investigated in a similar
fashion.
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The weight of the edge stet is not modified before the
t-th step. Thus, wt�1(st, et) = w0(st, et). In other
words, it is equal to the length of t� th subpath. Hence,
wt�1(st, et) � ed(st, et), where ed(st, et) is the Eu-
clidean distance between st and et in the workspace.
Also, any node such as d satisfies the inequality
wt�1(st, d) + wt�1(et, d) � ed(st, d) + ed(et, d) >
ed(st, et).2 As a consequence, the inequality
min8d[wt�1(st, d) + wt�1(et, d)] > ed(st, et) holds,
which results in:
wt(a, b)+wt(b, c) � ed(st, et)+wt�1(et, c)+ |dvt|/2.

(8)
If the weights of subpaths, which pass through the
node c change before the t � th step, then the val-
ues of wt�1(st, c) and wt�1(et, c) would be equal to
ed(st, c) +

↵
2 and ed(c, et) +

↵
2 , respectively, where ↵

is equal to the parameter dv (degree of violation) of the
subpath which passes through the node c.
Otherwise (if the value of such subpaths are not up-
dated), the values of wt�1(st, c) and wt�1(et, c) would
be ed(st, c) and ed(c, et), respectively. Hence, the in-
equality ed(st, et) + wt�1(c, et) > wt�1(st, c) turns
to ed(st, et) + ed(c, et) > ed(st, c) that always holds.
Consequently, the following inequality holds:

wt(a, b) + wt(b, c) � wt�1(st, c) +
|dvt|
2

� wt(st, c) � wt(a, c).
(9)

(b) “The edge ab is sjej (i.e., a = sj and b = ej), where
j < t” (see [Safilian et al., 2016] for the proof).

(c) “The edge ab is sjej , where j > t”.
In this case, the triangle 4abc may violate the triangle
inequality in the graph G00t�1. Hence, it may violate the
triangle inequality in G00t as well.

(d) “4abc does not contain any edge in form of sjej for
some j (i.e., it does not have any subpath edge), and the
weights of the edges ac and bc change during the t� th
step”3 (see [Safilian et al., 2016] for the proof).

(e) “4abc does not contain any edge in the form of sjej
for some j and the weight of none of the edges of the
triangle changes during the t� th step”.
Since 4abc satisfies the triangle inequality in G00t�1, it
also satisfies the inequality in G00t .

(f) “4abc has one edge with the infinite weight”.
The triangle violates the triangle inequality condition in
both G00t�1 and G00t .

(g) “4abc has two or three edges with the infinite weight”.
It is clear that 4abc satisfies the triangle inequality in
both G00t�1 and G00t

2The weights of edges std and etd either have not changed
before t � th step or are modified by equation (3). There-
fore, wt�1(st, d) � w0(st, d) � ed(st, d) and wt�1(et, d) �
w0(st, d) � ed(et, d).

3Note that during each step of IETI for each triangle either no
weight is updated (category e) or two weights are updated (category
d).

Thus, after the execution of the t-th step, only the triangles
with one infinite edge (category f) or with edges in the form
of sjej for some j greater than t (category c) may violate the
triangle inequality in G00t . Therefore, the statement holds in
G00t (which is equal to G00). This concludes the proof. ⇤
Theorem 3 The TSP tours of G0 and G00 are the same.
Proof: To prove this theorem, we show that the TSP tours
of G0 and G00 are the same in terms of length and sequence
of nodes. In particular, we show that the length of each fi-
nite Hamiltonian tour of G0 is equal to the length of its cor-
responding finite Hamiltonian tour of G00 (two Hamiltonian
tours in G0 and G00 corresponds to each other, if they have the
same sequence of nodes).

Any finite Hamiltonian tour in both G0 and G00 includes all
edges in the form of simi and miei (for any possible index
i). Note that in such a tour, for any i, miei and simi appear
consecutively and are connected through mi. Let us call these
two consecutive edges “pair of edges of the i-th subpath”. As
a result, each finite Hamiltonian tour in either G0 or G00 is a
sequence of pairs of edges connected via some other edges.

Let H be a finite Hamiltonian tour over G0 and let H 0 be its
corresponding finite Hamiltonian tour over G00. Without loss
of generality, suppose that the nodes in H and H 0 are ordered
as follows (where any node such as p in G0 corresponds to the
node p0 in G00):
H : e1m1,m1s1, s1e2, ..., si�1ei, eimi,misi, siei+1, ...,

en�1sn, snmn,mnen

H 0 : e01m
0
1,m

0
1s
0
1, s
0
1e
0
2, ..., s

0
i�1e

0
i, e
0
im
0
i,m

0
is
0
i, s
0
ie
0
i+1, ...,

e0n�1s
0
n, s
0
nm
0
n,m

0
ne
0
n.

During the i-th iteration of the IETI procedure, only the
weights of the edges in H , which are in the form of eimi,
misi, siei, eisi�1, and siei+1, may change and others remain
the same. Accordingly, the following equations hold:
w(eimi)+w(mi, si) = w(e0i,m

0
i)+w(m0i, s

0
i)+|dvi|. (10)

w(si�1, ei) = w(s0i�1, e
0
i)� |dvi|/2

w(si, ei+1) = w(si, ei+1)� |dvi|/2.
(11)

The above equations show that even after updating the
weights in each step of IETI the length of the tours H and
H 0 are equal to each other. Therefore, the length of each fi-
nite Hamilton tour in G0 is equal to its corresponding tour in
G00. ⇤

By analysing the steps involved in constructing G00, it is
easy to show that the total complexity of the IETI is O(n3).
(see [Safilian et al., 2016] for a detailed analysis.)

4 A 2-approximation Algorithm
According to Theorem 3, the TSP tour in G00 is a solution for
SPP. However, some triangles in G00 still violate the triangle
inequality. Therefore, it is not possible to use the Christofides
algorithm (or any other existing constant-factor approxima-
tion algorithm) over G00 to find the TSP tour in G00. Nonethe-
less, the triangles that violate the triangle ineqiality in G00 are
not arbitrary. By exploiting their characteristics, we propose
an approximation algorithm for finding the TSP tour over G00,
called Christofides for SPP (CSPP), with O(n3) time com-
plexity and approximation bound of 2.
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4.1 CSPP: the Procedure and Cost Analysis
Algorithm 1 is a pseudocode for CSPP, which takes G00

(which has 3n nodes and 9n2 edges) as the input and returns
a Hamiltonian tour called h-trail. This algorithm consists of
the following five steps:

Step 1: Finding the Minimum Spanning Tree
The first step finds the minimum spanning tree (MST) of G00.
This step is the same as the first step of the Christofides al-
gorithm whose time complexity would be in O(n2) by using
either Kruskal [Kruskal, 1956] or Prim [Prim, 1957] algo-
rithms.

Step 2: Modify MST by Adding Subpath Edges
The MST does not include any edges with infinite weight.
As a consequence, any middle node mi in G00 can be either
a two-degree node in the MST connected to si and ei or a
leaf node in the MST connected to si or ei. In this step, for
each leaf middle node mi (suppose si is the parent of mi),
the edge miei is added to the MST to form a graph, denoted
by G⇤. In G⇤, the degree of any middle node is even. The
computational cost of this step is of O(n) using Fleury algo-
rithm [Pemmaraju and Skiena, 2003].

Step 3: Perfect Matching over Odd-degree Nodes
This step is identical to the step of the Christofides algo-
rithm that performs the minimum perfect matching. Similarly,
CSPP performs minimum perfect matching in G00 between all
odd-degree nodes in G⇤ and adds the edges involved in per-
fect matching to G⇤ to construct a graph denoted by Ĝ. Since
there is no odd-degree middle node in G⇤, no middle node is
involved in perfect matching. As a result, no edge with infi-
nite weight is added to G⇤. Thus, Ĝ still does not include any
infinite edges. This step can be done in O(n3) using [Micali
and Vazirani, 1980].

Step 4: Finding an Eulerian Tour Over Ĝ
The output of Step 3 (Ĝ), is an Eulerian graph. The current
step (similar to Christofides) finds an Eulerian tour in Ĝ. We
call the output of this step trail. The computational cost of
this step is of O(n) using [Pemmaraju and Skiena, 2003].

Step 5: Confined Shortcut on trail
It is possible for an Eulerian tour (such as trail) to visit some
nodes more than once. In order to turn an Eulerian tour
into a Hamiltonian tour, the extra occurrences of nodes have
to be removed. An operation, called shortcut, is used in
Christofides algorithm to do such a transformation. However,
G00 contains some infinite edges and so it is not feasible to
do shortcuts like in the Christofides. To address this problem,
we introduce a new operation, called confined shortcut. The
procedure of this operation is discussed in the following.

Consider a node such as v that is visited more than once
in trail. Let w and u denote the predecessor and successor
in one of v’s occurrences in the tour, respectively. In this
case, it is feasible to add an edge uw to the tour and remove
the edges uv and vw to decrease the number of occurrences
of v by one. We keep doing this process until the number
of occurrences of v in the tour is equal one. If one of the
nodes u and w is a middle node, then the weight of the edge
uw is infinite and performing the confined shortcut operation
would result in adding an infinite edge to the tour. To resolve
this problem, we avoid performing the confined shortcut op-

eration over u-v-w, instead, confined shortcut is performed
over other occurrences of v. Lemma 1 shows that performing
confined shortcut over at most one of the occurrences of v in
trail may lead to adding an infinite edge. Thus, in order to
build a finite Hamiltonian tour, confined shortcuts can be per-
formed over other occurrences to avoid adding infinite weight
edges. In fact, differences between shortcut in Christofides
and confined shortcut are in: 1) performing confined short-
cuts in only three consecutive nodes in the tour; 2) avoiding
performing confined shortcut whenever it leads to adding an
infinite weight. The computational cost of this step is also of
O(n).

Lemma 1 For each node v in trail, doing confined shortcut
adds an edge with infinite weight for at most one of the v’s
occurrences.

Proof: Please see [Safilian et al., 2016]. ⇤
According to time complexity of each step, the total com-

plexity of CSPP would be of O(n3).

4.2 Approximation Bound of CSPP
In this section, we prove that the ratio bound of CSPP is 2.
Lemmas 2 and 4 are adopted from [Christofides, 1976].

Lemma 2 The weight of MST is less than the weight of T ⇤,
where T ⇤ is the optimal TSP tour in G00.

Let W (H) denote the sum of edge weights of a given graph
H . Also, let T ⇤ and PM⇤ denote the TSP tour in G00 and
edges of perfect matching in step 3, respectively.
Lemma 3 The total added weight to MST during the second
step is less than the half of the weight of T ⇤.

Proof: During Step 2, for each middle leaf node mi in
MST, w(ei,mi) is added to the weight of MST. There-
fore, W (E2) 

Pn
i=1 w(ei,mi) = 1

2

Pn
i=1 w(si,mi) +

w(ei,mi), where W (E2) is the total weights of added edges
to MST during this step. T ⇤ does not include any infinite
edge. Thus, for each i-th subpath, T ⇤ includes the edges
simi and eimi, which implies W (T ⇤) >

Pn
i=1 w(si,mi) +

w(ei,mi). Therefore, the inequality W (E2) < 0.5W (T ⇤)
holds. This concludes the proof. ⇤
Lemma 4 PM⇤’s weight is less than half of T ⇤’s.

Theorem 4 The ratio bound of CSPP is 2.

Proof: The graph Ĝ is composed of the edges of the MST and
the edges added in steps 2 and 3 (perfect matching). Accord-
ing to Lemmas 2, 3 and 4,

W (Ĝ) = W (MST) +W (E2) +W (PM⇤)  2W (T ⇤),
(12)

where Ĝ denotes the graph generated in step 3 of CSPP, MST
denotes the output of step 1, E2 denotes the set of edges
added to MST in step 2, and PM⇤ denotes edges of perfect
matching in step 3. Thus, the length of trail over Ĝ (found in
step 4) is less than 2 times of the optimal TSP tour.

trail does not contain any edge with infinite weight be-
cause there is no such edge in Ĝ . Moreover, based on
Lemma 1, performing shortcuts during step 5 does not add
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Algorithm 1 CSPP
1: Find the minimum spanning tree, MST
2: for all subpaths such as i do
3: if mi is a leaf node and si (or ei) is the parent of mi then
4: Add edge miei (or misi)
5: end if
6: end for
7: Do perfect matching over odd-degree nodes in G⇤

8: Add perfect matching edges to G ⇤ and construct Ĝ
9: Find Eulerian tour, trail, in Ĝ

10: h-trail trail
11: Make visit zero for all nodes in G00

12: while has not reached the end of h-trail do
13: select the next node in t in forward order
14: visit(t) visit(t) + 1
15: if visit(t) � 2 then
16: t0 the node appears before t in h-trail
17: t1 the node appears after t in h-trail
18: if w(t0, t1) is finite then
19: Delete node t
20: visit(t) visit(t)� 1
21: end if
22: end if
23: end while
24: while has not reached the end of h-trail do
25: Select the next node t in h-trail forward order
26: if visit(t) == 2 then
27: Delete node t
28: visit(t) visit(t)� 1
29: end if
30: end while
31: return h-trail

any infinite edge. Accordingly, the triangles used in perform-
ing confined shortcut (each confined shortcut execution re-
places two edges of tour corresponding to a triangle with the
third edge of the triangle) do not include any infinite edge.
Thus, based on Theorem 2, triangle inequality is not violated
in these triangles and in each execution of confined shortcuts
(in step 5), the length of the tour decreases. It means that the
length of the Hamiltonian tour, h-trail, returned by CSPP is
less than the length of trail:

W (h-trail) W (trail) = W (Ĝ)  2W (T ⇤). (13)

Hence, the solution produced by CSPP is within 2 of optimum
and the ratio bound of CSPP is 2. ⇤

5 Experiments and Results
In this section, we empirically gauge the performance of
CSPP by comparing it with the GA-based method proposed
in [Gyorfi et al., 2010]. Throughout this section, we refer to
this method by GA. In our experiments, we use different sets
of workspaces including 3 environments with 20 subpaths, 3
environments with 50 subpaths and 3 environments with 80
subpaths. The length and the location of the subpaths are cho-
sen randomly.

Parameter setting for the operation rates of GA are chosen
to be 0.5 for crossover, 0.25 for inversion, 0.25 for rotation,
0.5 for mutation and 0.5 for subpath reversal. These parame-
ters are fixed during all experiments and seem to be near op-
timal set of parameters, according to the results of different
parameter settings.

The bar charts in Fig. 2 show the average results of 30
executions (per environment) of CSPP and GA. Fig. 2 also
shows the average execution time, average cost (length) of

(a) Execution time (b) Cost of the solution

Figure 2: The execution time and cost of the returned solution
for GA and CSPP. AI: Average Improvement (over 90 execu-
tions in 3 environments) of CSPP in comparison with GA, std
of GA: average of standard deviation (over 90 executions in
3 environments)

the returned solution, average standard deviations of execu-
tion time and cost of the solution for GA, and the average im-
provement (AI) of the CSPP in comparison with GA. CSPP is
a deterministic algorithm therefore the variance of its execu-
tion time and variance of solution cost are zero for all exper-
iments and thus not reported. According to this figure, CSPP
improves the results both in terms of the execution time and
cost of the solution.

Comparing the outputs of the two algorithms, we get the
following results:

1. Increasing the number of subpaths causes large devia-
tions in the output of the GA technique. This is often
not appealing since one would require multiple execu-
tions of GA to avoid sub-optimal results.

2. Fig. 2 indicates that the CSPP algorithm can find bet-
ter solutions than GA with significantly less computa-
tion. More importantly, the differences between two al-
gorithms are intensified for larger graphs, making CSPP
a more reliable technique for large-scale problems.

3. The CSPP algorithm is a faster alternative than GA al-
gorithm for solving SPP in all experiments.

Our experimental evaluations clearly show the superiority
of CSPP over GA for different synthesized environments.

6 Conclusion and Future Work
We presented a 2-approximation algorithm to solve SPP. We
addressed the deficiencies of existing meta-heuristic methods
for solving SPP by designing a fixed-ratio bound approxima-
tion algorithm. Both theoretical and empirical analyses show
superiority of CSPP over other existing solutions. We plan to
use IETI algorithm with a modified version of RPP [Eiselt et
al., 1995a] algorithms to enhance the ratio bound.
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