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Abstract

We define a clause tableau calculus for MaxSAT,
prove its soundness and completeness, and describe
a tableau-based algorithm for MaxSAT. Given a
multiset of clauses �, the algorithm computes both
the minimum number of clauses that can be falsi-
fied in �, and an optimal assignment. We also de-
scribe how the algorithm can be extended to solve
weighted MaxSAT and weighted partial MaxSAT.

1 Introduction

There has been tremendous progress in theoretical and ap-
plied aspects of the MaxSAT problem over the last decade. As
a result, there are now a number of competitive solvers that
are able to solve challenging optimization problems in differ-
ent areas (see e.g. [Abramé and Habet, 2015; Ansótegui et
al., 2013; 2016a; 2016b; Li and Manyà, 2009; Martins et al.,
2014; Morgado et al., 2013; Narodytska and Bacchus, 2014]
and the references therein for previous and related work).

One lesson learned during that time is that the inference
rules applied in SAT solving usually cannot be applied in
MaxSAT, because such rules preserve satisfiability but do not
preserve the number of falsified clauses. This implies that
successful SAT solving techniques such as unit propagation
are unsound in MaxSAT.

The most relevant studies conducted to date about infer-
ence rules in MaxSAT analyze how an extended resolution
rule, or refinements of this rule, can be applied to solve
MaxSAT [Abramé and Habet, 2014a; Bonet et al., 2007;
Heras and Larrosa, 2006; Larrosa et al., 2008; Li et al., 2007].

MaxSAT resolution replaces two parent clauses (x _ a1 _
. . ._ as and x_ b1 _ . . ._ bt) with their resolvent (a1 _ . . ._
as _ b1 _ . . . _ bt) plus s + t compensation clauses that are
not needed in SAT (x_ a1 _ . . ._ as _ b1, . . . , x_ a1 _ . . ._
as _ b1 _ . . . _ bt�1 _ bt, x _ b1 _ . . . _ bt _ a1, . . . , x _
b1 _ . . . _ bt _ a1 _ . . . _ as�1 _ as). Compensation clauses
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ensure that the number of falsified clauses is preserved but
complicate the application of the rule. A nice feature of
MaxSAT resolution is its completeness [Bonet et al., 2006;
2007]: given a multiset of clauses whose minimum number
of falsified clauses is m, the application of MaxSAT reso-
lution, finitely many times and following a certain strategy,
derives a multiset formed by exactly m empty clauses.

The present paper investigates how to extend the clause
tableau method for SAT [D’Agostino, 1999; Hähnle, 2001]
to solve MaxSAT. The contributions of our work can be sum-
marized as follows:

• A clause tableau calculus for MaxSAT that is sound and
complete in the following sense: the minimum number
of clauses that can be falsified in a multiset of clauses �
is m iff the minimum number of empty clauses, among
the branches of a clause tableau for �, that can be de-
rived by applying the tableau rules of the calculus until
saturation is m.1

• A tableau-based MaxSAT algorithm that computes both
the minimum number of clauses that can be falsified
in �, and an optimal assignment.

• Description of how the algorithm can be extended to
solve weighted MaxSAT and weighted partial MaxSAT.

It is the first time, to the best of our knowledge, that a
tableau calculus has been employed in combinatorial opti-
mization and, in particular, to solve Boolean optimization
problems. Moreover, the proposed calculus offers an infer-
ence system that is simpler and more intuitive than MaxSAT
resolution: no compensation clauses are needed, and all the
derived clauses are either empty or unit.

An advantage of the tableau method for SAT is that it can
deal directly with formulas that are not in conjunctive normal
form (CNF). Tableaux do not need to apply CNF conversion,
avoiding so the space complexity of some conversion CNF
algorithms. It remains an open question how to extend the
contributions of the present paper to solve MaxSAT for non-
CNF formulas.

The paper is organized as follows: Section 2 gives basic
concepts about SAT and MaxSAT. Section 3 describes how
clause tableaux can be used to solve SAT. Section 4 defines

1By saturation we mean that all the possible applications of in-
ference rules were performed.
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an original clause tableau calculus for MaxSAT, proves its
soundness and completeness, and describes an exact MaxSAT
algorithm. Section 5 shows how the proposed algorithm can
be extended to solve weighted MaxSAT and weighted par-
tial MaxSAT. Section 6 contains the concluding remarks, and
points out future research directions.

2 Preliminaries

A literal is a propositional variable or a negated propositional
variable. A clause is a disjunction of literals. A weighted
clause is a pair (c, w), where c is a disjunction of literals and
w, its weight, is a natural number or infinity. A clause is hard
if its weight is infinity; otherwise it is soft. A weighted par-
tial MaxSAT instance is a multiset of weighted clauses � =
{(h1,1), . . . , (hk,1), (c1, w1), . . . , (cm, wm)}, where the
first k clauses are hard and the last m clauses are soft. The
total number of weighted clauses in � is denoted by |�|.
For simplicity, in what follows, we omit infinity weights,
and write � = {h1, . . . , hk, (c1, w1), . . . , (cm, wm)}. A soft
clause (c, w) is equivalent to having w copies of the clause
(c, 1), and {(c, w1), (c, w2)} is equivalent to (c, w1 + w2).

A truth assignment assigns to each propositional variable
either 0 (false) or 1 (true). Weighted Partial MaxSAT, or
WPMaxSAT, for an instance � is the problem of finding an
assignment that satisfies all the hard clauses and minimizes
the sum of the weights of the falsified soft clauses; such
an assignment is called optimal assignment. The Weighted
MaxSAT problem, or WMaxSAT, is WPMaxSAT when there
are no hard clauses. The Partial MaxSAT problem, or
PMaxSAT, is WPMaxSAT when all the soft clauses have
the same weight. The (Unweighted) MaxSAT problem is
PMaxSAT when there are no hard clauses. The SAT prob-
lem, or SAT, is PMaxSAT when there are no soft clauses.

3 Clause Tableaux for SAT

It is common to view the tableau method for solving SAT
as a proof by case distinction that allows one to systemat-
ically generate subcases until elementary contradictions are
reached. In the context of SAT, a clause tableau is a tree with
a finite number of branches whose nodes are labelled with
clauses, and a branch is a maximal path in a tree with a finite
number of nodes. A branch is closed if there are two nodes la-
belled with complementary unit clauses; otherwise, it is open.
A clause tableau is closed iff all its branches are closed.

Given a set of clauses C = {C1, . . . , Cm}, we create an
initial tableau that has a single branch with m nodes, where
each node is labelled with a clause of C. Then, we select
an open branch B and a non-unit clause l1 _ . . . _ lr of C
that has not yet been expanded in B, and append r nodes be-
low B, labelling each node with a different unit clause from
{l1, . . . , lr}. This process of creating r new branches from B

is known as the application of the extension rule. If there are
two complementary unit clauses in a branch, we close it. This
process continues until either all the branches are closed, or
the application of the extension rule on a branch until satu-
ration leaves it open. C is declared to be unsatisfiable in the
first case, and satisfiable in the second case.

Example 1 To determine the satisfiability of C = {x1, x1 _
x2, x1 _ x2} with clause tableaux we start by creating the
initial tableau (T0):

x1

x1 _ x2

x1 _ x2

We then expand the second node, and close he leftmost
branch (it has the occurrence of both x1 and x1, and the clos-
ing is denoted by ⇥ in the tableau), obtaining the following
clause tableau (T1):

x1

x1 _ x2

x1 _ x2

x2
x1

⇥

Finally, we expand the third node on the rightmost branch,
and get a closed tableau (T2) that provides a clause tableau
proof of the unsatisfiability of C:

x1

x1 _ x2

x1 _ x2

x2

x2

⇥
x1

⇥

x1

⇥

Formally, a clause tableau proof of the unsatisfiability of a
set of clauses � is a sequence of clause tableaux T0, . . . , Tn

such that T0 is an initial tableau, Tn is a closed tableau, and
Ti has been obtained by a single application of the extension
rule on an open branch of Ti�1 for i = 1, . . . , n. In a proof of
satisfiability, Tn must have some open branch after applying
the extension rule on it until saturation. Besides, the literals
occurring in the unit clauses of the open branch provide a
satisfying assignment of �.

It is common to say that Tn is a clause tableau proof be-
cause it collapses all the sequence of tableaux. In Example 1,
T0, T1, T2 is a clause tableau proof, although T2 alone is also
considered to be a clause tableau proof.

From a semantic perspective, given a set of clauses � and a
clause tableau T for �, we have that � is satisfiable iff there is
a branch in T such that the conjunction of all its clauses is sat-
isfiable (or alternatively, � is unsatisfiable iff all the branches
of T are unsatisfiable).
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4 Clause Tableaux for MaxSAT

The tableau method for SAT is not valid for solving MaxSAT,
among other reasons, because it stops the search in a branch
once a contradiction is detected. Moreover, in the case of
MaxSAT, we should pay attention to not use the same lit-
eral to detect different contradictions; for example, an exact
MaxSAT method detects one contradiction in {x1, x1, x1},
whereas it detects two contradictions in {x1, x1, x1, x1} be-
cause x1 can be used only once in the first case.

We define below a tableau method for MaxSAT that con-
templates to find more than one contradiction in each branch,
and that marks as used both the clauses that have already been
expanded and the complementary unit clauses involved in a
contradiction; in this way, the tableau method avoids to use
more than once the same clause in a branch. Recall that we
are now working with multisets of clauses. In the rest of the
paper, unless otherwise stated, when we say clause tableau
we mean clause tableau for MaxSAT.
Definition 1 A clause tableau is a tree with a finite number
of branches whose nodes are labelled with clauses that are
declared to be either marked or unmarked in each branch.
A branch is a maximal path in a tree, and we assume that
branches have a finite number of nodes.
Definition 2 Let � = {C1, . . . , Cm} be a multiset of clauses.
A clause tableau for � is constructed by a sequence of appli-
cations of the following rules:
Initialize A tree with a single branch with m nodes such

that each node is labelled with a clause of � is a clause
tableau for �. Such a tableau is called initial tableau
and its clauses are declared to be unmarked.

Extension Given a clause tableau T for �, a branch B of
T , and a node of B labelled with an unmarked non-unit
clause l1 _ · · · _ lr, the tableau obtained by appending
r nodes below B, labelling each node with a different
unit clause from {l1, . . . , lr}, is a clause tableau for �.
The clause l1 _ · · · _ lr is declared to be marked in the
newly created branches, and the unit clause li, for i =
1, . . . , r, is declared to be unmarked in the newly created
branch in which it occurs.

Contradiction Given a clause tableau T for �, a branch B

of T , and two nodes of B labelled with two unmarked
unit clauses l and l, the tableau obtained by append-
ing a node labelled with an empty clause below B is a
clause tableau for �. The empty clause is declared to be
unmarked in the newly created branch, and the comple-
mentary unit clauses, l and l, are declared to be marked.

Definition 3 Let T be a clause tableau for a multiset of
clauses �, and let B be a branch of T . The branch B is
saturated when all its unmarked clauses are empty and unit
clauses, and the contradiction rule cannot be further applied
on B. The tableau T is saturated iff all its branches are satu-
rated. The cost of a saturated branch is the number of empty
clauses in it. The cost of a saturated tableau is the minimum
cost among all its branches.

The notion of saturation is crucial in MaxSAT because it
indicates that the application of inference rules has been com-
pleted. As we show below, the minimum number of clauses

that can be falsified in a multiset of clauses � is k iff the
cost of a saturated tableau for � is k. So, the systematic con-
struction of a saturated clause tableau for � provides an exact
method for MaxSAT, and each saturated tableau is a proof.

x1

x2

x3

x1 _ x2

x1 _ x3

x2 _ x3

x2

⇤

x3

⇤

x3x2

x1

⇤

x3

⇤

x2

x1

⇤

x3

⇤

x3x2

⇤

x1

x3

⇤

x2

⇤

Figure 1: A saturated clause tableau for � = {x1, x2, x3, x1_
x2, x1 _ x3, x2 _ x3} that proves that the minimum number
of falsified clauses in � is 2.

Example 2 Let � be the multiset of clauses {x1, x2, x3, x1 _
x2, x1 _ x3, x2 _ x3}. Figure 1 shows a saturated clause
tableau T for �, and Figure 2 shows the steps performed for
saturating the leftmost branch of T .

In Figure 2, we first create an initial tableau. Secondly,
we apply the extension rule to clause x1 _ x2, and mark it in
the newly created branches (in the figure we write in bold the
marked clauses in the leftmost branch, which is the branch on
which we concentrate in this example). Thirdly, we apply the
contradiction rule to x1 and x1, and mark these clauses in
the leftmost branch. Fourthly, we apply the extension rule to
x1 _ x3, and mark the clause in the newly created branches.
Fifthly, we apply the extension rule to x2 _ x3, and mark the
clause in the newly created branches. Sixthly, we apply the
contradiction rule to x2 and x2, and mark these clauses in
the leftmost branch. No more inference rules can be applied
on the leftmost branch and therefore the branch is saturated,
having as unmarked clauses {⇤,⇤, x1, x3}. A similar pro-
cess is repeated to create the rest of branches in Figure 1.

The saturated branches of the tableau of Figure 1 have
cost 2 except for branches 3 and 6 (counting from left to
right) that have cost 3. The unmarked clauses in each
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x1

x2

x3

x1 _ x2

x1 _ x3

x2 _ x3

x1

x2

x3

x1 _ x2

x1 _ x3

x2 _ x3

x2x1

x1

x2

x3

x1 _ x2

x1 _ x3

x2 _ x3

x2x1

⇤

x1

x2

x3

x1 _ x2

x1 _ x3

x2 _ x3

x2x1

⇤

x3x1

x1

x2

x3

x1 _ x2

x1 _ x3

x2 _ x3

x2x1

⇤

x3x1

x3x2

x1

x2

x3

x1 _ x2

x1 _ x3

x2 _ x3

x2x1

⇤

x3x1

x3x2

⇤

Figure 2: Steps performed for saturating the leftmost branch of the saturated clause tableau for � = {x1, x2, x3, x1 _ x2, x1 _
x3, x2 _ x3} from Example 4.

branch are: {⇤,⇤, x1, x3} (branch 1), {⇤,⇤, x1, x2}
(branch 2), {⇤,⇤,⇤} (branch 3), {⇤,⇤, x2, x3}
(branch 4), {⇤,⇤, x2, x3} (branch 5), {⇤,⇤,⇤} (branch 6),
{⇤,⇤, x1, x2} (branch 7), and {⇤,⇤, x1, x3} (branch 8).
Therefore, the minimum number of falsified clauses in � is 2.
Lemma 1 There exists a saturated tableau for each multiset
of clauses �.
Proof We prove the lemma by induction on the number m
of clauses in � = {C1, . . . , Cm}.

Basis: for m = 1, it is trivial. If the unique clause in �

has more than one literal, we apply the extension rule on the
single branch of the initial tableau and get a saturated tableau;
otherwise, the initial tableau is already saturated.

Inductive step: assume that T is a saturated tableau for
{C1, . . . , Ck�1}. We prove that there exists a saturated
tableau T

00 for {C1, . . . , Ck}: Let T 0 be the tableau obtained
from T by expanding Ck in each branch of T , and let T 00 be
the tableau obtained from T

0 by applying the contradiction
rule on each branch of T 0. The extension and the contradic-
tion rule can be applied at most once in each branch, and T

00

is saturated because no tableau rules can be applied on the
branches of T 00. ⇤

4.1 Soundness and Completeness

We now prove that the minimum number of clauses that can
be falsified in a multiset of clauses � is m iff the cost of each
saturated tableau for � is m.
Theorem 1 Soundness. Let � be a multiset of clauses, and
let T be a saturated clause tableau for � of cost m. Then, the

minimum number of clauses that can be falsified in � is m.

Proof T was obtained by creating a sequence of clause
tableaux T0, . . . , Tn (n � 0) such that T0 is an initial tableau
for �, Tn = T , and Ti was obtained by a single application of
the extension or the contradiction rule on an branch of Ti�1

for i = 1, . . . , n. Assume that I is an optimal assignment of �
that falsifies k clauses, where k 6= m. By induction on n, we
prove that the minimum number of unmarked clauses that I
falsifies among the branches of T0, . . . , Tn (and in particular
of T) is k:

Basis: T0 has a single branch whose nodes are labelled
with the clauses of �, and such clauses are declared to be
unmarked in that branch. So, I falsifies k unmarked clauses
in T0, and k is the minimum number of unmarked clauses that
can be falsified in T0.

Inductive step: Assume that the minimum number of un-
marked clauses that I falsifies among the branches of Ti�1 is
k. We prove that the minimum number of unmarked clauses
that I falsifies among the branches of Ti is also k.

Since Ti was constructed from Ti�1 by applying either the
contradiction rule or the extension rule on a branch B of Ti�1

and the rest of branches of Ti�1 remain unchanged in Ti, we
just need to prove that I satisfies the same number of un-
marked clauses in B and in at least one of the newly created
branches, and does not decrease that number in the rest of
newly created branches. We distinguish two cases:

• The contradiction rule was applied on B: two comple-
mentary unit clauses in B become marked and an empty
clause is added in the new branch B

0. Since exactly one
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of the newly marked unit clauses was falsified by I and
we added one empty clause, I falsifies the same number
of unmarked clauses in B and B

0.
• The extension rule was applied on B: If I satisfies the

extended clause C of B, then I satisfies the leaf node of
at least one of the newly created branches, say B

0. The
number of falsified unmarked clauses is preserved in B

0

and does not decrease in the rest of branches. If I fal-
sifies C, then I falsifies the leaf nodes of all the newly
created branches, and the number of falsified unmarked
clauses is preserved in all these branches because C be-
comes marked after the extension.

We proved that the minimum number of unmarked clauses
that I falsifies among the branches of T0, . . . , Tn —and in
particular of T— is k but this is in contradiction with T being
a saturated tableau for � that has cost m: Since T is satu-
rated, the unmarked clauses of any branch B of T with mini-
mum cost is the union of a multiset with m empty clauses and
a multiset of unit clauses whose complementary unit clauses
do not occur in it. The multiset of unit clauses is clearly satis-
fiable, and so the minimum number of unmarked clauses that
can be falsified in B is m (not k), and is at least m in the rest
of branches of T . Hence, the minimum number of clauses
that can be falsified in � is m.

⇤
Theorem 2 Completeness. Let � be a multiset of clauses
whose minimum number of clauses that can be falsified is m.
Then, each saturated clause tableau T for � has cost m.

Proof Assume that there is a saturated tableau T for � that
does not have cost m. We distinguish two cases:

(i) T has a branch B that has cost k, where k < m. Then,
the unmarked clauses of B are the union of a multiset with k

empty clauses and a satisfiable multiset of unit clauses (other-
wise, B could not be saturated because the contradiction rule
could be applied). We define an assignment I of � as follows:
I(x) = 1 (I(x) = 0) if x (x) is an unmarked clause of B,
and I(x0) = 0 if variable x

0 does not occur in any unmarked
clause of B. We next prove that I satisfies at least |�| � k

clauses of �, or equivalently I falsifies at most k clauses of
�. I is clearly an optimal assignment of B. If we undo all the
applications of the contradiction rule in B, we get a branch
B

0 whose unmarked clauses form a multiset of unit clauses
�

0 that contains as many unit clauses as clauses are in �, and
each literal of each unit clause of �0 was derived from a differ-
ent clause of �. Since the clause of �0 are unit and there are k
complementary pairs of unit clauses, I satisfies |�|�k clauses
of �0, and at least |�|� k clauses of �. We have therefore an
assignment of � that cannot falsify more than k clauses, but
this is in contradiction with m being the minimum number of
clauses that can be falsified in � because k < m.

(ii) T has no branch of cost m. This is in contradiction with
m being the minimum number of clauses that can be falsified
in �. Since the tableau rules preserve the minimum number
of falsified clauses, T must have a saturated branch of cost m.

Hence, each saturated clause tableau T for a multiset of
clauses � has cost m if the minimum number of clauses that
can be falsified in � is m. ⇤

input: a multiset of clauses � over the set of propositional
variables {x1, . . . , xn}

T := initial clause tableau for �
min cost := number of clauses in �

while 9 an unmarked non-unit clause C in a branch B of T do

T := T after applying the extension rule to C on B

Let B1, . . . , Br be the newly created branches
Declare C to be marked in B1, . . . , Br

T := T after applying the contradiction rule on B1, . . . , Br

if 9 saturated branch Bi 2 T & min cost > #empty(Bi)
then min cost := #empty(Bi)

endwhile

B := branch of T of minimum cost (min cost)
I := ;
for i := 1 to n

if xi is an unmarked unit clause in B

then I := I [ {xi  1}
else I := I [ {xi  0}

endfor

output: min cost, I

Figure 3: An exact clause tableau algorithm for MaxSAT.

4.2 A Tableau-Based Algorithm for MaxSAT

Figure 3 shows the pseudo-code of an algorithm for MaxSAT
that creates a saturated tableau for the input multiset of
clauses �. In addition, it generates an optimal assignment for
�. Function #empty returns the number of empty clauses in
the branch provided as parameter.

The algorithm produces an optimal assignment I of the in-
put multiset of clauses � from a branch B of minimum cost of
the saturated tableau created in the first part of the algorithm.
The optimal assignment I sets a variable x to 1 (0) if B has
a node labelled with the unmarked clause x (x); the rest of
variables can be set to either 0 or 1, but we set them to 0 in
the algorithm.

The argument to show that I is optimal comes from the
proof of Theorem 2: Let m be the value of min cost returned
by the algorithm. It is clear that I is an optimal assignment
of B. If we undo all the applications of the contradiction rule
in B, we get a branch B

0 whose unmarked clauses form a
multiset of unit clauses �0 that contains as many unit clauses
as clauses are in �, and each literal of each unit clause of �0

was derived from a different clause of �. Since the clause
of �0 are unit and there are m complementary pairs of unit
clauses, I satisfies |�| � m clauses of �0, and at least |�| �
m clauses of �. Since B is a branch of minimum cost of a
saturated tableau for � and B has cost m, each assignment
of � falsifies at least m clauses. Therefore, I satisfies exactly
|�|�m clauses of � and is optimal.
Example 3 Let � be the multiset from Example 4. From
each saturated branch of minimum cost in the tableau of
Figure 1 we derive an optimal assignment. For example,
from branch 1, whose unmarked clauses are {⇤,⇤, x1, x3},
we derive the assignment {x1  1, x2  0, x3  0}.
By convention, we set the literals that do not appear in un-
marked clauses to 0, but they could also be set to 1. Hence,
{x1  1, x2  1, x3  0} is also an optimal assignment.

Note that the saturated branches that do not have min-
imum cost only contain three empty clauses. This means
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that the assignments {x1  0, x2  0, x3  0} and
{x1  1, x2  1, x3  1} are not optimal.

An immediate application of our tableau calculus is to
replace the common branching in branch-and-bound (BnB)
MaxSAT solvers such as [Abramé and Habet, 2014b;
Argelich and Manyà, 2006; Alsinet et al., 2008; Heras and
Larrosa, 2006; Li et al., 2007; Kuegel, 2010] by the clause
branching suggested by the extension rule: instead of branch-
ing on a variable x and its negation x, select a clause l1_· · ·_
lr in the current formula and create r branches, one branch for
each literal from {l1, . . . , lr}, and proceed as usual in BnB
MaxSAT solvers.

On the other hand, the algorithm of Figure 3 can be drasti-
cally improved by incorporating solving techniques that im-
plement BnB MaxSAT solvers such as the computation of
an initial upper bound with local search [Cai et al., 2014],
the computation at each node of a lower bound by detecting
disjoint subsets of inconsistent formulas with a linear-time
procedure that applies unit resolution [Li et al., 2010; 2005;
2006], and heuristics for selecting the clause to be expanded.

Note that the suggested clause branching for MaxSAT is
not valid for MinSAT [Ignatiev et al., 2016; Li et al., 2011;
2012], because the extension rule preserves the minimum
number of falsified clauses among the newly created branches
but does not preserve the maximum number of falsified
clauses. This also implies that the proposed calculus is un-
sound for MinSAT. Recall that MinSAT for a multiset of
clauses � is to find an assignment that maximizes the num-
ber of falsified clauses in �.

Finally, it is worth mentioning that the described tableau-
based algorithm only needs polynomial space, while existing
variable elimination algorithms based on MaxSAT resolution
require exponential memory space [Bonet et al., 2007].

5 Extension to WMaxSAT and WPMaxSAT

Many practical optimization problems admit more compact
and natural MaxSAT encodings if they are encoded using
weighted clauses instead of unweighted ones, as well as con-
sidering hard and soft clauses. To keep the description as
simple as possible, we presented the tableau method for un-
weighted MaxSAT, but the proposed tableau calculus can be
extended to solve both WMaxSAT and WPMaxSAT.

In the case of WMaxSAT, we should keep in mind that a
weighted clause (c, w) is equivalent to have w copies of the
unweighted clause c. So, the application of the contradiction
rule to two unit clauses (l, w1), (l, w2) amounts to adding an
unmarked empty clause with weight w = min(w1, w2) (i.e.;
(⇤, w)), declare the clauses (l, w1), (l, w2) to be marked, and
add the unmarked clauses (l, w1 � w) and (l, w2 � w) in the
newly created branch. The application of the extension rule
to a weighted clause (l1 _ · · · _ lr, w), amounts to append
r nodes below the current branch, labelling each node with a
different unit weighted clause from {(l1, w), . . . , (lr, w)}. Fi-
nally, to get a complete calculus, we need to define a contrac-
tion rule: if a branch contains two unmarked clauses (C,w1)
and (C,w2), mark these clauses and add the unmarked clause
(C,w1 + w2) in the newly created branch.

(x1, 3)

(x2, 2)

(x1 _ x2, 2)

(x2, 2)

(⇤, 2)

(x1, 2)

(⇤, 2)

(x1, 1)

Figure 4: A saturated clause tableau for the multiset
of weighted clauses � = {(x1, 3), (x2, 2), (x1 _ x2, 2)} that
proves that the minimum sum of weights of falsified clauses
in � is 2.

Example 4 Let � be the multiset of weighted clauses
{(x1, 3), (x2, 2), (x1 _ x2, 2)}. Figure 4 shows a saturated
clause tableau T for �. We first apply the extension rule to
(x1 _ x2, 2) and derive two new branches. In the leftmost
branch, the application of the contradiction rule to (x1, 3)
and (x1, 2) yields (⇤, 2) and (x1, 1). In the rightmost branch,
the application of the contradiction rule to (x2, 2) and (x2, 2)
yields (⇤, 2). The two saturated branches of the tableau
have cost 2. The unmarked clauses in each branch are:
{(x2, 2), (⇤, 2), (x1, 1)} (branch 1), and {(x1, 3), (⇤, 2)}
(branch 2). Therefore, the minimum sum of weights of fal-
sified clauses in � is 2.

In the case of WPMaxSAT, we should add, to each hard
clause, a weight greater than the sum of weights of the input
soft clauses, and proceed as in WMaxSAT but ignoring those
branches in which a contradiction is detected in hard clauses.

6 Conclusions

We defined a sound and complete clause tableau calculus for
WPMaxSAT that is simpler and more intuitive than MaxSAT
resolution because it avoids the use of compensation clauses.
At the same time, the contributions of the paper provide a new
angle to look at MaxSAT, as well as to compare the inference
in SAT with the inference in MaxSAT. Interestingly, an im-
mediate application of our results could be the incorporation
of the defined clause branching into BnB MaxSAT solvers.

As future work we plan to define a complete tableau cal-
culus for MinSAT, and extend our results to both non-CNF
formulas and first-order clauses.
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Bonet, and Jordi Levy. Sat-based MaxSAT algorithms. Ar-
tificial Intelligence, 196:77–105, 2013.
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lip Manyà. Resolution for Max-SAT. Artificial Intelli-
gence, 171(8–9):240–251, 2007.

[Cai et al., 2014] Shaowei Cai, Chuan Luo, John Thornton,
and Kaile Su. Tailoring local search for partial maxsat.
In Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, AAAI-2014, Québec City, Québec,
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Exploiting unit propagation to compute lower bounds in
branch and bound Max-SAT solvers. In Proceedings of
the 11th International Conference on Principles and Prac-
tice of Constraint Programming, CP-2005, Sitges, Spain,
pages 403–414. Springer LNCS 3709, 2005.

[Li et al., 2006] Chu Min Li, Felip Manyà, and Jordi Planes.
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Laurent Simon. Minimum satisfiability and its applica-
tions. In Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence, IJCAI-2011, Barcelona,
Spain, pages 605–610, 2011.

[Li et al., 2012] Chu Min Li, Zhu Zhu, Felip Manyà, and
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