Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

Planning with Task-Oriented Knowledge Acquisition for a Service Robot

Kai Chen,'* Fangkai Yang,>! and Xiaoping Chen?*
1.3School of Computer Science and Technology, University of Science and Technology of China
96 Jinzhai Rd, Hefei, Anhui, 200027, China
1chk0105 @mail.ustc.edu.cn, 3xpchen@ustc.edu.cn
2 Katy Drilling Software Center, Schlumberger Software Technology, Schlumberger Ltd.
23500 Colonial Parkway, Katy, TX, 77493, USA
fyang10@slb.com

Abstract

We propose a framework for a service robot to
behave intelligently in domains that contain in-
complete information, underspecified goals and dy-
namic change. Human robot interaction (HRI),
sensing actions and physical actions are uniformly
formalized in action language BC. An answer set
solver is called to generate plans that guide the
robot to acquire task-oriented knowledge and ex-
ecute actions to achieve its goal, including interact-
ing with human to gather information and sensing
the environment to help motion planning. By con-
tinuously interpreting and grounding useful sensing
information, robot is able to use contingent knowl-
edge to adapt to unexpected changes and faults.
We evaluate the approach on service robot Ke-
Jia that serves drink to guests, a testing bench-
mark for general-purpose service robot proposed
by RoboCup@Home competition.

1 Introduction

Research on domestic service robots has received increasing
attention in recent years. A domestic service robot scenario
combines the research on autonomous robots, human-robot
interaction (HRI), computer vision, motion control and auto-
mated planning. Typical tasks of a domestic service robot in-
clude taking orders and serving drinks, welcoming and guid-
ing guests, or just cleaning up [Wachsmuth ez al., 2015]. To
measure and compare the performance of such robotics sys-
tem, starting 2006, RoboCup@Home, a part of RoboCup ini-
tiative (www.robocup.org), defines a series of tests and one of
the most challenging tests is General-Purpose Service Robot
(GPSR). An operator verbally specifies a complex, usually
partially defined task to the robot that may request any skill,
for instance, “serve Pepsi to Alice”. The robot, which only
has brief knowledge about the domain, needs to perform it,
report any problems, adapt to unexpected changes and find
alternative solutions.

*This work is supported by the National Natural Science Foun-
dation of China under grant 61175057.
"Corresponding author.

812

Automated planning has been widely used for task plan-
ning and control in many service robot applications. This
approach typically uses a declarative domain representation
coupled with a general-purpose planner that produces a se-
quence of actions for the robot to execute, while fault recov-
ery is usually handled by execution monitor and replanning.
They usually assume a fully specified, static and predictable
environment, which, however, generally does not hold for
GPSR domains. Approaches of using effective HRI and sens-
ing to facilitate planning under incomplete information and
uncertainty have also been proposed.

In this paper we are interested in developing a service
robot whose task planning integrates task-oriented knowledge
acquisition. We believe acquiring task-relevant knowledge
proactively in the context of specific planning problem will
lead to a more robust service robot facing incomplete do-
main, uncertainty and faults. We particularly focus on three
kinds of knowledge. (i) Domain knowledge. The robot only
has limited amount of information about the domain or re-
ceives underspecified goal. In order to perform its task to
serve Pepsi whose location is unknown, the robot needs to
figure out that “location” is a piece of missing information
(instead of “color”, for example, in this specific plan), and
acquires it by asking human. (ii) Control knowledge. When
the robot is facing a dining table and about to pick up Pepsi,
it will measure the distance of the object to determine if it
should move closer, adjust its gripper, or simply fetch. The
robot needs to figure out at planning time that the distance
of objects may affect its manipulation strategy. (iii) Contin-
gent knowledge. Throughout performing the task, the robot
should continuously observe the environment, gather useful
information, enrich its knowledge and adapt to the change.
This is particularly important because the objects in domestic
environment keep changing and the information provided by
human can be vague or erroneous. Consequently, the robot
has to start from a partial, incomplete and unreliable domain
representation to generate plans to gather more information,
in order to achieve its goal.

Planning with sensing actions and HRI has been addressed
separately by different approaches. A service robot system
involves complex skills such as speech, vision, navigation and
object manipulation. Is there a uniform way to treat HRI,

sensing and the robot’s physical actions together in a for-
mal representation and the classical “plan-execute-monitor-
replan” loop? In this paper, we propose such a framework
and use it to control a service robot to robustly serve people
drinks in dynamic and changing domains. Our method fea-
tures three novelties:

e First, we propose a general modeling methodology of
using BC [Lee et al., 2013], an action language based on
answer set programming [Lifschitz, 2008] that formal-
izes transition graphs, to represent the world state, the
robot’s belief state and how they are affected by HRI ac-
tions, sensing actions and physical actions. Once a goal
is given, even if it is underspecified, the plan includes
proper HRI and sensing actions to achieve the goal.

Second, to acquire and interpret interested contingent
information and adapt to changing environment in real
time, we add a continuous observation mechanism to the
execution loop to acquire contingent knowledge. Sens-
ing modules continuously update the robot’s belief state
based on sensing results. The robot performs reasoning
to validate current plan in presence of the new informa-
tion, and make adjustment if needed. Contingent knowl-
edge also helps subsequent tasks because the robot gets
more information about the domain from each task.

Third, adding HRI and sensing to the plan execution
loop introduces the challenge of grounding execution re-
sults into “epistemic states”. For instance, when Alice
said “the Pepsi is in the kitchen” while the robot actu-
ally found it unreachable, or simply did not find it, how
should we represent this state symbolically? What is
the state to represent the belief when an object that the
robot detected earlier was later found disappeared? We
demonstrate how we handle symbol grounding for vari-
ous realistic situations with unexpected change.

ASP-based language BC allows both domain knowledge and
effects of actions to be represented altogether in uniform se-
mantics. Different kinds of reasoning and planning tasks can
all be supported by calling efficient answer set solvers. The
framework is implemented and tested in robot KeJia [Chen
et al., 2014], the champion of RoboCup@Home competition
in 2014 and 2nd in 2015, reaching architectural simplicity,
technical soundness and more robustness in GPSR domains.

After reviewing related work, we present an overview of
the architecture in Section 3. We explain domain formal-
ization and control loop for plan execution and continuous
sensing in Section 4, with details about continuous sensing
presented in Section 5 and action controller in Section 6. The
experiment results are shown in Section 7 and the paper is
concluded in Section 8.

2 Related Work

State machine [Bohren and Cousins, 2010; Srinivasa et al.,
2012] is a classical method to implement domestic service
robots. It generally requires all steps to accomplish the goal
be specified and known beforehand. For more complex do-
main, the state machine can be highly complex and diffi-
cult to scale. For this reason, a general-purpose task plan-

813

ner with a domain formalization becomes a common compo-
nent for many service robot applications [Chen et al., 2010;
Erdem et al., 2012; Hanheide et al., 2015]. In particular, ac-
tion language BC has been used in a few applications [Khan-
delwal et al., 2014; Thomason et al., 2015].

Methods of HRI and planning with sensing actions can ad-
dress incomplete information and have been developed from
separate communities. [Puigbo er al., 2015; Thomason et al.,
2015] implemented HRI as a part of natural language pro-
cessing (NLP) module of the robot, in which the semantic
parser decided which information to collect from the user dur-
ing utterance interpretation. It has been proposed that task-
oriented HRI can be achieved by combining HRI with plan-
ning directly. Those methods include using planning to inter-
pret utterance and translate it into proper goal representation
[Brenner er al., 2007; Brenner, 20071, extending planning al-
gorithm [Brenner and Nebel, 2009], or directly representing
HRI actions using action language [Khandelwal er al., 2014;
Petrick and Foster, 2013]. Planning with sensing actions has
been investigated under different semantics and specific plan-
ning algorithms [Son and Baral, 2001; Petrick and Bacchus,
2002; Son et al., 2004; Hoffmann and Brafman, 2005]. Par-
tially inspired by [Khandelwal et al., 2014], we propose a
uniform treatment of HRI, sensing and physical actions, and
significantly simplify the complexity of implementing a ser-
vice robot with many different skills. The plan generated
from an incomplete domain representation is similar to a con-
tingent plan [Hoffmann and Brafman, 2005], but it is not a
complete tree structure of exponential size that captures all
possible outcomes of sensing and HRI actions. Instead, it is
the shortest of all plans that satisfies the goal for a possible
initial state.

Automated planning has been used to implement robot ma-
nipulators [Dearden and Burbridge, 2013; Havur et al., 2013;
Srivastava et al., 2014]. These work focus on the integra-
tion of a symbolic planner with motion control with numeric
states, and generally assume complete knowledge of the do-
main. One exception is [Srivastava er al., 2015], in which
plan with loops can be generated to accommodate unknown
information at planning time. By comparison, our approach
utilizes execution monitor and replanning, a common control
loop for a knowledge-based robot architecture.

3 Framework Overview

Shown in Figure 1, domain formalization in BC represents
type hierarchy, domain objects and causal laws. The causal
laws formalize effects of physical actions, HRI actions and
sensing actions on fluents that represent world state and the
robot’s belief state. Initial domain objects are minimal and
are enriched when new information is discovered. Human
operator verbally specifies a goal which is translated by the
semantic parser into the goal representation. The robot uses
its sensor to obtain available world state and initialize its be-
lief state. They constitute of the initial current state of a plan-
ning problem. After that, the planner, which is actually an
answer set solver, is called to generate a plan that consists
of a sequence of actions, and a sequence of states before and
after the execution of each action.

Current State Domain Representation
- Set —
Solver

|

Execution Controller
l continuous observation

Robot Interface
[[| [sam] [etoncomt]

sLam
Navigation

]

execution monitor |

SPRTTS
NLP

3D Vision
Module

HW
drivers

Figure 1: The architecture overview

Actions and states are sent to the execution controller. Ex-
ecution monitor and continuous observation start simulta-
neously. Continuous observation constantly receives inputs
from robot interface that senses domain information, grounds
sensing inputs into symbols and updates current state. If up-
date happens, it triggers a background verification process to
validate current plan, by calling answer set solver to perform
temporal projection reasoning, and sets replan flag if valida-
tion fails. Execution monitor sends action commands to con-
trollers in robot interface too, which operates hardware to per-
form actions and returns grounded HRI, physical, and sensing
results. Execution monitor compares the results with the ex-
pected state. If discrepancy is detected, it calls for replan.

Action controllers in robot interface directly operate low-
level functional modules. Functional modules generally rep-
resent domain information in numerical states, and symbolic
states are obtained through symbol grounding policies. It is
crucial to maintain a correct mapping between low-level nu-
merical states and high-level symbolic states for the robot to
behave consistently and correctly.

4 Domain Formalization and Plan Execution

We present a general methodology and examples of repre-
senting a domestic environment with rooms, furniture, drink
and people in which a service robot serves people drinks, a
typical GPSR testing domain in RoboCup competitions. Ini-
tially Alice may request service by saying “bring me Pepsi”.
The robot has no knowledge about the object locations, so
it may ask “where is the Pepsi”. Alice may tell the robot a
specific location “on the dining table”, a vague location “in
the dining room”, an erroneous location “on the cabinet”, or
simply say “I don’t know”. The robot utilizes this informa-
tion to find Pepsi, grasp it, put it in the basket, and bring it to
Alice. The robot needs to adapt to changing environment and
recover from various software and hardware failures.

4.1 Formalization in BC

Domain knowledge consists of (i) types, relations, objects
and (ii) causal laws that formalize the transition system.
Causal laws are divided into static laws, which describe how
the value of a fluent is determined by other fluents, and dy-

814

namic laws, which describe how the values of the fluents
change from one state to another.

Types. We use a rigid (time-independent) fluent to denote
type and object membership. For instance, we denote pepsil
is a member of type pepsi by pepsi(pepsil). Type hierar-
chy and relations are formalized using static laws such as
obj(X) if pepsi(X).

Causal Laws. Non-rigid fluents consists of two groups:

e world state is a collection of fluents that represent the
properties of the current world. It is further divided into
definite world state and possible world state. Definite
world state is affected by physical actions, such as mov-
ing affects the location of the robot. Possible world state
represents possible value of an unknown property of an
object. Possible world fluents are justified by belief flu-
ents when actual HRI and sensing occur.

belief state consists of fluents that represent the robot’s
belief. For instance, the robot knows a bottle of coke
is located in the kitchen, or the robot knows an object
is within reachable distance to grasp. Belief state is af-
fected directly by HRI actions and sensing actions. It is
also updated by continuous observation.

The combination of fluents can be used to represent vari-
ous “epistemic states”. For instance, {objloc(pepsil, kitchen),
objloc(pepsil,diningroom), -believeobjloc(pepsil,R)} for all
rooms R means it is possible for pepsil to be in kitchen or
in dining room, but the robot does not know it. They are im-
portant for symbol grounding during continuous observation
and execution (Section 5 and Section 6). Due to space limit,
below we give examples of formalizing HRI actions and sens-
ing actions, as formalizing physical actions using action lan-
guages has been well studied [Khandelwal et al., 2014].

Definite World State: roboloc, ordertaken,
gripperempty, lifted, lifterheight

Possible World State: objloc, at, distance

Belief State: believeobjloc,believeplat,

believedistance,needsearch

Physical Actions: askorder,moveto fetch,
adjustgotopose,adjustpose,setlifterheight,
fetch, liftup, stepback,putinbasket,handover

HRI Actions: askobjloc

Sensing Actions: detplane,checkdistance

Fluents

Actions

Figure 2: List of non-rigid fluents and actions

The robot asks human the location of an object. To formal-
ize askobjloc, a possible world fluent objloc(O,L) denotes the
object O is possible to be at location L and a belief state flu-
ent believeobjloc(0,L) that denotes the “robot believes that”
object O is located at location L. When facing the person P,
by executing action askbojloc(O,P) that asks person P the
location of O, the robot can obtain believeobjloc(O,L) if ob-
jloc(O,L) is possible. It is formalized by

askobjloc(O, P) causes believeobjloc(O, L)
if roboloc(P), objloc(O, L).

When the actual location is not given, there are many pos-
sibilities about the location of an object. Consequently, the

above causal law in practice simulates conditional effect of
an action. Formally studying the modal properties of this par-
ticular representation pattern using BC is, however, beyond
the scope of this paper and is a part of our future work.

During object manipulation, the robot approaches furniture
and detects planes. Known plane heights of different furni-
ture allows the robot to adjust its camera to proper angle for
more accurate object recognition. This action is denoted by
detplane(Pl, F'). We use a pair of fluents: at(Pl, F'), a pos-
sible world fluent that denotes plane P! is possibly on furni-
ture F, and believeplat(Pl, F'), a belief state fluent that de-
notes the robot believes plane P! is on furniture F’:

detplane(Pl, F) causes believeplat(Pl, F) if at(Pl, F),
robotloc(F), believeobjloc(O, F).

The second sensing action for manipulation is checkdis-
tance(O,F). It rotates the camera, identifies and localizes the
object, then calculates the distance relative to the gripper. The
distance can be grounded to prefech (the object can be di-
rectly grasped), distadjust (the robot needs to move closer)
and distgoto (the robot needs to move to another side of the
furniture to grasp). This action is formalized similarly by a
pair of possible world fluent and belief fluent:

checkdistance(O, F) causes believedistance(O, D) if
roboloc(F), lifterheight(Pl), believeat(Pl, F'), distance(O, D).

Based on the distance, the robot can make adjustments (ac-
tions adjustpose to move closer, adjustgotopose to move to
another side of the furniture), or fetch the object (fetch). Be-
sides, we also have static laws that derive fluent values from
other fluent values. They may be recursive in their nature:

believeobjloc(O, R) if believeobjloc(O, F), in(F, R).

believeobjloc(O, P) if believeobjloc(O, robot), roboloc(P). 1)

4.2 Plan Generation and Execution Controller

The main control loop for plan generation and execution is
presented in Algorithm 1. The initial fluent set S for plan-
ning is generated as follows (line 1): (i) fluents that belong
to definite world state are initialized based on robot’s own
sensor inputs; (ii) fluents that belong to belief state are initial-
ized as negated literals, denoting that the robot does not know
anything about them. Possible world state is not specified for
initial state. According to the semantics of BC, this will lead
to all possible worlds to be generated for the initial state that
complement the incomplete information. After that, the robot
goes into a loop that keeps taking orders and serving people.
The robot starts by identifying the person and asking “What
can I do for you, Alice?” Human may reply: “Please bring
me Pepsi.” This sentence is processed by the semantic parser.
The semantic parser is built upon a categorical combinatorial
grammar parser [Xie ef al., 2013] that first translated natural
language instructions into ASP rules. In this case, rules

goal(1) < obtained(O, alice, maxstep), pepsi(O).
< not goal(1).

@)

will be added to goal representation. After a goal is generated,
answer set solver (line 7) is called to generate answer sets us-
ing the union of domain representation D, goal G and initial
fluent set S. In the returned answer set, a sequence of actions

815

and estates that denote expected states before and after exe-
cution of actions are obtained. Following that, continuous ob-
servation loop starts (line 8, see Section 5 for details). From
line 9, the current sequence of actions is sent to execution
(line 14). The sequence of actions may successfully reach the
goal (line 15), or need replan (line 19). For some unrecov-
erable failure or change, the goal may be aborted (line 22).
The details of action execution and result update (line 14) is
explained in Section 6.

Algorithm 1 Main Control Loop

1: Generate initial fluent set S
2: loop
if goal GG is empty then
G < ordertaken(P) from a person P
end if
while current task active do
actions, estates < get_plan(D, G, S)
start background observation loop
if actions # cur_actions then

10: cur_actions < actions

11: action_cursor < 0

12: replan_flag < false

13: end if

14: result < execute_actions(cur_actions, estates)
15: if G € result then

16: mark task as finished

17: break while

18: else if result is REPLAN then
19: continue

20: else

21: mark task as failed

22: break while

23: end if

24: end while

25: end loop

5 Continuous Sensing

Continuous sensing (Algorithm 2) is a mechanism that when-
ever the sensing modules discover new information, they will
ground results and update current state S. It allows the robot
to reduce domain uncertainty at the same time of performing
actions. As a result, the robot can be a lot more adaptive and
robust to a changing domain and unreliable actions.
Continuous observation constantly monitors fluents grip-
perempty, believeplatloc, believeobjloc and believedistance.
Vision module uses 3D Kinect cameras to constantly rec-
ognize planes on the furniture and add facts to S. For
instance, if a new plane is detected from dining table, a
new symbol diningtableplanel is generated, and believe-
plat(diningtableplanel,diningtablel) is added to S. At the
same time, the numerical values denoting the height and loca-
tion of the plane are also stored. The next time when a plane
at similar location is detected, the robot will compare the lo-
cation with the previous one, and recognize it as diningtable-
planel to avoid duplicates. Similarly, the vision module rec-
ognizes different kinds of drinks and their locations, gener-
ates symbols and adds grounded facts using fluent believeob-
Jjloc to update S. Once the object is identified, its distance

may be calculated. Based on a predefined interval, the calcu-
lated distance is classified into prefetch, distgoto, and distad-
Jjust. The symbolic distance information is added to S using
fluent believedistance. However, there are two extra cases to
handle. The first case is when an object (e.g. pepsil) is iden-
tified on the dining table but not within reach for the robot.
According to our semantics of fluents, this result maps to flu-
ents {—believedistance(pepsil, D), —distance(pepsil, D)}
where D be prefetch, adjustdist and adjustgoto. Note that
{—believedistance(pepsil, D)} is not sufficient to represent
this state, becaue it means the distance of pepsi is unknown
(this is how we set the initial state, see Section 4.2). The
second case is when vision module does not recognize any
pepsil when the robot is looking for it. In addition to setting
the above fluents, believeobjloc(pepsil,diningtablel) is set
to false as well. This negative literal indicates the robot aban-
dons the information believeobjloc(pepsil,diningtablel) that
is obtained from human or continuous sensing. New plan may
involve searching from nearby places or asking person again.

These facts enrich the knowledge about the domain and
help the robot to find better plans. It should be noted that
object recognition algorithm used by the vision module can
more reliably identify objects if the robot is not moving. So
if the robot believes an object is at certain location, while con-
tinuous observation does not recognize it, it will not update
the robot’s belief by removing believeobjloc fluent for this
object, because it may be a false negative.

Fluent values may be derived from other fluents by
static laws such as (1). When continuous observation
sets believeobjloc(pepsil,diningtablel) to be true, believeob-
Jjloc(pepsil,diningrooml) needs to be added to S too. It
can be derived by cautious reasoning with believeob-
jloc(pepsil,diningtablel) and static laws of D using answer
set solver (Line 5). Cautious consequence of an answer set
program is the intersection of all answer sets. In some answer
set solver such as CLASP [Gebser et al., 2012], it is supported
by using a command-line option —e cautious.

Every time when S is updated, robot verifies if the cur-
rent plan is still the best one in presence of the new informa-
tion (Line 6-9). A previous plan may easily become invalid,
because, for instance, an object to retrieve disappears unex-
pectedly or the gripper fails to grasp the object. To validate
the current plan, we perform a temporal projection reasoning
[Lee er al., 2013, Section 7] by projecting the end result of
executing the remaining actions of the current plan in pres-
ence of the new information. If the goal is satisfied in the
projected result and a shorter plan is not found, it means the
current plan is still the best. Otherwise, a flag indicator for
replan is set, and the current plan is aborted.

6 Execution Monitor and Action Controllers

Execution monitor dispatches action commands to corre-
sponding controllers in robot interface for execution. Con-
trollers operate hardware and, like in continuous observation,
ground and return symbolic results (Algorithm 3). The con-
trollers send low-level control commands to corresponding
functional modules (Line 6). In case of fetch, motion plan-
ner generates motion trajectories. For HRI action askobjloc,

816

Algorithm 2 Observation Loop

1: maintains a full set of observation fluents OBS
2: loop
update OBS from observation
if OBS changed then
update S by cautious(OBS, D)
if —werify_plan(cur_actions, G, S) or exist a shorter plan
then
7 replan_flag < true
8: end if
9: endif
0: end loop

AR AN

1

speech module synthesizes voice and speaks to a person. For
sensing action checkdistance, the controller is the same used
in continuous observation. The current action may be aborted
(Line 9) due to continuous sensing.

When action execution finishes, its full effect is derived
through symbol grounding and cautious reasoning (Line 12).
Symbol grounding is controller-specific. Manipulation tasks
such as fetch is successful when the arm and gripper success-
fully move along all trajectories and pressure sensor indicates
an object is grasped. For HRI action askobjloc, it may be
grounded to atoms like believeobjloc(pepsil,diningrooml))
for vague information, believeobjloc(pepsil,diningtablel))
for precise information, or needsearch(pepsil) when human
answers “I don’t know”’; then the robot can search every fur-
niture for Pepsi. Symbol grounding for sensing actions is
handled the same way as in continuous observation. The ex-
ecution result is compared with expected state to determine if
replan is needed (Line 14) or goal is achieved (Line 16).

Algorithm 3 Execution Monitor

Require: cur_actions, estates

1: for action_cursor = 0 to length(cur_actions) — 1 do
2: if replan_flag is true then
3: return REPLAN
4: endif
5: active_action < cur_actions|action_cursor]
6: start executing active_action
7: while active_action is running do
8: if replan_flag is true then
9: abort active_action
10: end if
11: if active_action finished then
12: res <— cautious(ground_result(active_action), G)
13: update S by res
14: if conflicts(res, estate) or REPLAN then
15: return REPLAN
16: else if G € res then
17: return G
18: end if
19: end if
20: end while
21: end for

7 Experiment and Evaluation

The presented framework is implemented in KeJia. Kelia
(Figure 3(a)) is equipped with a wheeled mobile base, a sin-

(<) Object recognition

(a) Robot hardware

Figure 3: The robot hardware, SLAM generated map and vi-
sion

gle 5-Degree-of-Freedom arm, a microphone, 2D laser range
finder, Microsoft Kinect and a high-resolution camera. Lower
level modules include motion control which drives the mo-
bile base and arm, 2D SLAM and navigation module (Fig-
ure 3(b)), 3D vision to recognize and localize furniture planes
and pre-trained objects such as water, Pepsi, vitamin drink
and apple juice (Figure 3(c)). Our system is implemented as
a node in ROS (Robot Operating System) network. It sub-
scribes all necessary information (hardware feedbacks, robot
pose, recognized objects, etc.) and publishes control mes-
sages (navigate to some location, turn on object recognition
function, etc.) which affect the behavior of the robot.

Such robot is constantly affected by uncertainties: per-
ception errors (e.g. error in localization and recognized
object positions, false positives and low recognition rates),
HRI uncertainties (vague/erroneous information from hu-
man), changing environment (recognized object removed by
human), and hardware malfunction (e.g. arm stuck during
grasping). Since initially drinks and their locations are un-
known to the robot and there are so many changing factors,
it is extremely important for the robot to constantly gather
domain information using HRI and sensing, adapt to change
and recover from failure. In experiment we use CLASP as
our answer set solver, and serving one person typically need
the robot to execute 9—12 actions. Our demo video (https:
/lyoutu.be/zoKNFozIFPk) shows 7 consecutive tasks in one
trial how robot responds to so many challenges.

Scenario 1. Alice requested water. The robot started by ask-
ing Alice the location. Alice offered vague information: in
the dining room. The robot started searching in dining room
by visiting the end table first. On the end table, there were
Pepsi and water. However, due to unreliable vision, the robot
recognized them to be water, and brought one to Alice.
Scenario 2. Bob requested Pepsi. Since the robot didn’t rec-
ognize Pepsi in the previous task, it asked Bob the location
and obtained a correct answer: “end table”. At this very mo-
ment, Alice came to move the coke from end table to the din-
ing table, making Bob’s information erroneous. The robot,
after failed to identify the Pepsi on the end table, abandoned
the information from Bob, and found Pepsi on the side ta-
ble. However, due to manipulation error, the Pepsi slipped
out from the basket.

817

Success Trials

.
.
: y

Figure 4: Results of Experiment

[

Scenario 3. Alice requested Vitamin. The robot got the an-
swer “dining table” from Alice and moved to the dining table,
but unfortunately, Vitamin was too far away for the robot to
recognize. However, the robot recognized closer objects: wa-
ter, Pepsi and apple juice. Consequently, the robot abandoned
human information and searched by itself. Finally, Vitamin
was found on the side board and was delivered to Alice.
Scenario 4. Bob requested water. The robot directly moved
to the end table because in Scenario 1, it mistakenly identified
Pepsi as water there. This time, vision correctly identified
that water was not there, and the robot found an alternative
by moving to the dining table and grasped water identified in
Scenario 3.
Scenario 5. Alice requested apple juice. The robot directly
moved to dining table and grasped the apple juice identified
in Scenario 3. Vitamin was also recognized this time.
Scenario 6. Bob requested Vitamin. The robot moved to din-
ing table for Vitamin directly. After measuring distance, it
adjusted its position by moving to another position to grasp.
The first attempt failed and was captured by continuous sens-
ing immediately. A new plan was generated and executed,
which was successful.
Scenario 7. Alice requested Pepsi. The robot directly moved
to Pepsi and grasped it. Unfortunately, the gripper hit the can
and stuck in its trajectory, leading to manipulation failure.
Despite so many uncertainties and failures, the robot man-
aged to handle most of them pretty robustly and achieved 5
of 7 tasks, by adaptive planning and reasoning. Vision errors
tend to occur more frequently in the early stage, but they are
all corrected later. Furthermore, after the 3rd run, the robot no
longer asked human questions because it has already acquired
sufficient information about drinks and their locations.
Following the scoring policy of RoboCup@Home compe-
tition, we evaluate our framework by conducting a total of
over 20 hours running the robot and finished about 157 or-
ders in 45 trials. The trial stops due to unrecoverable fault.
As is shown in Figure 4, most often the robot can success-
fully serve 2—4 persons consecutively, with the average being
3 persons. Despite that, there are two trials that the robot
managed to take 8 orders. Given the challenge of GPSR do-
main, the experiment demonstrates robustness and the ability
to tackle uncertainty, failure and incomplete information.

8 Conclusion

In this paper we proposed a framework of building general-
purpose service robot, by handling HRI, sensing and phys-
ical actions in a uniform representation and execution loop

with continuous observation. Our experiment demonstrates
robustness of the service robot in domestic environment. We
conclude that, proper use of symbolic planning combined
with task-oriented knowledge acquisition can be helpful to
handle unpredictable domain changes and perception errors,
two challenges in all GPSR domains. In the future, we will
address more complex domains with more reliable control.

References

[Bohren and Cousins, 2010] Jonathan Bohren and Steve Cousins.
The smach high-level executive [ros news]. IEEE Robotics &
Automation Magazine, 4(17):18-20, 2010.

[Brenner and Nebel, 2009] Michael Brenner and Bernhard Nebel.
Continual planning and acting in dynamic multiagent environ-
ments. Autonomous Agents and Multi-Agent Systems, 19(3):297—
331, 2009.

[Brenner et al., 2007] Michael Brenner, Nick Hawes, John D Kelle-
her, and Jeremy L Wyatt. Mediating between qualitative and
quantitative representations for task-orientated human-robot in-
teraction. In IJCAI, pages 2072-2077, 2007.

[Brenner, 2007] Michael Brenner. Situation-aware interpretation,
planning and execution of user commands by autonomous robots.
In Robot and Human interactive Communication, 2007. RO-
MAN 2007. The 16th IEEE International Symposium on, pages
540-545. IEEE, 2007.

[Chen er al., 2010] Xiaoping Chen, Jianmin Ji, Jiehui Jiang, Guo-
qiang Jin, Feng Wang, and Jiongkun Xie. Developing High-Level
Cognitive Functions For Service Robots. In International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS),
2010.

[Chen er al., 2014] Kai Chen, Dongcai Lu, Yingfeng Chen, Keke
Tang, Ningyang Wang, and Xiaoping Chen. The intelligent tech-
niques in robot kejia—the champion of robocup@ home 2014.
In RoboCup 2014: Robot World Cup XVIII, pages 130-141.
Springer, 2014.

[Dearden and Burbridge, 2013] Richard Dearden and Chris Bur-
bridge. An approach for efficient planning of robotic manipu-
lation tasks. In ICAPS. Citeseer, 2013.

[Erdem et al., 2012] Esra Erdem, Erdi Aker, and Volkan Patoglu.
Answer set programming for collaborative housekeeping
robotics: representation, reasoning, and execution. [Intelligent
Service Robotics, 5(4):275-291, 2012.

[Gebser et al., 2012] M. Gebser, B. Kaufmann, and T. Schaub.
Conflict-driven answer set solving: From theory to practice. Ar-
tificial Intelligence, 187-188:52-89, 2012.

[Hanheide et al., 2015] Marc Hanheide, Moritz Gébelbecker, Gra-
ham S Horn, Andrzej Pronobis, Kristoffer Sjoo, Alper Aydemir,
Patric Jensfelt, Charles Gretton, Richard Dearden, Miroslav Jan-
icek, et al. Robot task planning and explanation in open and
uncertain worlds. Artificial Intelligence, 2015.

[Havur et al., 2013] Giray Havur, Kadir Haspalamutgil, Can Palaz,
Esra Erdem, and Volkan Patoglu. A case study on the tower of
hanoi challenge: Representation, reasoning and execution. In
Robotics and Automation (ICRA), 2013 IEEE International Con-
ference on, pages 4552-4559. 1EEE, 2013.

[Hoffmann and Brafman, 2005] Joérg Hoffmann and Ronen Braf-
man. Contingent planning via heuristic forward search with im-
plicit belief states. In Proc. ICAPS, volume 2005, 2005.

818

[Khandelwal et al., 2014] Piyush Khandelwal, Fangkai Yang, Mat-
teo Leonetti, Vladimir Lifschitz, and Peter Stone. Planning in
Action Language BC while Learning Action Costs for Mobile
Robots. In International Conference on Automated Planning and

Scheduling (ICAPS), 2014.

[Lee et al., 2013] Joohyung Lee, Vladimir Lifschitz, and Fangkai
Yang. Action Language BC: A Preliminary Report. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2013.

[Lifschitz, 2008] Vladimir Lifschitz. What is answer set program-
ming? In Proceedings of the AAAI Conference on Artificial In-
telligence, pages 1594—1597. MIT Press, 2008.

[Petrick and Bacchus, 2002] Ronald PA Petrick and Fahiem Bac-
chus. A knowledge-based approach to planning with incomplete
information and sensing. In AIPS, pages 212-222, 2002.

[Petrick and Foster, 2013] Ronald PA Petrick and Mary Ellen Fos-
ter. Planning for social interaction in a robot bartender domain.
In ICAPS, 2013.

[Puigbo er al., 2015] Jordi-Ysard Puigbo, Albert Pumarola, Cecilio
Angulo, and Ricardo Tellez. Using a cognitive architecture for
general purpose service robot control. Connection Science, 27(2),
2015.

[Son and Baral, 2001] Tran Cao Son and Chitta Baral. Formalizing
sensing actionsa transition function based approach. Artificial
Intelligence, 125(1):19-91, 2001.

[Son er al., 2004] Tran Cao Son, Phan Huy Tu, and Chitta Baral.
Planning with sensing actions and incomplete information using
logic programming. In LPNMR, pages 261-274. Springer, 2004.

[Srinivasa et al., 2012] Siddhartha S Srinivasa, Dmitry Berenson,
Maya Cakmak, Alvaro Collet, Mehmet R Dogar, Anca D
Dragan, Ross Knepper, Tim Niemueller, Kyle Strabala, Mike
Vande Weghe, et al. Herb 2.0: Lessons learned from develop-
ing a mobile manipulator for the home. Proceedings of the IEEE,
100(8):2410-2428, 2012.

[Srivastava et al., 2014] Sanjeev Srivastava, Eugene Fang, Lorenzo
Riano, Rohan Chitnis, Stephen Russell, and Pieter Abbeel. Com-
bined task and motion planning through an extensible planner-
independent interface layer. In Robotics and Automation (ICRA),
2014 IEEE International Conference on, pages 639-646. IEEE,
2014.

[Srivastava et al., 2015] Siddharth Srivastava, Shlomo Zilberstein,
Abhishek Gupta, Pieter Abbeel, and Stuart Russell. Tractability
of planning with loops. In Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

[Thomason et al., 2015] Jesse Thomason, Shigi Zhang, Raymond
Mooney, and Peter Stone. Learning to interpret natural language
commands through human-robot dialog. In Proceedings of the
Twenty-Fourth international joint conference on Artificial Intelli-
gence (IJCAI), 2015.

[Wachsmuth er al., 2015] Sven Wachsmuth, Dirk Holz, Maja Rud-
inac, and Javier Ruiz-del Solar. Robocup@home — benchmark-
ing domestic service robots. In Twenty-Ninth AAAI Conference
on Artificial Intelligence, 2015.

[Xie et al., 2013] Jiongkun Xie, Xiaoping Chen, and Zhigiang Sui.
Translating action knowledge into high-level semantic represen-
tations for cognitive robots. Nonmonotonic Reasoning, Action
and Change, page 53, 2013.

