Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

Monte Carlo Tree Search in Continuous
Action Spaces with Execution Uncertainty

Timothy Yee, Viliam Lisy, Michael Bowling
Department of Computing Science University of Alberta
Edmonton, AB, Canada T6G 2E8
{tayee, lisy, bowling} @ualberta.ca

Abstract

Real world applications of artificial intelligence of-
ten require agents to sequentially choose actions
from continuous action spaces with execution un-
certainty. When good actions are sparse, domain
knowledge is often used to identify a discrete set
of promising actions. These actions and their un-
certain effects are typically evaluated using a re-
cursive search procedure. The reduction of the
problem to a discrete search problem causes severe
limitations, notably, not exploiting all of the sam-
pled outcomes when evaluating actions, and not us-
ing outcomes to help find new actions outside the
original set. We propose a new Monte Carlo tree
search (MCTS) algorithm specifically designed for
exploiting an execution model in this setting. Us-
ing kernel regression, it generalizes the information
about action quality between actions and to unex-
plored parts of the action space. In a high fidelity
simulator of the Olympic sport of curling, we show
that this approach significantly outperforms exist-
ing MCTS methods.

1 Introduction

Many real world problems involve selecting sequences of ac-
tions from a continuous space of actions. Examples include
choosing target motor velocities in robot navigation; choos-
ing the angle, offset, and speed to hit a billiard ball; or choos-
ing the angle, velocity, and rotation to throw a curling stone.
Execution of these actions is often fundamentally uncertain
due to limited human or robot skill and the stochastic nature
of physical reality. In this paper, we focus on algorithms for
choosing good actions in continuous action, continuous state,
stochastic planning problems when a model of the execution
uncertainty is known.

One often-used approach [Smith, 2007; Archibald er al.,
2009; Yamamoto et al., 2015] for such challenging planning
problems is to address the continuous action space by us-
ing domain knowledge to identify a small, discrete set of
candidate actions. Then, the continuous space of stochas-
tic outcomes is sampled for each action. Finally, for each
sampled outcome, a heuristic function (possibly preceded
by a very shallow search) is used to evaluate the outcomes

690

and thus the original candidates. This approach reveals a
tension between exploring a larger set of candidate actions
to increase the probability that a good action is considered,
and more accurately evaluating promising candidates through
deeper search or more execution outcomes, increasing the
probability the best candidate is selected. Monte Carlo tree
search (MCTS) methods, such as UCT [Kocsis and Szepes-
vari, 2006], are well suited for balancing this sort of tradeofT,
however, many of the successful variants and enhancements
are designed for finite, discrete action spaces. A number
of recent advances have sought to address this shortcoming.
The classical approach of progressive widening (or unprun-
ing) [Coulom, 2007; Chaslot et al., 2008] can handle contin-
uous action spaces by considering a slowly growing discrete
set of sampled actions. cRAVE [Couétoux et al., 2011] com-
bines this with a modification of the RAVE heuristic [Gelly
and Silver, 2011] to do generalization from similar (but not
exactly the same) actions. HOOT [Mansley ef al., 2011] re-
places the UCB algorithm in UCT with HOO [Bubeck et al.,
2011], an algorithm with theoretical guarantees in continuous
action spaces. However, none of these methods make use of
one critical insight: samples of execution uncertainty from a
particular action provide information about any action that
could have generated that execution outcome.

We use this insight to propose a novel variant of Monte
Carlo tree search, KR-UCT (Kernel Regression UCT), de-
signed specifically for reasoning about continuous actions
with execution uncertainty. Instead of evaluating only a dis-
crete set of candidate actions, the algorithm considers the en-
tire continuous space of actions, with candidates acting only
as initialization. The core of our approach is in the use of ker-
nel regression to generalize action value estimates over the
entire parameter space, with the execution uncertainty model
as its generalization kernel. KR-UCT distinguishes itself in a
number of key ways. First, it allows information sharing be-
tween all actions under consideration. Second, it can identify
actions outside of the initial candidates for further exploration
by combining kernel regression and kernel density estimation
to optimize an exploration-exploitation balance akin to the
popular UCB formula [Auer et al., 2002]. Third, it can ulti-
mately select actions outside of the candidate set allowing it
to improve on less-than-perfect domain knowledge.

We evaluate KR-UCT in a high fidelity simulation of the
Olympic sport of curling. Curling is an example of a chal-

lenging action selection problem with continuous actions,
continuous stochastic outcomes, sequential decisions, execu-
tion uncertainty, and the added challenge of an adversary. We
show that the proposed algorithm significantly outperforms
existing MCTS techniques. The improvement is apparent not
only at short horizons, which allows exploring a large number
of different shots, but also at long horizons when evaluating
only tens of samples of execution outcomes. Furthermore,
we show that existing MCTS improvements, such as RAVE
and progressive widening do not improve standard UCT as
significantly as KR-UCT in this domain.

2 Background

We begin by describing the core algorithms that KR-UCT will
build upon, along with the main building blocks of the com-
petitors used our evaluation.

2.1 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a simulation-based
search approach to planning in finite-horizon sequential
decision-making settings. The core of the approach is to it-
eratively simulate executions from the current state to a ter-
minal state, incrementally growing a tree of simulated states
(nodes) and actions (edges). Each simulation starts by visit-
ing nodes in the tree, selecting which actions to take based on
a selection function and information maintained in the node.
Consequently, it transitions to a successor state. When a node
is visited whose immediate children are not all in the tree, the
node is expanded by adding a new leaf to the tree. Then, a
rollout policy (e.g., random action selection) is applied from
the new leaf to a terminal state. The value of the terminal
state is then returned as the value for that new leaf and the
information stored in the tree is updated. In the simplest case,
a tree with height 1, MCTS starts with an empty tree and adds
a single leaf each iteration.

The most common selection function for MCTS is Up-
per Confidence Bounds Applied to Trees (UCT) [Kocsis and
Szepesvari, 2006]. Each node maintains the mean of the re-
wards received for each action, v,, and the number of times
each action has been used, n,. It first uses each of the actions
once and then decides what action to use based on the size
of the one-sided confidence interval on the reward computed
based on the Chernoff-Hoeffding bound as:

log >, 1y

Nq

argmax v, + C N
a

The constant C controls the exploration-exploitation tradeoff

and is typically tuned for the specific domain.

The success of MCTS across a wide range of domains
has inspired many modifications and improvements. One
of the most notable is Rapid Action Value Estimation
(RAVE) [Gelly and Silver, 2011]. It allows learning about
multiple actions from a single simulation, based on the intu-
ition that in many domains, such as Go, an action that is good
when taken later in the sequence is likely to be good right
now as well. RAVE maintains additional statistics about the
quality of actions regardless of where they have been used in
a subtree. These statistics are then added to action values in

691

the selection function (e.g., UCT) as an additional term with
relative weight decreasing with more simulations.

2.2 Progressive Widening

Most selection functions in MCTS, including UCT, require
trying every action once. So, obviously, they are not directly
applicable in continuous action spaces. Even if the action
space is finite, but very large, having too many options can
result in a very shallow lookahead. The same solution to this
problem was independently introduced in [Coulom, 2007] as
progressive widening and [Chaslot et al., 2008] as progressive
unpruning. It artificially limits the number of actions evalu-
ated in a node by MCTS based on the number of visits to the
node. Only after the quality of the best available action is
estimated sufficiently well, additional actions are taken into
consideration. The order of adding the actions could be done
randomly or by exploiting domain knowledge.

If a domain includes stochastic outcomes, such as being
the result of execution uncertainty, the outcomes are com-
monly represented by chance nodes in the search tree. If the
set of outcomes is finite and small, then the next state can
be sampled from the known probability distribution over the
outcomes. If the possible outcomes are large or even con-
tinuous then one can simply sample a small number of out-
comes [Kearns et al., 2002] or slowly grow the number of
sampled outcomes as the node is repeatedly visited, in the
same way that progressive widening grows the number of ac-
tions [Couétoux et al., 2011].

UCT assures that the tree grows deeper more quickly in the
promising parts of the search tree. The progressive widening
strategies add that it also grows wider in the same parts of the
search tree.

2.3 Kernel Regression

Kernel regression is a nonparametric method for estimating
the conditional expectation of a real-valued random vari-
able from data. In its simplest form [Nadaraya, 1964;
Watson, 1964], it estimates the expected value of a point as
an average of the values of all points in the data set, weighted
based on a typically non-linear function of the distance from
the point. The function defining the weight given a pair of
points is called the kernel and further denoted K. For a data
set (z;, y;)_, the estimated expected values is:

_ i K@ @)y

The kernel is typically a smooth symmetric function, such as
the Gaussian probability density function. However, asym-
metric kernel functions can also be used in well-motivated
cases (e.g., [Michels, 1992]). An important quantity related
to kernel regression is kernel density, which quantifies the
amount of relevant data available for a specific point in the
domain. For any z, the kernel density is defined to be the
denominator in Equation 2:

E(ylz) 2)

W(z) =Y K(x,z). 3)
=0

Algorithm 1 Kernel Regression UCT
1: procedure KR-UCT(state)

2: if state is terminal then
3: return utility(szate), false
4: expanded < false
5: A < actions considered in state
6: action + argmax, 4 E(v|a) + C4/ bg%i(g)w(b)
7: if \/> ,cana < |A| then
8: newState < child of state by taking action
9: rv, expanded < KR-UCT(newState)
10: if not expanded then
11: newAction ~ argmin g (4etion,a)>+ W (@)
12: add newAction to state
13: newState < child of state by taking newAction
14: add initial actions to newState
15: rv <— ROLLOUT(newState)
16: Update Uqction s Naction, and KR with rv
17: return rv, true

3 Kernel Regression UCT

The main idea behind KR-UCT is to increase the number of
children (i.e., actions) of a node as it is repeatedly visited,
while enabling information sharing between similar actions
through kernel regression. All evaluated actions, both ini-
tially provided candidates and progressively added actions,
together with their estimated values, form a single dataset at
each node for kernel regression. For the kernel function we
use the probability density function of the known model of
execution uncertainty, i.e., K (x, ') is the model’s probability
that action «’ is executed when z is the intended action. Equa-
tion 2 then can be viewed as a simple Monte Carlo estimate of
the integral corresponding to that evaluated action’s expected
value. This particular kernel regressor is then used to esti-
mate the two key quantities required by UCT. For the average
of the action, v,, we use the kernel regression estimate. For
the number of visits, n,, we use the kernel density estimate
of data coverage. Note that if we had a discrete action space
and used a Dirac delta as the kernel (so K (x,2') = 1,-./),
then this approach is identical to vanilla UCT.

The pseudocode for KR-UCT is presented as Algorithm 1.
The structure of the algorithm follows the standard four steps
of MCTS (selection, expansion, simulation, and backpro-
pogation). The main recursive procedure, KR-UCT, is called
on the root of the search tree a fixed number of times deter-
mined by a per-decision computation budget. It returns the
value of the terminal node reached and a boolean flag indi-
cating if the expansion step has already occurred. We explore
some algorithmic details of each step below.

Selection. At each decision node, our algorithm uses an
adaptation of the UCB formula to select amongst already ex-
plored outcomes to be further refined (line 6). Each node
maintains the number of visits, np, and the mean utility, vy,
for each outcome (child node) b. As outcomes are revisited
throughout the iterations their mean and visit counts are up-
dated. We incorporate such multiple samples of the same out-

692

come into our kernel regression and kernel density estimates
by effectively counting each sample as its own data point.

> K(a,b)tpn
= SR “

= en K(a,b)np. 5)

These estimates are then plugged into their respective roles of
the UCB formula, E(v|a) for ¥, and W (a) for n,. The UCB
formula is then used to select the action to refine further. As
usual, the UCB exploration bias is considered infinite if the
denominator in the term is 0 (i.e., W(a) = 0). The scaling
constant C serves the same role as in vanilla UCT, control-
ling the tradeoff between exploring less visited actions and
refining the value of more promising actions. It should be
experimentally tuned for each specific domain.

E(v|a)
W(a)

Expansion. After selecting the action with the highest UCB
value, the algorithm continues by either improving the esti-
mated value of the action by recursing on its outcome (lines
8-9), or improving the estimated value of the action by adding
a new outcome as a new child node (lines 11-15). This deci-
sion is based on keeping the number of outcomes in a node
bounded by some sublinear function of the number of visits to
the node (line 7), just as in progressive widening. In the event
of reaching a terminal node within the tree, a new outcome
is always added at the leaf’s parent (line 10). When adding
a new outcome, we want to choose an outcome b that will
be heavily weighted by the kernel (i.e., K (a,b) is large), yet
is not well represented by the current set of outcomes (i.e.,
W (b) is small). We achieve this balance by finding an out-
come that minimizes the kernel density estimate within the set
of all outcomes whose kernel weight is at least a threshold 7
(line 11). For computational efficiency, we approximate this
optimization by choosing k& outcome samples from the exe-
cution uncertainty given the chosen action, and select from
these outcomes the one with minimal kernel density. After
identifying a new outcome, this state is added as a child of
the current node with some generated set of initial actions,
possibly determined using domain-specific knowledge (lines
12-14).

Simulation and Backpropagation. When a new outcome
is added to the tree, a complete simulation is executed to reach
a terminal state using some rollout policy (line 15). As in
vanilla MCTS, the rollout policy can involve random action
selection, a fast decision policy learned from data [Silver et
al., 2016] or based on hand-coded rules [Gelly et al., 2006],
or even a static heuristic evaluation. The value of the result-
ing terminal state is then used to update v and n; of the out-
comes along the selected path through the tree. Finally, for
the sake of efficiency, the kernel density and value estimates
at actions can be updated incrementally during the backprop-
agation step.

Final Selection. After the computational budget is ex-
hausted, we still need to use the results of the search to select
an action to execute. It is common to use the most sampled
action or the action with the highest sampled mean at the root.

Instead, we select the action at the root with the greatest lower
confidence bound (LCB) using our kernel regression and ker-

nel density estimates:
10g > hea Wo
— Oy | —=258
(la) — 0y

The constant C acts as a tradeoff between choosing actions
that have been sampled the most (i.e., are the most certain)
and actions that have high estimated value. This constant does
not have to be the same as the constant used in the upper
confidence bound calculation.

(6

argmax [E
a€A

Computational Complexity. Maintaining the value esti-
mates F(v|a) and kernel densities W (a) for the set of actions
A tracked by a node can be done incrementally in time linear
in |A[in each iteration. If we store also the sum >, , W,
in the nodes, selection can be performed in a single pass over
the set A. The most expensive operation is expansion, namely
finding the minimal kernel density close to an action. With a
naive implementation, evaluating each point in the parame-
ter space takes O(|A|) operations; hence if the optimization
evaluates k points, it takes O(k|A|) operations. This com-
plexity can be in practice substantially reduced by storing the
actions in a spatial index, such as R-trees [Guttman, 1984],
but if all A actions are close to the selected shot, the worst
case complexity stays the same.

4 Experimental Evaluation

We validate our algorithm using the Olympic sport of curling.

4.1 Curling

Curling is a two team game, where the goal is to slide (throw)
stones, also known as rocks, down a sheet of ice towards the
scoring area or house, a circular area centered on the button.
Games are divided into rounds called ends, where teams alter-
nate in throwing a total of eight stones each. When each end
finishes, the team with the stone closest to the button scores
points equal to the number of their stones in the house closer
than any opponent stone. If the state in Figure 1 is the end
of an end, yellow would score one point. If the yellow rock
closest to the button were missing, then red would instead
score two points. After an end, all stones are removed, and
the next end begins. The winner is the team with the high-
est score after all ends are played. A key aspect of curling,
is that rocks do not follow a straight trajectory. Instead, due
to the friction with the ice stones curl left or right, depending
on the stone’s rotation as demonstrated by the dashed line in
Figure 1. This fact allows teams to place stones behind other
stones and make them harder to remove from the house.

An important strategic consideration in the game is exe-
cution uncertainty. A team may intend to deliver a stone at
particular angle and velocity, but inevitably human precision
has its limitations. In addition, the ice and stones create ad-
ditional unpredictability as different parts of the ice or even
different stones might see different amounts of friction and
lateral forces. Debris on the ice can also cause drastic trajec-
tory changes. When deciding what shot to attempt, the play-

693

Figure 1: Sample curling game state. The yellow player
scores 1 point if this is the end of an end. The dashed line
indicates a typical rock trajectory.

ers have to carefully consider possible negative consequences
of execution errors.

4.2 Curling Simulator

The physics of a curling stone is not fully understood and is a
surprisingly active area of research [Denny, 2002; Jensen and
Shegelski, 2004; Nyberg er al., 2012; 2013]; so, a simulation
based on first principles is not possible. The curling simula-
tor used in this paper is implemented using the Chipmunk 2D
rigid body physics library with a heuristic lateral force that
recreates empirically observed stone trajectories and modi-
fied collision resolution to match empirically observed elas-
ticity and energy conservation when rocks collide. A rock’s
trajectory is simulated from its initial linear velocity and an-
gular velocity (which due to the trajectory’s insensitivity to
the speed of rotation is determined only by its sign).

The curling simulation also needs a model of the execu-
tion uncertainty. We model it based on Olympic-level play-
ers. Their executed shot is usually quite close to the intended
shot, with decreasing probability of being increasingly dif-
ferent. However, the stone can move over debris drastically
altering the shot’s trajectory from that which was intended.
Therefore, we use the heavy-tailed Student-t distribution as
the basis of our execution model. The amount of execution
noise added to a shot depends on the weight (speed) of the
shot. The faster shots tend to be more precise, since the ice
conditions have smaller effect on their trajectory. The noise
added to a specific shot is defined by three parameters: the
variance of the Student-t distribution that is added to the in-
tended weight, the variance of the Student-t distribution that
is added to the aim, and the number of degrees of freedom of
the distributions. We have fit these parameters to match the
curling percentage statistics of men from the 2010 and 2014
Olympic games. The number of degrees of freedom for the
Student-t distribution was fit to 5, the weight variance is ap-
proximately 9.5 mm/s, and the aim variance varies with the
weight and is between 1.16 x 10~ and 3.65 x 1073 radians.

The simulator does not explicitly model sweeping, where
the non-throwing members of a team can vigorously brush
the ice in front of a travelling rock to reduce friction and keep
a rock’s trajectory straighter. While sweeping is critical to
the game of curling, we model its effect as a reduction in the
execution uncertainty, i.e., an increase in the likelihood the
actual rock’s trajectory is close to the planned trajectory.'

'Sweeping does have other effects beyond reducing execution

3200

3000

Weight (mm/s)
N N N
N (= 0
© © o
S S o

2200

2000

1800

—0.06 -0.03 0.00

Aim (rad)
KR-UCT

0.03 0.06

Figure 2: The game state of the final shot of the fifth end in
the 2014 Olympics men’s gold medal match. The scores of
different shot parameters with an out-turn (counter-clockwise
spin), the shots generated by the domain knowledge and the
shots evaluated by the analyzed algorithms after 300 samples.

4.3 Domain Knowledge

All evaluated algorithms use the same domain knowledge: a
curling-specific shot generator that creates a list of potential
shots to take from a particular state. The generator works
using a list of hand-defined types of shots, such as drawing
to the button, removing an opponent’s rock, or guarding its
own rock, and generates the needed weight, aim, and rotation
to make the shot, if it is possible. It also stores the purpose
of this shot such as (“takeout yellow 3”’), which can be used
with RAVE to learn quickly about shots in a particular state.
The generator typically generates between 7 and 30 different
candidate shots. Figure 2 shows a game state in which red
throws the last shot of the end. The grayscale heatmap shows
the resulting score of executing a shot as the aim (x-axis) and
weight vary (y-axis) when using a counter-clockwise rota-
tion. Note that execution uncertainty makes achieving the
exact values shown in the heatmap impossible in expectation.
Overlaid on this heatmap are blue points showing the candi-
dates shots from the generator. The shot generator does not
always produce the best shot in expectation, as seen by the
fact that there is no generated shot in the center of large light
area with weight 2000 mm/sec and aim -0.035 radians.

The other domain knowledge in use is a hand-coded roll-
out policy. The policy involves a hand-coded set of rules to
select an action from any state. Even though the rules are de-
terministic, the shots are executed with execution uncertainty
and therefore the rollout policy outcomes vary. Because the
physical simulator is computationally expensive, we did not

error. Sweeping focused on the end of a rock’s trajectory can allow
it to reach a location on the ice not possible without sweeping. Fur-
thermore, a shot far from an intended shot can be swept to achieve
an entirely different purpose, such as rolling under a different guard
if the executed angle is off. The primary effect of sweeping, though,
is to compensate for execution error.

694

| KR-UCT PW RAVE+PW RAVE UCT
KR-UCT 0.086 0.084 0.105 0.110
PW -0.086 0.010 0.014 0.037
RAVE + PW -0.084 -0.010 0.015 0.033
RAVE -0.105 -0.014 -0.015 0.006
UCT -0.110 -0.037 -0.033 -0.006

Table 1: The average point differences by the algorithms in
the rows against the one in the column over one-end games.
Bold values denote statistical significance (p=0.95; upper-
tailed t-test).

rollout full ends. Instead, rollouts would be restricted to at
most five simulated shots, after which the end was scored
as if it were complete. Many shots in the middle of an end
can result in a back-and-forth of placing and removing one’s
own/opponent stones, which this approach dispenses with.

4.4 Algorithms

We compare our proposed KR-UCT algorithm with four other
variants of MCTS. (1) UCT: available actions are limited to
generated shots, but the number of random outcomes sampled
for each action is kept below the square root of the number of
its visits. (2) RAVE: like UCT but with RAVE using the gen-
erator’s action descriptions to identify actions. (3) PW: like
UCT but with progressive widening on the generated actions;
adding random actions when the number of actions is below
the square root of the number of visits. (4) RAVE+PW: com-
bination of RAVE and PW; added action has the highest value
(UCT + RAVE).

All algorithms used 1600 samples and evaluated the fi-
nal shot selection with a lower confidence bound estimate
(Crep = 0.001). For each algorithm, we ran a round robin
tournament to identify a good UCB constant from the set
{0.01,0.1,1.0,10,100}. For all algorithms, Cycp = 1.0
was the best constant. For the weighting in RAVE, we did
a similar round robin tournament to select the 8 parameter
from the set {0.01,0.1,1.0,10.0, 100.0}, and found 5 = 1.0
to be the best for RAVE and RAVE+PW. For KR-UCT, we
defined 7 = 0.02 and £k = 10. We found that these values
were a good trade off of runtime and exploration.

4.5 One-End Games

We first present results of head-to-head performance in a sin-
gle end of curling. Each algorithm played against each other
in 16000 one-end games. Because having the last shot (the
hammer) is advantageous, algorithms played an equal num-
ber of games with and without the hammer against each oppo-
nent. The algorithms aimed to optimize the score differential
in the game (as opposed to the probability of being ahead) and
so our results are presented as average (differences in) points.

Table 1 shows the results of every pair of algorithms. KR-
UCT had a positive expected point differential against every
other algorithm by statisticially significant margins. Not sur-
prisingly, UCT appears to be its weakest opponent. Addition-
ally, we can see that while RAVE does not significantly out-
perform UCT, which can be attributed to the limited number
of samples. With 1600 samples, the algorithm rarely searches
past a depth of 3, so the RAVE statistics are underutilized.

| KR-UCT PW RAVE+PW RAVE UCT
KR-UCT 1424 1.302 1.301 1.303 1.302
PW 1452 1.297 1.297 1.297 1.297
RAVE+PW | 1.443 1.284 1.284 1.284 1.284
RAVE 1.446 1.274 1.274 1.274 1.274
UCT 1431 1.264 1.264 1.265 1.265

Table 2: Average number of points gained by algorithms in
the columns in all hammer shot states reached by algorithms
in the rows. The standard error on these values is 0.007. Bold
values denote a statistically significant maximum within the
row (p = 0.99; paired t-test).

KR-UCT RAVE+PW KR-UCT PW

KR-UCT 1.392 1.272 KR-UCT| 1414 1.281
RAVE+PW | 1.405 1.248 PW 1.416 1.265
KR-UCT RAVE KR-UCT UCT
KR-UCT| 1.428 1.311 KR-UCT| 1461 1.344
RAVE 1.400 1.242 UCT 1.423 1.255

Table 3: Average number of points gained by algorithms in
the columns in the hammer shot states reached by algorithms
in the rows in mutual matches of the algorithms mentioned in
each table. Standard error < 0.011 for each entry.

However, the algorithms with Progressive Widening result in
an improvement, although the gain achieved by KR-UCT is
much higher with a higher statistical confidence. KR-UCT’s
gain of 0.110 points per end, in expectation, against UCT, is
a considerable result. If we extended the result to a standard
10-end game, KR-UCT might expect to see a full point im-
provement per game. In the 2014 Olympics, 29% of curling
games were decided by a single point.

4.6 Hammer Shot Analysis

The hammer shot is an interesting case to analyze [Ahmad
et al., 2016]. Being the last shot of the end, it is by far the
most important. Furthermore, the search does not have to re-
cursively evaluate long term consequences of actions, so al-
gorithms can evaluate substantially more actions in the same
computational budget.

For each game in the round robin tournament, we took the
state right before the hammer shot and let other algorithms
choose a shot from that state. We then found the expected
value of that shot by simulating it under our execution model
100,000 times. Table 2 shows the expected points earned by
averaging over the reached hammer states. Each row rep-
resents the set of hammer states reached by a particular al-
gorithm, and the columns represent the algorithms evaluated
from these states. The subtables in Table 3 show the same
analysis, except the set of states considered is limited to states
from the matches between the two algorithms in the subtable.
These tables allow us to analyze two effects: an algorithm’s
ability to choose a good hammer shot and an algorithm’s abil-
ity to reach a good state for the hammer shot.

A clear picture emerges when comparing the columns of
Table 2. KR-UCT outperforms all other algorithms by over
0.12 points in its shot selection, regardless of the set of ham-

695

mer states under consideration. Also, notice that preexisting
variants of UCT have nearly identical performance. RAVE
learns from actions in a subtree, which are not present in this
case; PW will always explore all options removing the need
to consider a smaller subset.

This performance difference highlights the main disadvan-
tage of other algorithms: they can choose only from the gen-
erated shots, which is a severe limitation in the hammer shot,
when available samples are sufficient to explore far more op-
tions. It can be seen quite dramatically in the bottom part of
Figure 2. The two heatmaps are overlaid with the shots eval-
uated by vanilla UCT and KR-UCT in the first 300 samples
from this hammer state. Notice the generated candidate shot
at weight 2000 mm/s and aim -0.03 radians, which is on the
edge of a high-value region. In UCT, approximately half of
the noisy samples of this shot receive 1 point, but the other
half receives -1 point and the shot is not selected. The algo-
rithm uses more samples in the smaller region left of this shot.
However, KR-UCT is not restricted to choose only from the
generated shots. As soon as it generates a noisy shot in the
good region, the next sample will be near this shot and the
sampling will gradually move all over the high-value region.
The final shot is selected close to the center of this region.

Additionally, we can compare a table’s rows to evaluate an
algorithm’s ability to reach a good state through lookahead
and planning, even when a different algorithm is choosing the
final hammer shot. Looking at the rows in the subtables of Ta-
ble 3, we see a general trend that KR-UCT generally reaches
states that result in equal or greater value regardless of which
algorithm is selecting the final shot. On the whole this sug-
gests KR-UCT is an improvement over UCT when the search
space is shallow as well as when it is deep. This story is only
contradicted in the case where KR-UCT is the algorithm se-
lecting the hammer shot. This discrepancy is most clear in the
full results of Table 2 where the preexisting enhancements to
UCT seem to result in more valuable states for KR-UCT than
KR-UCT does for itself (viz., compare the different rows in
the KR-UCT column). We would like to explore this curious
effect further in future work.

5 Conclusion

While a number of planning approaches have been proposed
for sequential decision-making in continuous action spaces,
none fully exploit the situation which arises from execution
uncertainty. We present a new approach, KR-UCT, based on
the insight that samples of execution uncertainty from a par-
ticular action provide information about any other action that
could have generated that execution outcome. KR-UCT uses
kernel regression to both share information between actions
with similar distributions of outcomes and, more importantly,
guide the exploration of actions outside of the initially pro-
vided candidate set. We show that the algorithm makes a sig-
nificant improvement over both vanilla UCT and some of its
standard enhancements.

Acknowledgements

This research was funded by NSERC and Alberta Innovates
Technology Futures (AITF) through Amii, the Alberta Ma-

chine Intelligence Institute. The computational resources
were made possible by Compute Canada and Calcul Québec.
Additionally, we thank all others who have contributed in the
development of the Computer Curling Research Group.

References

[Ahmad et al., 2016] Zaheen Farraz Ahmad, Robert C.
Holte, and Michael Bowling. Action selection for hammer
shots in curling. In Proceedings of the Twenty-Fifth In-
ternational Joint Conference on Artificial Intelligence (1J-

CAI), 2016.

[Archibald et al., 2009] Christopher Archibald, Alon Alt-
man, and Yoav Shoham. Analysis of a winning compu-
tational billiards player. In Proceedings of the 21st in-
ternational jont conference on Artifical intelligence, pages
1377-1382. Morgan Kaufmann Publishers Inc., 2009.

[Auer et al., 2002] Peter Auer, Nicolo Cesa-Bianchi, and
Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235-256, 2002.

[Bubeck et al., 2011] Sébastien Bubeck, Rémi Munos,
Gilles Stoltz, and Csaba Szepesvdri. y-armed bandits.
Journal of Machine Learning Research, 12:1655-1695,
2011.

[Chaslot et al., 2008] G.M.J.B. Chaslot, M.H.M. Winands,
J.W.H.M. Uiterwijk, H.J. van den Herik, and B. Bouzy.
Progressive strategies for Monte-Carlo tree search. New
Mathematics and Natural Computation, 4(3):343, 2008.

[Couétoux et al., 2011] Adrien Couétoux, Jean-Baptiste
Hoock, Nataliya Sokolovska, Olivier Teytaud, and Nico-
las Bonnard. Continuous upper confidence trees. In
Learning and Intelligent Optimization, pages 433—445.
Springer, 2011.

[Coulom, 2007] Rémi Coulom. Computing “ELO ratings”
of move patterns in the game of go. ICGA Journal,
30(4):198-208, 2007.

[Denny, 2002] Mark Denny. Curling rock dynamics: To-
wards a realistic model. Canadian journal of physics,
80(9):1005-1014, 2002.

[Gelly and Silver, 2011] Sylvain Gelly and David Silver.
Monte-Carlo tree search and rapid action value estima-
tion in computer go. Artificial Intelligence, 175(11):1856—
1875, 2011.

[Gelly et al., 2006] Sylvain Gelly, Yizao Wang, Rémi
Munos, and Olivier Teytaud. Modification of UCT with
patterns in Monte-Carlo go. Research Report RR-6062,
INRIA, 2006.

[Guttman, 1984] Antonin Guttman. R-trees: A dynamic in-
dex structure for spatial searching, volume 14. ACM,
1984.

[Jensen and Shegelski, 2004] E.T. Jensen and Mark R.A.
Shegelski. The motion of curling rocks: Experimen-
tal investigation and semi-phenomenological description.
Canadian journal of physics, 82(10):791-809, 2004.

696

[Kearns et al., 2002] Michael Kearns, Yishay Mansour, and
Andrew Y. Ng. A sparse sampling algorithm for near-
optimal planning in large Markov decision processes. Ma-
chine Learning, 49(2-3):193-208, 2002.

[Kocsis and Szepesvari, 2006] Levente Kocsis and Csaba
Szepesvari. Bandit based Monte-Carlo planning. In Ma-
chine Learning: ECML 2006, pages 282-293. Springer
Berlin / Heidelberg, 2006.

[Mansley ef al., 2011] Christopher R. Mansley, Ari Wein-
stein, and Michael L. Littman. Sample-based planning
for continuous action Markov decision processes. In Pro-
ceedings of the 21st International Conference on Auto-
mated Planning and Scheduling, ICAPS 2011, Freiburg,
Germany June 11-16, 2011, 2011.

[Michels, 1992] Paul Michels. Asymmetric kernel functions
in non-parametric regression analysis and prediction. The
Statistician, pages 439—-454, 1992.

[Nadaraya, 1964] Elizbar A Nadaraya. On estimating regres-
sion. Theory of Probability & Its Applications, 9(1):141—
142, 1964.

[Nyberg et al., 2012] Harald Nyberg, Sture Hogmark, and
Staffan Jacobson. Calculated trajectories of curling stones
sliding under asymmetrical friction. In Nordtrib 2012,
15th Nordic Symposium on Tribology, 12-15 June 2012,
Trondheim, Norway, 2012.

[Nyberg et al., 2013] Harald Nyberg, Sara Alfredson, Sture
Hogmark, and Staffan Jacobson. The asymmetrical fric-
tion mechanism that puts the curl in the curling stone.
Wear, 301(1):583-589, 2013.

[Silver er al., 2016] David Silver, Aja Huang, Chris J. Mad-
dison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, loannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik
Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. Mastering the game
of go with deep neural networks and tree search. Nature,
529(7587):484-489, 01 2016.

[Smith, 2007] Michael Smith. Pickpocket: A computer bil-
liards shark. Artificial Intelligence, 171(1617):1069 —
1091, 2007.

[Watson, 1964] Geoffrey S. Watson. Smooth regression
analysis. Sankhya: The Indian Journal of Statistics, Se-
ries A, pages 359-372, 1964.

[Yamamoto et al., 2015] Masahito Yamamoto, Shu Kato,
and Hiroyuki lizuka. Digital curling strategy based on
game tree search. In Computational Intelligence and
Games (CIG), 2015 IEEE Conference on, pages 474-480.
IEEE, 2015.

