
Optimizing Simple Tabular Reduction with a Bitwise Representation⇤

Ruiwei Wang1,2, Wei Xia3, Roland H. C. Yap3 and Zhanshan Li1,2
1School of Software, Jilin University, Changchun, China

2Key Laboratory of Symbol Computation and Knowledge Engineering, Education Ministry, China
3School of Computing, National University of Singapore, Republic of Singapore
wangrw13@mails.jlu.edu.cn, {xiawei, ryap}@comp.nus.edu.sg, lizs@jlu.edu.cn

Abstract
Maintaining Generalized Arc Consistency (GAC)
during search is considered an efficient way to
solve non-binary constraint satisfaction problems.
Bit-based representations have been used effec-
tively in Arc Consistency algorithms. We pro-
pose STRbit, a GAC algorithm, based on simple
tabular reduction (STR) using an efficient bit vec-
tor support data structure. STRbit is extended to
deal with compression of the underlying constraint
with c-tuples. Experimental evaluation show our
algorithms are faster than many algorithms (STR2,
STR2-C, STR3, STR3-C and MDDc) across a vari-
ety of benchmarks except for problems with small
tables where complex data structures do not payoff.

1 Introduction
Constraint propagation is used for solving constraint sat-
isfaction problems. The most well studied and success-
fully used constraint propagation technique is generalized
arc consistency (GAC). Table constraints define constraint
relations extensionally, i.e. the allowed combination of val-
ues, namely the most general form of a finite domain con-
straint. State-of-the-art GAC algorithms for table constraint
include simple tabular reduction (STR) [Ullmann, 2007] al-
gorithms: STR2 [Lecoutre, 2011], STR3 [Lecoutre et al.,
2012]; and Multi-valued Decision Diagram (MDD) algo-
rithms: MDDc [Cheng and Yap, 2010], MDD4 [Perez and
Régin, 2014]. Usually, GAC is invoked at each node in the
backtrack search tree, giving rise to maintaining GAC.

Constraint and variable domain representation is the basis
of a GAC algorithm. Several algorithms based on bit variable
domains have been proposed for binary constraints. AC3bit
[Lecoutre and Vion, 2008], considered an efficient arc con-
sistency (AC) algorithm optimizes AC3 [Mackworth, 1977]
algorithm by using a bit variable domain to represent the bi-
nary constraint. MaxRPCbit [Guo et al., 2011] uses a bit vari-
able domain to reduce the cost of searching for a PC-witness.

⇤This work was supported by the MOE AcRF (R-252-000-
505-112, R-252-000-592-112), the NSFC (61272208, 61373052),
and the Jilin Province Science and Technology Development Plan
(20140101200JC).

In [Ullmann, 2010], domain reduction algorithms based on
bit variable domain are given, such as AC, forward check-
ing and focus domain reduction. A recent GAC algorithm
using bit vectors for table constraints is implemented in the
OR-Tools solver (see [Demeulenaere, 2015]). It maintains
the validity of tuples with bit vectors and seeks support for
variable domain values with bit operations. Our focus is ex-
ploiting bit-vectors in GAC for non-binary table constraints
while gaining the benefits of simple tabular reduction.

When the size of a table constraint is large, constraint rep-
resentations which reduce space can also substantially speed
up the GAC algorithm. Various representations have been
proposed to compress table constraints. For example, a com-
pressed table [Katsirelos and Walsh, 2007] represents a set of
tuples as c-tuples, a short-support [Jefferson and Nightingale,
2013] represents a set of tuples by omitting some variables
which are implied, and a sliced table [Gharbi et al., 2014]
represents a set of tuples as a sub-table associated with pat-
terns. These representations have been used in the follow-
ing GAC algorithms. STR2-C and STR3-C [Xia and Yap,
2013] extends STR2 and STR3 for c-tables; shortSTR2 [Jef-
ferson and Nightingale, 2013] extends STR2 with short sup-
port; and STR-slice [Gharbi et al., 2014] enforces GAC on
sliced tables. For problem instances with high compression,
these algorithms can be faster than STR2.

In this paper, we introduce a new table constraint represen-
tation, called bit table. A bit table encodes the supports in
the form of a dual table [Lecoutre et al., 2015] with bit vec-
tors. We propose a new GAC algorithm to maintain GAC dur-
ing search, STRbit, using the bit table representation. STRbit
like STR3 focuses on maintaining GAC during search (unlike
STR2 which is a standalone GAC algorithm). The advantage
of the bit table is that it allows operations which deal with
maintaining support in the GAC algorithm to be performed
in parallel using O(1) machine instructions. STRbit can also
be faster than STR3 as the bit table can be (much) smaller
than the dual table. We also extend the bit table to handle
compressed tables on c-tuples with the STRbit-C algorithm.
Experimental evaluation using well known benchmarks show
STRbit to be faster than the state-of-the-art STR2, STR3 and
MDDc algorithms on most problem instances. In a similar
way, STRbit-C is also faster than the corresponding c-table
algorithms, STR2-C and STR3-C.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

787

X Y Z
1 a a b
2 a b b
3 a b c
4 a c c
5 b a c
6 b c c
7 c a a
8 c b a

(a) Standard table

X Y Z
a 1,2,3,4 a 1,5,7 a 7,8
b 5,6 b 2,3,8 b 1,2
c 7,8 c 4,6 c 3,4,5,6

(b) Dual table

Figure 1: The standard and dual table representation for con-
straint C(X,Y, Z).

index of original tuples
✓1 1, 2, 3, 4
✓2 5, 6, 7, 8

(a) A table partition

X Y Z
a (✓1 , 1111) a (✓1 , 1000), (✓2 , 1010) a (✓2 , 0011)
b (✓2 , 1100) b (✓1 , 0110), (✓2 , 0001) b (✓1 , 1100)
c (✓2 , 0011) c (✓1 , 0001), (✓2 , 0100) c (✓1 , 0011), (✓2 , 1100)

(b) Bit table

Figure 2: A table partition and its corresponding bit table.

2 Background
A constraint satisfaction problem (CSP) is a pair (@, ⇣) where
@ is a set of n variables and ⇣ is a set of e constraints. Each
variable X 2 @ has a domain D(X) defining possible values
for X . The maximum domain size of all variables is denoted
by d. A literal (X, a) represents a variable value pair. Dur-
ing search dom(X) denotes the current domain of X . If a
2 dom(X), we say that (X, a) is valid, otherwise (X, a) is
invalid. Each constraint C 2 ⇣ involves a constraint scope
scp(C) and a relation rel(C), where scp(C) is a subset of @
and rel(C) is a set of tuples satisfying constraint C. A tuple
⌧ 2 rel(C) is composed of a set of literals of the variable in
scp(C). The number of literals in rel(C) is denoted by L. A
solution to a CSP is a set of valid literals for all variables such
that all constraint are satisfied.

A tuple ⌧ 2 rel(C) is a support of literal (X, a) iff
(X, a) 2 ⌧ . A tuple ⌧ 2 rel(C) is valid iff (X, a) is valid
for any literal (X, a) 2 ⌧ . A literal (X, a) is generalized arc
consistent (GAC) on a constraint C involving X iff there ex-
ists a valid support ⌧ of (X, a) on C. A variable X is GAC
on a constraint C involving X iff dom(X) 6= ; and (X, a)
is GAC on C for each value a 2 dom(X). A constraint C
is GAC iff X is GAC on C for each X 2 scp(C). A CSP is
GAC iff each of its constraints is GAC.

A positive (negative) table constraint C is a constraint
whose relation rel(C) is represented in a table of allowed
(disallowed) tuples. A table can be transformed into an equiv-
alent dual table by mapping the index of tuples to their sup-
ported literals. Figure 1(a) gives a (standard) table with 24
literals and its corresponding dual table in Figure 1(b).

3 Bit representation in STRbit
We first introduce a bit representation for table constraints.
The idea of our bit representation is to encode the supports of
each literal in a constraint’s dual table with bit vectors. We
assume a natural word size w where the underlying processor

Function GACInit(C : Constraint)
1 remove invalid tuples from rel(C) and build a bit table

for constraint C;
for each sub-table ✓ of rel(C) do

2 VAL(C, ✓) := �1; // all bits are value 1

for each X 2 scp(C) and a 2 dom(X) do
3 LAST(C,X, a) := BIT SUP(C,X, a).size� 1;

for each X 2 scp(C) do
4 DEL(C,X) := ; ;

Algorithm 1: STRbit (C : Constraint)
deleteInvalidTuple(C);
return searchSupport(C);

provides O(1) time bit vector operations. We partition a table
into a set of sub-tables such that the number of tuples in a sub-
table equals w (w.l.o.g., we assume the total number of tuples
in the table is divisible by w). Then for each literal (X, a) and
sub-table ✓, a bit vector mask records the supports of (X, a)
in ✓. The ith bit in mask indicates whether the ith tuple in
sub-table ✓ is a support (value 1) or not (value 0).
Definition 1. A sub-table ✓ is a table support of (X, a) iff at
least one tuple in ✓ is a support of (X, a). This is equivalent
to that at least one bit of the corresponding bit vector mask
is value 1.

For each literal in the dual table, we replace its index of
support tuples by a set of value pairs whose first value ✓ gives
the index of the table support and the second value is the cor-
responding bit vector mask. We call such value pairs as bit
supports of literals, and the dual table with bit supports as a
bit table. For convenience, we say “a tuple in ✓” to mean that
the tuple is included in the sub-table with index ✓.
Example 1. Figure 2(a) shows a partition of the table given
in Figure 1(a) that the table is partitioned into 2 sub-tables ✓1
and ✓2 and each sub-table contains 4 original tuples. Then
we use a bit-vector mask to encode every sub-table. Fig-
ure 2(b) gives the corresponding bit table. (Y, a) has two bit
supports. The first bit support (✓1, 1000) indicates the 1st
tuple in sub-table ✓1 is a support of (Y, a). The second bit
support indicates the 1st and 3rd tuples in sub-table ✓2 are
supports.

The number of bit supports in bit table is O(L), but always
 L. Thus, the bit table can be seen as a way of compressing
the dual table (see L/Lbit in Section 5).

3.1 Maintaining GAC on bit table during search
We give a GAC algorithm STRbit for the table constraint rep-
resented in a bit table. Our algorithm adapts the simple tab-
ular reduction (STR) algorithm which shrinks tables dynami-
cally during search. STRbit maintains GAC during search by
updating the validity of tuples and seeking supports for each
value in the variable’s current domains. Validity of tuples is
also represented by bit vectors VAL, where bit value 1 indi-
cates the corresponding tuple is valid and value 0 indicates

788

Function deleteInvalidTuple(C : Constraint)
for each X 2 scp(C) do

for a 2 DEL(C,X) do
for i := 0 to LAST(C,X, a) do

1 ✓ := BIT SUP(C,X, a)[i].ts;
u := BIT SUP(C,X, a)[i].mask & VAL(C, ✓);
if u 6= 0 then

save((C, ✓),VAL(C, ✓), restoreV);
2 VAL(C, ✓) := (¬u) & VAL(C, ✓);

DEL(C,X) := ;;

Function searchSupport(C : Constraint)
for each X 2 scp(C) and a 2 dom(C,X) do

now := LAST(C,X, a);
✓ := BIT SUP(C,X, a)[now].ts;

1 while BIT SUP(C,X, a)[now].mask & VAL(C, ✓) = 0
do

now := now � 1;
if now = �1 then

remove(C,X, a);
if dom(X) = ; then

return false;
break;

✓ := BIT SUP(C,X, a)[now].ts;
2 if now 6= LAST(C,X, a) then

save((C,X, a), LAST(C,X, a), restoreL);
LAST(C,X, a) := now;

return true;

invalid. For example, we can use two 4-bit vectors to repre-
sent the validity of tuples in the two sub-tables in Figure 2(a).
If we assume only tuple 1 in ✓1 and tuple 7 in ✓2 are valid and
all the other tuples are invalid, then the values of the vectors
are (1000) and (0010). Before giving the details of STRbit,
we first introduce its data structures.

• BIT SUP(C,X, a) is an array of bit supports of lit-
eral (X, a) in the bit table of constraint C. In fact,
BIT SUP(C,X, a)[i] is the ith bit-support of (X, a).
BIT SUP(C,X, a)[i].ts is the index of table support
and BIT SUP(C,X, a)[i].mask is the corresponding bit
vector mask. BIT SUP(C,X, a).size is the number of
bit-supports of (X, a) and used for initialization.

• VAL(C, ✓) is a bit vector recording the validity of tuples
in ✓.

• LAST(C,X, a) records the last position i such that the
table support BIT SUP(C,X, a)[i].ts includes at least
one valid tuple, and BIT SUP(C,X, a)[j].ts doesn’t in-
clude valid tuples for each j > i.

• DEL(C,X) is a set of literals that have been deleted
from dom(X), but GAC has not been maintained on C.

• restoreV and restoreL are two stacks recording the va-
lidity of tuples and the last position of bit supports to
restore information when backtracking happens.

Function remove(C,X, a)
remove literal (X, a) from dom(X);
add X to the propagation queue;
for each C1 2 ⇣ and C1 6= C and X 2 scp(C1) do

add a to DEL(C1, X);

Function save(key, newdata, store)
if (key, olddata) /2 top(store) for any olddata then

add newdata to top(store)

Like STR3, STRbit is only used to maintain GAC during
search, as such, a separate GAC algorithm needs to be in-
voked before search to make the input instance GAC. Then
we call the function GACinit to remove invalid tuples and ini-
tialize the data structures of STRbit before search starts. In
GACinit, we set VAL(C, ✓) to be a bit vector of ones (line 2)
and set the separator LAST(C,X, a) pointing to the last bit
support (line 3). We then initialize DEL(C,X) to the empty
set since all constraints are GAC at the start.

During search, the STRbit algorithm is invoked for each
constraint C when a value is removed from the domain of
a variable involved in C. Algorithm 1 gives both parts of
STRbit. Firstly, deleteInvalidTuple(C) deletes all invalid
tuples and updates bit vector VAL. For each removed literal
(X, a) in DEL, deleteInvalidTuple(C) set its bit supports
to be invalid (between line 1 and 2). Then the second part
searchSupport(C) seeks supports for each (X, a) such that
a 2 dom(X). We seek supports from the position recorded
by LAST(C,X,a) and use now to point to the bit support be-
ing checked. ✓ indicates the index of sub-table so that we can
fetch the validity of tuples in VAL(C, ✓). We apply bit op-
erations to check whether the current bit support includes a
valid tuple (line 1). If all values are 0, there is no valid tu-
ple in the current bit support and now shifted to the left by
one. If now = �1, then there no valid bit tuple supports
(X, a) and (X, a) can be deleted. The function save is used
to record the old data in a stack before updating the data struc-
tures. The data structure restoreL records the old data of
LAST(C,X, a), and restoreV records old data of VAL(C, ✓).
Upon backtracking, the algorithm just needs to reset the value
of LAST(C,X, a) and VAL(C, ✓) by popping the old data
from restoreL and restoreV . In addition, since the con-
straint network is always consistent before accessing the next
layer in the search tree, we just need to set DEL(C,X) as
empty when backtracking.

3.2 Complexity analysis
STRbit is designed to maintain GAC during search, thus, we
analyse the “time complexity along a path” in the search tree.
The time cost of STRbit is bounded by the number of bit sup-
ports included in the bit table. For one constraint C, Lbit

denotes the number of bit supports included in the bit table.

Theorem 1. The accumulated time cost of r arity constraint
C in STRbit along a single path of length m in the search tree
is O(Lbit + r2d2 +m).

789

X Y Z
1 a a, b b
2 a b, c c
3 b a, c c
4 c a, b a

(a) Standard c-table

Index of original c-tuple
⌘1 1, 2, 3, 4
(b) A c-table partition

X Y Z
a (⌘1, 1100) a (⌘1, 1011) a (⌘1, 0001)
b (⌘1, 0010) b (⌘1, 1101) b (⌘1, 1000)
c (⌘1, 0001) c (⌘1, 0110) c (⌘1, 0110)

(c) Bit c-table

Figure 3: A c-table partition and its corresponding bit c-table.

Proof. The primary time cost of STRbit includes two parts.
One is the function deleteInvalidTuple(C): the time cost of
this part is O(Lbit), since every bit support is only processed
once; Another part is the function searchSupport(C): the
time cost of this part is O(Lbit+r2d2). At line 2, when LAST
is decreased, each bit support in BIT SUP will be checked
only once, so the time cost is O(Lbit). Otherwise when LAST
is not changed, an invocation’s cost is O(rd), and the number
of calls STRbit on C is at most rd times along a single path
in search tree, so the time cost is O(r2d2). Correspondingly,
the total time cost is O(Lbit + r2d2 +m) along a single path
in search tree, as all other statements have fixed cost O(1) at
each node.

STR3 has a path-optimality property but STRbit is not
(Theorem 1) so in the worst case a bit support in a bit ta-
ble may be processed multiple times in a search tree path.
From a practical efficiency perspective, the importance of
path-optimality is unclear, e.g. STR2 is not path-optimal but
is faster than STR3 on many benchmarks [Lecoutre et al.,
2012]. In practice, the actual cost in STRbit depends on the
size of Lbit which can be much smaller than L (used in STR3)
by a factor of w (due to bit vectors). Our experiments (Figure
4(a)) show STRbit to be up to 25X faster than STR3. The
speedup ratio is not always close to the ratio L/Lbit because
in STR algorithms L varies dynamically due to the tabular re-
duction, thus, the worst case time complexity may be a rather
crude bound.

4 Bit-C representation in STRbit-C
We now combine Cartesian product compression with its
bit representation giving a new dual table representation,
called bit c-table. For an r-arity constraint C(x1, . . . , xr),
the Cartesian product representation of a set of tuples
({a1,1, . . . , a1,k1}, . . . , {ar,1, . . . , ar,kr}) is called a c-tuple
[Katsirelos and Walsh, 2007]. This c-tuple admits any set of
assignments that assigns one of a1,1, . . . , a1,k1 to x1, one of
a2,1, . . . , a2,k2 to x2, etc. A c-tuple ⌧c is a c-support of literal
(X, a) iff there is a valid tuple in ⌧c supports (X, a). We can
compress a standard table into a c-table with c-tuples. The
standard table in Figure 1(a) represented in c-table form is
shown in Figure 3(a). As before, we partition a c-table into a
set of sub-c-tables by the word size, where a sub-c-table is a
subset of c-table.

Similar to table support, a sub-c-table ⌘ is a table c-support
of (X, a) iff at least one c-tuple in ⌘ supports (X, a). Then

Function deleteInvalidCTuple(C : Constraint)
presize := CDENSE[C].size;
for each X 2 scp(C) do

1 if DEL(C,X) 6= ; then
DEL(C,X) := ;;
clear BUFF ; // set all to 0

for each a 2 dom(X) do
for i := 0 to LAST(C,X, a) do

⌘ := BIT SUP(C,X, a)[i].ts;
2 u := BIT SUP(C,X, a)[i].mask | BUFF[⌘];
3 BUFF[⌘] := u;

for each ⌘ 2 CDENSE[C] do
4 intersection := VAL(C, ⌘)&BUFF[⌘];

if intersection 6= VAL(C, ⌘) then
save((C, ⌘),VAL(C, ⌘), restoreV);

5 VAL(C, ⌘) := intersection;
if intersection = 0 then

// deleting ⌘

6 CDENSE[C] := CDENSE[C]/{⌘};

if presize 6= CDENSE[C].size then
save(C,CDENSE[C], restoreC);

for each literal (X, a), we use a set of pair (⌘,mask) to rep-
resent a bit c-support of (X, a), where ⌘ is an index of table
c-support and mask is a bit vector. In mask, the ith bit indi-
cates whether the corresponding ith c-tuple in ⌘ is a c-support
of (X, a) (value 1) or not (value 0). For convenience, we say
“a c-tuple in ⌘” to mean that the c-tuple is included in the
sub-c-table with index ⌘.
Example 2. Figure 3(b) gives a partition of the c-table
relc(C) in Figure 3(a). The partition has only one sub-c-
table ⌘1 with all 4 tuples in relc(C). Thus each domain value
has at most one bit c-support, e.g. (Y, c) has one bit c-support
(⌘1, 0110) in Figure 3(c). The value (⌘1, 0110) means that
the second and third c-tuple in ⌘1 are (Y, c)’s c-supports.

4.1 Maintaining GAC on bit c-table during search
We now give the STRbit-C GAC algorithm which works on
bit c-tables. As with STRbit (Algorithm 1), STRbit-C is
also composed of two functions: deleteInvalidCTuple(C)
to delete invalid c-tuples and searchSupport(C) to seek
supports for literals. A c-tuple is valid iff at least one
ordinary tuple of the c-tuple is valid; otherwise it is in-
valid. Function searchSupport(C) is the same as STRbit
but deleteInvalidCTuple(C) is different due to differences
in how invalid c-tuples are deleted.

The data structures of STRbit-C is similar to STRbit.
VAL(C, ⌘) represents the validity of c-tuples in ⌘, and a sub-
c-table ⌘ is valid iff VAL(C, ⌘) 6= 0. BIT SUP(C,X, a) rep-
resents a set of bit c-supports of literal (X, a) (array). Then
we use three additional data structures:

• CDENSE[C] is a set of index of valid sub-c-tables for
constraint C, CDENSE.size is the size of CDENSE[C].

• restoreC is a stack recording old data of CDENSE[C]
to restore information when backtrack happens.

790

Instances # STRbit STRbit-C STR2 STR2-C STR3 STR3-C MDDc L/L
bit

L
c

/L
bitc

L/L
c

L/L
bitc

avgP L L
c

R

rand-3 50 16.74 12.15 52.56 31.54 41.12 38.95 29.18 6.25 12.30 2.35 28.92 0.0567 8K 3K
rand-3-fcd 50 8.50 6.09 29.05 15.77 20.93 19.63 14.77 6.25 12.30 2.35 28.92 0.0573 8K 3K
rand-8 20 8.43 9.18 8.20 10.40 93.85 94.52 13.78 22.11 22.76 1.54 35.00 0.0018 624K 406K
rand-5-8X 26 70.88 19.71 416.36 112.70 467.80 226.85 19.43 13.01 23.62 3.35 79.15 0.0075 497K 148K
rand-5-4X 50 6.85 5.10 61.22 33.92 29.38 26.69 8.68 11.28 15.93 2.54 40.41 0.0406 248K 98K
rand-5-2X 50 1.97 2.64 10.02 11.35 5.22 8.02 4.23 10.62 11.80 1.79 21.09 0.0911 124K 69K
rand-5 50 2.02 3.58 21.90 30.43 4.77 10.57 15.36 8.77 9.18 1.34 12.29 0.2379 62K 46K
rand-10-60 31 12.71 22.18 141.81 268.66 40.51 130.40 29 time-out 4.32 4.34 1.00 4.34 0.2637 512K 511K
dag-rand 25 12.39 18.38 9.86 21.82 198.44 217.87 72.69 29.65 29.99 1.04 31.07 0.0014 2M 2M
half 16 70.46 36.99 233.32 98.07 9 time-out 242.75 57.69 22.15 25.90 5.65 146.28 0.0059 277K 49K
MDD0.7 6 32.08 11.93 392.67 44.96 382.38 63.29 20.56 22.11 26.98 12.42 335.06 0.0197 273K 22K
MDD0.9 9 3.78 2.22 53.40 3.61 30.82 3.92 2.80 22.11 28.25 34.53 975.32 0.0675 273K 7K
bdd-small 35 2.30 2.23 3.21 4.68 17.18 18.00 11.27 40.99 41.86 1.25 52.49 0.0385 1M 829K
bdd-large 35 3.09 3.07 8.70 9.41 42.68 41.43 30.75 38.13 39.01 1.24 48.41 0.0421 103K 83K

S

golombR 16 42.04 30.12 50.04 152.53 70.93 47.60 31.46 6.62 30.20 5.54 167.46 0.0206 566K 103K
uk 29 2.16 2.65 7.29 13.45 6.64 8.16 45.83 5.59 5.42 1.16 6.34 0.1806 105K 92K
ogd 29 0.98 1.39 9.70 33.96 4.89 8.46 27.26 7.52 7.09 1.25 8.92 0.2249 199K 165K
lex 40 0.84 0.82 1.76 2.68 1.68 1.84 6.39 4.48 4.44 1.06 4.77 0.1064 12K 12K
words 40 2.40 2.73 6.35 10.03 5.74 6.08 24.76 5.27 5.18 1.11 5.77 0.1181 26K 24K
lemma 9 10.79 10.61 15.46 11.53 30.91 20.89 11.80 9.73 13.51 2.36 31.92 0.077 957 405
modR 50 7.28 6.74 17.58 18.12 17.24 18.04 18.01 12.57 10.06 22.60 227.56 0.0396 12K 542
cril 1 3.48 3.07 4.69 3.21 6.07 3.16 3.65 29.69 14.88 43.70 650.31 0.0563 12K 284
allInter 11 15.02 15.63 16.28 16.52 16.58 16.69 15.98 5.30 5.35 1.18 6.32 0.0603 379 321
tsp-20 15 1.49 1.69 1.20 1.51 1.77 2.14 1.61 1.55 1.55 1.00 1.55 0.002 41K 41K
tsp-25 15 14.90 16.38 12.48 14.71 17.73 19.75 16.28 1.55 1.56 1.00 1.56 0.0021 41K 41K

M

aim-100 17 49.08 50.68 48.78 54.49 48.85 48.13 43.68 3.47 2.24 1.55 3.47 0.4967 20 13
aim-200 8 52.76 57.81 49.74 50.28 53.51 50.87 42.21 3.48 2.24 1.55 3.48 0.7299 20 13
aim-50 24 0.18 0.17 0.18 0.16 0.16 0.17 0.16 3.47 2.23 1.55 3.47 0.4549 20 13
dubois 5 183.67 181.25 175.90 203.01 173.17 176.09 167.12 2.00 2.00 1.00 2.00 0.283 12 12

MC

cc 8 53.85 56.56 61.99 61.73 59.26 53.26 46.08 9.14 4.01 2.58 10.35 0.4441 88 34
ramsey 5 6.24 6.30 7.68 7.77 6.65 5.66 5.91 11.29 3.80 2.97 11.29 0.3745 115 38
jnh 50 0.49 0.51 0.63 0.47 0.62 0.51 0.51 30.93 6.04 12.58 76.05 0.2736 787 62
ii 10 12.51 6.98 1 time-out 6.69 1 time-out 6.73 6.50 42.47 10.84 458.13 5K 0.2704 78K 170
PH-k-j 9 2.69 2.18 39.58 2.31 13.01 2.01 2.52 19.81 1.00 84K 84K 0.2363 4M 48

Table 1: Mean results of GAC algorithms. “cc”, “modR”, “lemma”, “golomb”, “uk, ogd, lex, words” and “allInter” stand for “chess-
boardColoration”, “renault and renault-mod”, “Schur’s lemma”, “golomb ruler”, “crosswords-uk, ogd, lex, words” and “all interval series”.

• BUFF is a set of bit vectors for computing the validity
of c-tuples.

If a c-tuple ⌧c in sub-c-table ⌘ is valid, then for each
variable X in scp(C), there must be a valid literal (X, a)
and a bit c-support (⌘,mask) 2 BIT SUP(C,X, a) such
that the corresponding bit in VAL(C, ⌘) & mask for ⌧c
((VAL(C, ⌘) & mask)[⌧c]) is value 1. This means that the
set of valid c-tuples for constraint C equals

T
X2scp(C)

S
a2dom(X)

S
(⌘,mask)2BIT SUP(C,X,a)

 (⌘,mask)

where (⌘,mask)={⌧c 2 ⌘ |(VAL(C, ⌘) & mask)[⌧c] = 1}.
At line 1, if DEL(C,X) = ;, no literal has been deleted
after the last invocation of deleteInvalidCTable(C), so
variable X can be skipped. Otherwise, for each value
a 2 dom(X) and bit c-support BIT SUP(C,X, a)[i] such
that i 2 [0, LAST(C, X, a)], BIT SUP(C,X, a)[i].mask is
recorded in BUFF at line 2 and line 3 (bitwise OR). Then for
each ⌘ 2 CDENSE[C], VAL(C, ⌘) is updated by the bitwise
AND operation of VAL(C, ⌘) and BUFF[⌘] between lines 4
and 5. In addition, ⌘ will be deleted from CDENSE[C] if
VAL(C, ⌘) equals 0 (line 6).

4.2 Complexity analysis
Similar to STRbit, the time cost of STRbit-C along a path in
search tree depends on the number of bit c-supports in bit c-
table. We use Lbitc to represent the number of bit c-supports
in a c-table.
Theorem 2. The accumulated time cost of r-arity constraint
C in STRbit-C along a single path of length m in the search
tree is O(dLbitc + r2d2 +m).

The proof is similar to Theorem 1 and omitted here.

5 Experiments
We evaluate STR2, STR3, STR2-C, STR3-C, MDDc, STR-
bit and STRbit-C in the Abscon [Merchez et al., 2001] solver.
Our implementation uses 64-bit numbers (long Java type) so
w = 64 and partitions the table in lexico order. In addition,
we extract the c-table from the MDD. Experiments are run
on a 3.40 GHz Intel core i7 processing on Linux, and all al-
gorithms use the dom/ddeg variable ordering heuristic and
lexico value ordering heuristic. Timeout is 600 seconds. We
consider classical series instances1, the series2 introduced in
STR2-C, and the PH-k-j series used in STR3 (896 instances).

Table 1 gives the mean runtime (in seconds) of 7 algorithms
on different benchmarks. The column # gives the number of
instances in each series. L (Lc) is the mean number of literals
in the standard tables (c-tables), and Lbit (Lbitc) is the mean
number of bit supports (bit c-supports) in the bit tables (bit
c-tables). The columns L/Lbit, Lc/Lbitc, L/Lc and L/Lbitc

represent the corresponding compression ratio. The column
avgP (from the STR3 evaluation [Lecoutre et al., 2012]) is
the mean ratio of “the number of tuples in the current stan-
dard table during search” to “the number of tuples in the ini-
tial standard table” during search. In addition, we divide the
benchmarks into 4 groups: R for random benchmarks; S for
structured; M for the instances with a small average table size
(L < 50); and MC for small c-table sizes (Lc < 200).

1http://www.cril.univ-artois.fr/%7Elecoutre/benchmarks.html
2http://www.comp.nus.edu.sg/%7Exiawei/STRC-benchmarks/

791

 0.5

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32 64

sp
ee

du
p

L/Lbit

STR3/STRbit

(a) STR3 vs STRbit

 0.5

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32 64

sp
ee

du
p

Lc/Lbitc

STR3-C/STRbit-C

(b) STR3-C vs STRbit-C

 1

 10

 100

101 102 103 104 105 106 1

sp
ee

du
p

L/Lbitc

STR3/STRbit-C

(c) STR3 vs STRbit-C

 0.1

 1

 10

3 0.1 1 10 100 1000 10000

sp
ee

du
p

Lbit/Lbitc

STRbit/STRbit-C

(d) STRbit vs STRbit-C

 1

 10

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

sp
ee

du
p

avgP

STR2/STRbit

(e) STR2 vs STRbit

 1

 10

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

sp
ee

du
p

avgP

STR2-C/STRbit-C

(f) STR2-C vs STRbit-C

 0.1

 1

 10

 100

 0.1 1 10 100

ST
Rb

it

MDDc

(g) STRbit vs MDDc

 0.1

 1

 10

 100

 0.1 1 10 100

ST
Rb

it-
C

MDDc

(h) STRbit-C vs MDDc

Figure 4: Comparison between different algorithms.

For benchmarks in groups R, S and MC, STRbit is faster
than STR3 and the compression ratio L/Lbit is large. For
example, in the MDD0.7 and MDD0.9 series, L/Lbit > 20
so STRbit can be 10X faster than STR3. STRbit is also faster
than STR2 on most series except the ones with low avgP . We
highlight the effect of the avgP factor which measures the av-
erage reduced table size (by tabular reduction) during search.
For example, on the tsp-20, tsp-25, rand-8 and dag-rand se-
ries, avgP < 0.004 so STRbit is a little slower than STR2 but
still faster than STR3 (for dag-rand it is 16X faster). While for
the rand-10-60 series, avgP > 0.2, so STRbit can be faster
than STR2 by an order of magnitude. Similarly, on most se-
ries in the R and S group, STRbit-C is faster than STR2-C
and STR3-C and MDDc. The instances in the M group have
small average table sizes, so fixed costs (data structure ini-
tialization, restoration, etc.) during search can dominate. The
MDDc algorithm, which maintains only one sparse set dur-
ing search, is fast on these instances, while STRbit is close to
STR2 and STR3. In addition, on the series in the MC group,
the compression of c-table makes the size small (< 200),
hence the time cost of STRbit-C is close to STR2-C, STR3-C
and MDDc on these series.

In Figure 4, we present scatter plots comparing the speedup
of STRbit and STRbit-C with various factors. Every dot in
these graphs corresponds to an instance. For Figures 4(a),
4(b), 4(c), 4(d), 4(e) and 4(f), we avoid some “noise” by re-
moving the instances solved within 0.5 second (the slowest
algorithm) and the series in M . We also omit the series in
MC for Figures 4(b) and 4(f), because the size of the c-table
is very small. Figures 4(a), 4(b), 4(c) and 4(d) depict the
impact of compression ratio on the performance of STRbit
and STRbit-C. As we can see, when the compression ratios
L/Lbit, Lc/Lbitc and L/Lbitc increase, STRbit (STRbit-C)
can be up to 25X (80X) faster than STR3, while STRbit-C
can be up to 27X faster than STR3-C. In addition, STRbit-C
is faster than STRbit on most instances when Lbit/Lbitc � 3.

On many instances, the STRbit (STRbit-C) compression ra-
tios are larger than the speed up, we believe it is due to the
initialization times and other costs during search. Further-
more, the ratio is only an estimate as the true compression
ratio varies dynamically due to tabular reduction. Figures
4(e) and 4(f) show the effect of avgP . When avgP is small
(< 0.004), STRbit (STRbit-C) may be a little slower than
STR2 (STR2-C), but when avgP is larger, STRbit (STRbit-
C) can be up to 70X (40X) faster than STR2 (STR2-C). Fig-
ure 4(g) and 4(h) compare STRbit and STRbit-C with MDDc
using all series in Table 1. These two graphs show that our
algorithms are faster than MDDc on most instances.

6 Conclusion
In this paper, we introduce new table representations, bit table
and bit c-table. Then we propose two algorithms to maintain
GAC during search on bit table and bit c-table. Experiments
show that our algorithms outperform the state-of-the-art GAC
algorithms STR2, STR3 and MDDc and for compressed ta-
bles also STR2-C and STR3-C. Previous work has shown a
dichotomy for STR algorithms: (i) in tables where the tabular
reduction is strong, small avgP, STR2 is very effective; (ii) but
when the tables reduce less, larger avgP, then STR3 performs
better. Our STRbit algorithms significantly narrow this gap
and the benchmarks show that STRbit is more efficient than
STR2 and STR3 in most cases even when the reduction rate
is small. This suggests that STRbit algorithms can replace the
combination of STR2 and STR3.

Recently, the algorithmic framework of STR has been ex-
tended in other directions. For example, the factor encoding
[Likitvivatanavong et al., 2014; 2015] adapts better to STR-
based algorithms than MDD-based algorithms. The GIC4 al-
gorithm [Bessiere et al., 2013] enforcing global consistency
for configuration problem also uses STR-based algorithms.
There is potential for our algorithms along these directions.

792

References
[Bessiere et al., 2013] Christian Bessiere, Héléne Fargier,

and Christophe Lecoutre. Global inverse consistency for
interactive constraint satisfaction. In Proceedings of the
19th International Conference on Principles and Practice
of Constraint Programming, pages 159–174, 2013.

[Cheng and Yap, 2010] Kenil Cheng and Roland H. C. Yap.
An MDD-based generalized arc consistency algorithm for
positive and negative table constraints and some global
constraints. Constraints, 15(2):265–304, 2010.

[Demeulenaere, 2015] Jordan Demeulenaere. Efficient algo-
rithms for table constraints. Master’s thesis, UCLouvain,
2015.

[Gharbi et al., 2014] Nebras Gharbi, Fred Hemery,
Christophe Lecoutre, and Olivier Roussel. Sliced ta-
ble constraints: Combining compression and tabular
reduction. In Proceedings of the 11th International
Conference on Integration of Artificial Intelligence
and Operations Research techniques in Constraint
Programming, pages 120–135, 2014.

[Guo et al., 2011] Jinsong Guo, Zhanshan Li, Yonggang
Zhang, and Xuena Geng. MaxRPC algorithms based on
bitwise operations. In Proceedings of the 17th Inter-
national Conference on Principles and Practice of Con-
straint Programming, pages 373–384, 2011.

[Jefferson and Nightingale, 2013] Christopher Jefferson and
Peter Nightingale. Extending simple tabular reduction
with short supports. In Proceedings of the 23rd Interna-
tional Joint Conferences on Artificial Intelligence, pages
573–579, 2013.

[Katsirelos and Walsh, 2007] George Katsirelos and Toby
Walsh. A compression algorithm for large arity exten-
sional constraints. In Proceedings of the 13th International
Conference on Principles and Practice of Constraint Pro-
gramming, pages 379–393, 2007.

[Lecoutre and Vion, 2008] Christophe Lecoutre and Julien
Vion. Enforcing arc consistency using bitwise operations.
Constraint Programming Letters, 2:21–35, 2008.

[Lecoutre et al., 2012] Christophe Lecoutre, Chavalit Likit-
vivatanavong, and Roland H. C. Yap. A path-optimal
GAC algorithm for table constraints. In Proceedings of
the 20th European Conference on Artificial Intelligence,
pages 510–515, 2012.

[Lecoutre et al., 2015] Christophe Lecoutre, Chavalit Likit-
vivatanavong, and Roland H. C. Yap. STR3: A path-
optimal filtering algorithm for table constraints. Artificial
Intelligence, 220:1–27, 2015.

[Lecoutre, 2011] Christophe Lecoutre. STR2: optimized
simple tabular reduction for table constraints. Constraints,
16(4):341–371, 2011.

[Likitvivatanavong et al., 2014] Chavalit Likitvivatanavong,
Wei Xia, and Roland H. C. Yap. Higher-order consisten-
cies through GAC on factor variables. In Proceedings of
the 20th International Conference on Principles and Prac-
tice of Constraint Programming, pages 497–513, 2014.

[Likitvivatanavong et al., 2015] Chavalit Likitvivatanavong,
Wei Xia, and Roland H. C. Yap. Decomposition of the
factor encoding for CSPs. In Proceedings of 24th Inter-
national Joint Conference on Artificial Intelligence, pages
353–359, 2015.

[Mackworth, 1977] Alan K. Mackworth. Consistency in net-
works of relations. Artificial intelligence, 8(1):99–118,
1977.

[Merchez et al., 2001] Sylvain Merchez, Christophe
Lecoutre, and Frédéric Boussemart. Abscon: A prototype
to solve csps with abstraction. In Proceedings of the 7th
International Conference on Principles and Practice of
Constraint Programming, pages 730–744, 2001.

[Perez and Régin, 2014] Guillaume Perez and Jean-Charles
Régin. Improving GAC-4 for table and MDD con-
straints. In Proceedings of the 20th International Confer-
ence on Principles and Practice of Constraint Program-
ming, pages 606–621, 2014.

[Ullmann, 2007] Julian R. Ullmann. Partition search for
non-binary constraint satisfaction. Information Sciences,
177:3639–3678, 2007.

[Ullmann, 2010] Julian R. Ullmann. Bit-vector algorithms
for binary constraint satisfaction and subgraph isomor-
phism. Journal of Experimental Algorithmics, 15:1–6,
2010.

[Xia and Yap, 2013] Wei Xia and Roland H. C. Yap. Opti-
mizing STR algorithms with tuple compression. In Pro-
ceedings of the 19th International Conference on Princi-
ples and Practice of Constraint Programming, pages 724–
732, 2013.

793

