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Abstract
We present an approach and a system that ex-
plores the application of interactive machine learn-
ing to a branching program-based boosting algo-
rithm—Martingale Boosting. Typically, its perfor-
mance is based on the ability of a learner to meet a
fixed objective and does not account for preferences
(e.g. low false positives) arising from an underly-
ing classification problem. We use user preferences
gathered on holdout data to guide the two-sided ad-
vantages of individual weak learners and tune them
to meet these preferences. Extensive experiments
show that while arbitrary preferences might be dif-
ficult to meet for a single classifier, a non-linear en-
semble of classifiers as the one constructed by mar-
tingale boosting, performs better.

1 Introduction
Boosting algorithms are efficient procedures that, given ac-
cess to a weak learning algorithm, use weak learners to
construct a strong learner with arbitrarily low error on any
given probability distribution. Kearns and Valiant [Kearns
and Valiant, 1994] defined a weak learning algorithm as the
one that produces a hypothesis that performs slightly bet-
ter than random on that distribution. There is a large body
of work [Schapire, 1990; Freund, 1995; Kearns and Man-
sour, 1996] that has proposed and studied several boosting
algorithms for their theoretical soundness. However, Mar-
tingale boosting (MB) [Long and Servedio, 2005], with its
proven tolerance to noise and well-defined structure, might
be a promising approach to practical classification problems.
The algorithm assumes access to a weak learning algorithm
with a two-sided (on positive and negative class) advantage
�, such that the accuracy of each weak learner is at least
1
2 +�. However, a practical application might prefer differen-
tial two-sided advantages (as we discuss next) and these are
not explicitly modeled.

Depending on the choice of the learning algorithm, a
learner usually seeks a hypothesis that meets a fixed objec-
tive, such as “minimize logistic loss” or “maximize classifica-
tion accuracy”. Such a predefined objective might fail to cap-
ture the preferences that are inherent in the underlying clas-
sification problem. For instance, in case of spam classifica-

tion [Yih et al., 2006], classification of a non-spam document
as spam might incur a higher utility cost, than a spam docu-
ment which is undetected. On the other hand, in the medical
domain, false negatives are indicative of missed diagnosis and
having them might be catastrophic.

In general, rather than seeking a hypothesis to meet a pre-
defined preference, a learner might benefit from a human-in-
the-loop approach where such preferences are specified by
users in an interactive “dialog” with the model. These prefer-
ences in turn guide the two-sided advantages of the individual
weak learners.

2 Related Work
Classification with asymmetric costs: There is a body
of research that explores the thesis that different learners
might make errors on different training examples and there-
fore proposes a multistage cascade [Gavrilut et al., 2009;
Kaynak and Alpaydin, 2000] of classifiers. The classification
of an example is either a collective decision of all the classi-
fiers in the cascade [Gavrilut et al., 2009] or a classifier might
only receive examples that are rejected by the previous clas-
sifiers [Kaynak and Alpaydin, 2000; Viola and Jones, 2001;
Alpaydin and Kaynak, 1998]. Training using utility has also
been explored by [Wu et al., 2008], where, they propose
an Asymmetric Support Vector Machine (ASVM) that ac-
counts for tolerance to false-positives in its objective. An-
other approach known as stratification [Olshen and Stone,
1984] works by re-weighting instances, and is explored
by [Yih et al., 2006] for the problem of spam classification.
Cost-sensitive boosting-based approaches [Fan et al., 1999;
Masnadi-Shirazi and Vasconcelos, 2011] also incorporate
cost in instance reweighting, however, they (1) assume prior
knowledge of misclassification cost (2) weight training in-
stances while we weight holdout data.

Boosting: Boosting methods work by constructing several
weak classifiers that collectively give rise to a strong classi-
fier. While AdaBoost [Freund and Schapire, 1997] takes a
linear combination of these classifiers, [Freund, 1995] uses
the majority vote to label instances. One of the drawbacks of
these algorithms is their intolerance to noisy data and this has
led to a growing interest in non-linear branching programs-
based boosting approaches. Kearns et al. explored the boost-
ing ability of top-down decision tree algorithms but identified
the exponential growth of tree size as a problem. Branching
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programs are a generalization of decision trees and can repre-
sent functions that are significantly more powerful [Mansour
and McAllester, 2002]. Recently [Long and Servedio, 2005]
proposed an approach called martingale boosting that con-
structs branching programs with well-defined structure and
has an elegant graph walk-based analysis. Adaptive martin-
gale boosting [Long and Servedio, 2008] retains the noise tol-
erance of the previous algorithm while taking advantage of
varying strengths of the weak learners in achieving a stronger
bound on the overall error.

Interactive machine learning: Instead of focusing on one
particular target, [Kapoor et al., 2012] enable users to explore
and express preferences about the operation of classification
models. The underlying computational procedure then tunes
the model hyper-parameters accordingly. However, their ap-
proach might fail to meet an arbitrary user input.

3 Our Contributions
We present an approach and a system called interactive mar-
tingale boosting (IMB) to interactively tune the performance
of a classifier. We show how ideas from interactive machine
learning could be applied to martingale boosting, not only in
specifying user preferences, but also in tuning the individual
advantages of the weak learners of MB. While our approach
is based on martingale boosting, unlike them, we do not as-
sume a predefined target. We introduce separate two-sided
advantages on the positive and negative instances and tune
them separately, while guided by the user specified prefer-
ences. Additionally, we are perhaps the first ones to perform
extensive experiments with multiple datasets to demonstrate
the feasibility and performance of MB, adaptive MB, and our
interactive MB approach. We show, through experiments1,
that in comparison to the single level interaction of [Kapoor
et al., 2012], our approach, with its multiple levels of interac-
tion, allows a user to browse through several additional mod-
els in the hypothesis space, thereby doing better in meeting
user preferences. Our tooling systematically guides users in
their interactive dialog with the model learner by tracking the
trajectory of the model performance.

Figure 1: Iterative model tuning

4 Approach
We start by formally defining the problem, describing our in-
teractive martingale boosting approach followed by a descrip-
tion of tuning of its individual weak learners.

1Code available at https://github.com/kulashish/adaptivemb

4.1 Problem Definition
Let X be the set of input examples sampled from a distribu-
tion D and {0, 1} be the output labels. We are required to
learn (on subset X

Train

⇢ X ) a target function c : X !
{0, 1}, where, c best satisfies a user defined accuracy crite-
rion. Based on the underlying usecase, users might prefer a
differential misclassification cost. Typically, deciding an ac-
ceptable misclassification cost requires iterative tuning of the
classifier on a holdout (or tuning) set X

Tune

.
Definition 1. Let D+ denote the distribution D restricted to
the positive examples {x 2 X : c(x) = 1} and let D� denote
D restricted to the negative examples {x 2 X : c(x) = 0}.
A hypothesis h : X ! {0, 1} is said to have two-sided ad-
vantages �

+ and �

� with respect to D+ and D�, respec-
tively, if it satisfies Pr

x2D+ [h(x) = 1] � 1
2 + �

+ and
Pr

x2D� [h(x) = 0] � 1
2 + �

�.

Here, 1
2 + �

+ and 1
2 + �

� are the desired accuracies
Acc

+
des

= TP/(TP +FN) and Acc

�
des

= TN/(TN +FP )
on D+ and D� respectively. How do we enable a user to de-
cide an acceptable classifier performance �

+ and �

�? How
do we tune a classifier to best meet these user preferences?
These are the research challenges that we address through our
interactive approach.

4.2 User Interaction through Confusion Matrix
Users specify the classifier preferences through an interactive
visualization that displays the confusion matrix on a holdout
dataset (Refer to Figure 1). This is inspired from the obser-
vation of [Kapoor et al., 2010] that an interactive confusion
matrix enables users to more effectively estimate misclassi-
fication risks. Users specify their desire by editing the num-
ber of instances classified in each cell. For instance, users
could specify their model preference by reducing the number
of false positives on the holdout set from 70 to 65. This trans-
lates into a user preference on the desired accuracy Acc

�
des

and effectively on the advantage �

� = Acc

�
des

� 1
2 . The un-

derlying procedure then tunes the model hyperparameters in
an attempt to return a model that best meets this preference.
If a feasible solution is obtained, the holdout confusion ma-
trix is updated and this often affects the values in other cells.
Otherwise, a notification of inability to meet the preferences
is provided to the user. The user continues this interactive
model exploration until a satisfactory model is obtained.

4.3 Interactive Martingale Boosting
User preferences, �+ or ��, on a model’s performance are
used to tune the classification model in an attempt to meet
these preferences. [Kapoor et al., 2012] presented an effi-
cient numerical procedure that tunes the hyperparameters of
a model in response to preferences specified through an in-
teractive confusion matrix. Often, a single model fails to sat-
isfy arbitrary user specifications (Refer to section 5.4). We
propose an approach called Interactive Martingale Boosting
(IMB) based on a non-linear ensemble of interactive clas-
sifiers. Choice of martingale boosting [Long and Servedio,
2005] is motivated from its simple non-linear structure and
its tolerance to noise, which is often important for practical
applications.
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Let M
L

be a L-stage martingale boosting program result-
ing in a L + 1 layered directed acyclic graph (DAG). Each
node in the DAG is labeled as v

i,j

, where j is the index
of a layer, j 2 {0, 1, . . . , L} and for a node at layer t,
i 2 {0, 1, . . . , t}. v0,0 is the root node. The root node re-
ceives all the training X

Train

and holdout X
Tune

instances,
which are used to grow a MB program as described next. Let
D+

i,j

and D�
i,j

be the distributions of positive and negative ex-
amples reaching node v

i,j

. At every node, we train a classi-
fication model h

i,j

and evaluate it on the holdout set at that
node to generate a local confusion matrix C

i,j

. Each node v
i,j

has two outgoing edges labeled 0 and 1, that connect to nodes
v

i,j+1 and v

i+1,j+1, respectively (Figure 2 shows a 3-stage
MB). Each training and holdout instance is routed along the
edge labeled h

i,j

(x) until it reaches a leaf node v
l,L

where its
final label is set to 0 if l  L/2 and is set to 1 otherwise. The
final label of an instance thus depends on its classification by
the individual classifiers on its way from the root node to the
leaf. These final labels give rise to a global confusion ma-
trix C

L

for the L-stage MB program. Users interact with the
cells in this confusion matrix, thereby specifying the desired
advantages �

+ and �

� for the MB classifier. These global
specifications are used to derive local specifications �+

i,j

and
�

�
i,j

at node v

i,j

and each model h
i,j

is tuned accordingly.

Figure 2: FP-rate for M3, a 3-stage martingale boosting pro-
gram, is the fraction of negative examples reaching nodes v2,3
and v3,3 from v0,0 through the highlighted edges.

Granularity of Interaction
The choice of node-level advantages �+

i,j

and �

�
i,j

depends on
the granularity of user interaction. For relatively smaller MB
programs, a user can interactively tune the classifier at every
node (we refer to this as I-ALL) and view its impact on the
overall performance of the boosted classifier. However, this
human effort is quadratic in the number of levels in a MB
program and might become unfeasible even for a moderate
number of levels. In such cases, user preferences might be
gathered only on the global confusion matrix C

L

(we refer
to this as I-ROOT). The resultant �+ and �

� could then be
used as targets in automatically tuning the node-level classi-
fiers. Alternatively, the distinct advantages of these individual
learners, could be used to identify particularly “weak” nodes.
Following the spirit of active learning, a user could then be
prompted to interactively tune only these learners, in an at-
tempt to learn a boosted classifier that meets user preferences.
We refer to this as I-SELECT and it attempts to achieve a mid-
dle ground between I-ROOT and I-ALL. We study the effect
of some of these granular interactions in the evaluation sec-

tion. Figure 3 shows the system flow for each of these levels
of granular interactions.

Figure 3: Interactive Martingale Boosting - System flow.

Early Node Freezing
As the MB program grows top-down, the distribution of ex-
amples reaching at some of the nodes tends to be heavily bi-
ased towards a class label. This might typically happen at
nodes at the extreme ends of a level, that usually have a bet-
ter advantage for one class over others. These nodes could
be “frozen” by labeling the instances reaching there with the
label of the majority class, with little impact on the overall
error rate. Similar to the approach used by Sampling Mart-
iBoost [Long and Servedio, 2005], we freeze a node v

i,j

if
the minimum of the probabilities of a positive or negative
instance reaching that node min

b2{+,�} p
b

i,j

<

✏

L(L+1) for
some error rate ✏.

Error Rate
The misclassification error on negative examples (FP-rate)
✏

�
i,j

at a node v

i,j

is 1
2 � �

�
i,j

. Based on the definition of the
martingale program above, it is easy to see that the misclas-
sification error ✏�(M

L

) of M
L

on negative examples is the
fraction of negative examples reaching leaf nodes v

l,L

where
l 2 {L/2+1, . . . , L}. For L = 1, ✏�(M1) = ✏

�
0,0 = 1

2��

�
0,0.

Figure 2 shows a martingale program for L = 3, where the
edges are labeled with the fraction of negative examples mov-
ing from a node at the tail of an edge, to the node at its head.
It follows that the fraction of negative examples that make it
to nodes v2,3 and v3,3 is given by

✏

�(M3) = ✏

�
0,0.✏

�
1,1.✏

�
2,2 + ✏

�
0,0.✏

�
1,1.(1� ✏

�
2,2)+

✏

�
0,0.(1� ✏

�
1,1).✏

�
1,2 + (1� ✏

�
0,0).✏

�
0,1.✏

�
1,2

The error rate has a corresponding definition in terms of
weights of paths in a directed acyclic graph for M

L

2.

4.4 Node-level Model Tuning
The node-level model preferences �

+
i,j

and �

�
i,j

are used to
tune the hyperparameters of the classifier h

i,j

. Often, grid
2Refer to the supplement https://goo.gl/nWrioq
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search is employed to get a sub-optimal estimate of the hy-
perparameters such that it minimizes the holdout loss. Model
selection using a holdout dataset is a standard technique used
to avoid over-fitting the training data [Mosteller and Tukey,
1968; Stone, 1974]. While this approach works for a single
hyperparameter, more sophisticated strategies are required for
tuning multiple hyperparameters. We borrow the hyperpa-
rameter tuning approach from the work by [Kapoor et al.,
2012] and describe it briefly here.

Consider a training set X
Train

with corresponding labels
drawn from Y 2 {1, . . . , k}, let w be the model parameters
and d represent the set of hyperparameters for our model. We
wish to determine an updated model d⇤ in response to user
preferences on a holdout confusion matrix. For the current
model choice, we train the model on X

Train

to obtain weights
w⇤ and evaluate it on a holdout set X

Tune

giving for each
point x(i) 2 X

Tune

, a k-dimensional vector y(i) = [y(i)
c

]k
c=1,

where y

(i)
c

denotes the classification score for class c. A soft-
max transformation of y(i) results in a k-dimensional current
state vector p(i)(d;w⇤), corresponding to the input point x(i)

and model d. User preferences essentially express the desire
to classify a point (1) as class b, encoded as a target state vec-
tor s(i) with all zeros except the b

th component set to 1; (2)
not as class b, in which case s(i) has bth component set to 0
and all other components set to 1/(k�1); (3) with no change
and thus s(i) = p(i)(d;w⇤). The goal is to minimize the dif-
ference between the target and current states and they use KL
divergence as the objective function:

g(d;w⇤) =

|XTune|X

i=1

KL(s(i)||p(i)(d;w⇤))

=

|XTune|X

i=1

kX

j=1

s

(i)
j

log

s

(i)
j

p

(i)
j

(d;w⇤)
(1)

We use gradient descent with BFGS update [Fletcher,
2013] to solve the optimization problem. Note that we do
not have to completely minimize the objective, but only min-
imize it up to a point that satisfies user specifications.

4.5 Gradient Computation
We use multinomial logistic regression as the node-level
learner in our interactive martingale boosting approach.
Multinomial LR is a simple and fast algorithm with low vari-
ance and a probabilistic output score. This makes it possi-
ble to systematically use predictions from individual weak
learners in our larger boosted model and also allows us to
extend to multiclass setting. Multinomial LR models the con-
ditional probability P (y|x;w) = exp(wTF(x, y))/Z(x),
where, F(x, y) is a vector valued mapping of (x, y) to a fea-
ture space and Z(x) =

P
y

02Y exp(wTF(x, y0)).
The parameters w are usually learned using regularized

logloss minimization [Foo et al., 2007]:

w⇤ = argmin
w2Rn

1

2
wT

Cw �
|XTrain|X

i=1

logP (y(i)|x(i);w) (2)

where 1
2w

T

Cw is the regularization term and C is the in-
verse covariance matrix of a Gaussian prior on the parameters
w. Consider a setting, say, spam classification, where differ-
ent subsets of parameter components (corresponding to sin-
gle word features, bigram features etc.), might be constrained
by different hyperparameters. Thus, C is usually parame-
terized by a hyperparameter vector d as the diagonal matrix
C(d) = diag(exp(d)).

The hyperparameters are trained on the holdout data by
solving the optimization:

d⇤ = argmin
d2Rl

g(d;w⇤) (3)

subject to

w⇤ = argmin
w2Rn

1

2
wT

Cw �
|XTrain|X

i=1

logP (y(i)|x(i);w)

Using the chain rule of differentiation, we get

rdg(d;w
⇤) = JT

drwg(d;w⇤)

where JT

d is the Jacobian matrix comprising partial derivative
of w⇤ with respect to d as defined by equation (6) in [Foo
et al., 2007] and rwg(d;w⇤) is obtained by evaluating the
gradient of equation (1) at w⇤.

4.6 Multiclass Interactive Martingale Boosting
Martingale boosting naturally extends to the problem of mul-
ticlass classification under the strict assumption of k-sided
advantage (Refer to the supplement).

5 Evaluation
We evaluate the effectiveness of interactive martingale boost-
ing by performing experiments for the problem of binary clas-
sification on several UCI datasets including Spambase, Sonar,
Ionosphere, and Liver, and for multiclass classification on
Splice and Iris datasets. While some of these datasets are
the same as those used by [Kapoor et al., 2012], others were
chosen due to the applicability of this approach to medical
and spam domains.

5.1 Interactive Tuning versus Grid Search
We assumed a separate regularization penalty per model pa-
rameter in equation (2) and tuned them using the interactive
procedure. We validate the effectiveness of this procedure by
comparing it with grid search on the Liver dataset. We per-
formed an exhaustive search in the range 0 to 300 with a step
size of 30, choosing hyperparameters for which the validation
accuracy was the maximum. Grid search achieved an overall
accuracy of 68.84% on the test set versus 77.06% achieved
by the interactive refinement. This observation is consistent
with that of Kapoor et al.

5.2 Effect of Base Learner and Boosting
We used multinomial LR and martingale boosting as our base
learner and boosting algorithms respectively. What would be
the effect of using a different base learner or boosting ap-
proach? We compare multinomial LR against RBF kernel-
based classifier (choice of Kapoor et al.) and also evaluate
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the performance of AdaBoost (50 iterations) and MB (15 lev-
els) on these base learners. Table 1 reports the average test
accuracy across five splits (60% train and 40% test) of the
dataset. Multinomial LR vs. RBF: Both the base classifiers
show a comparable performance with LR performing slightly
worse on Ionosphere and slightly better on Sonar. Base clas-
sifiers with interactive tuning: Interactive tuning does im-
prove model accuracy with LR-Tune doing better than RBF-
Tune. Models were tuned using 3-fold cross-validation within
each train split and the best model was chosen. Base classi-
fiers with boosting: Both AdaBoost and MB have an im-
proved accuracy over that of base classifiers. As expected,
MB, with its non-linear branching program-based structure,
performed better than AdaBoost. While the choice of base
classifier might slightly affect the model performance, both
interactive tuning and MB, consistently improved the model
performance.

Dataset RBF LR RBF-
Tune*

LR-
Tune

Ada-
RBF

Ada-
LR

MB-
RBF

MB-
LR

Ionosphere 91.03 90.71 92.55 93.43 92.96 94.97 95.58 96.42
Sonar 85.67 86.75 86.9 91.02 87.72 89.87 90.38 91.08

Table 1: Effect of changing the base learner and boosting al-
gorithms. *as reported by Kapoor et al.

5.3 How Effective is Interactive Martingale
Boosting?

We tested the effectiveness of our procedure in a two-class
classification task on the UCI Spambase dataset, with an aim
of reducing false positives. We compare multinomial LR
(LR), LR tuned using our interactive procedure (LR-Tune),
martingale boosting (MB), martingale boosting with interac-
tively tuned weak learner (MB-Tune) and finally, MB-Tune
with early freezing of non-leaf nodes (MB-Tune-Freeze).

Figure 4 shows a scatter plot of FP-FN obtained by these
procedures. The multiple data points for the martingale
boosting-based approaches correspond to different number of
levels of the branching program. The models were tuned to
minimize the number of FPs as much as possible, and thus,
the models in the lower half of the plot are more desirable and
the ones in the lower left quadrant achieve a better overall ac-
curacy. LR-Tune does marginally better than LR in achieving
a lower number of FPs, but the interactive martingale boost-
ing based approaches perform much better, both in reducing
the number of false positives and in maximizing the overall
accuracy.

5.4 Comparison with Other Methods
We compared the effectiveness of our approach with that of
other approaches on UCI datasets. We report class-wise ac-
curacy3 and the overall accuracy obtained on the test set av-
eraged over five splits (Refer to Table 2). Multinomial LR
was used as the base classifier and the number of levels, L, of
MB was empirically set to 15. Granularity of interaction was

3Accuracy for a class = TP/(TP+FN)

Figure 4: FPs vs. FNs on the UCI Spam dataset using differ-
ent algorithms

set to I-ROOT. Although the system allows for arbitrary user
preferences, for ease of evaluation we tune all models in favor
of one of the classes (as specified in the table), as is typical of
applications in the spam (zero FPs) and medical (zero FNs)
domains. We compare our approaches, MB-Tune(I-ROOT)
and MB-Tune-Freeze (early node freezing) with multinomial
LR (LR), LR with interactive tuning (LR-Tune), LR with Ad-
aBoost (Ada), tuned LR with AdaBoost (Ada-Tune), adaptive
MB (AMB), and adaptive MB with tuning (AMB-Tune).

Consistent with our earlier observation, effectiveness of
the martingale boosting approach is apparent here as well.
Further, interactively tuned MB, MB-Tune(I-ROOT), outper-
forms other approaches on all datasets. Accuracy on the
favored class is generally higher than that achieved by MB
and might come at the cost of reduced accuracy on the non-
favored class (as can be seen for Spambase). In other cases,
accuracy on the non-favored class also improved and this
could be attributed to a different routing of instances in the
tuned MB. With early freezing of nodes, the results are only
slightly worse, but with the advantage of a significant reduc-
tion in the number of nodes in the DAG. On the Spambase
dataset for instance, 70 of the total 120 nodes got frozen. In
adaptive MB, a node has more than two child nodes and an
instance, based on its classification score, gets routed to an
appropriate child node. Although adaptive MB has a better
error bound in theory, in our observation, it seemed to over fit
the training data. Its accuracy on the test data, even with tun-
ing at the root node (AMB-Tune), is at times slightly worse
than that of MB.

Comparison with Yih et al.: We evaluated the approach of
[Yih et al., 2006] on the Sonar and Ionosphere datasets. How-
ever, it was not clear how to translate user preferences to the
input that they expected. The best results we obtained among
various inputs were Acc+: 79.62%, Acc-: 94.18%, Acc:
88.57% on Ionosphere and Acc+: 91.30%, Acc-: 89.18%,
Acc: 90.36% on Sonar.
Comparison with Kapoor et al.: [Kapoor et al., 2012] had
reported an overall test accuracy of 92.5% and 86.9% respec-
tively on Ionosphere and Sonar datasets.

5.5 Effect of Number of Levels on Model Accuracy
We evaluated our models by varying the number of MB levels
L = 2 to 15. The model accuracy on the tuned class steadily
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Dataset Test Accuracy
%

MB AMB AMB-
Tune

MB-Tune(I-
ROOT)

MB-Tune-
Freeze

Spambase
Acc+ 95.07 92.92 92.26 91.26 (±3.6) 89.83 (±.4)
Acc-(tuned) 97.31 94.39 94.64 98.01 (±.2) 97.85 (±.1)
Acc 96.42 93.8 93.69 95.30 (±1.5) 94.66 (±.2)

Ionosphere
Acc+ 91.04 83.86 83.86 92.86 (±7.2) 92.86 (±7.2)
Acc-(tuned) 97.72 98.66 98.66 99.27 (±2.8) 99.27 (±2.8)
Acc 96.42 93.57 93.57 97.14 (±4.5) 97.14 (±4.5)

Sonar
Acc+ 89.42 87.1 85.64 92.79 (±3.2) 92.79 (±3.2)
Acc-(tuned) 92.27 90.33 92.44 95.81 (±.6) 95.81 (±.6)
Acc 91.08 88.67 88.91 94.37 (±1.1) 94.37 (±1.1)

Liver
Acc+(tuned) 85.87 79.32 84.11 87.72 (±2.9) 82.75 (±3.6)
Acc- 71.77 55.86 43.69 74.19 (±7.0) 73.68 (±6.7)
Acc 81.65 70 72.46 82.59 (±4.0) 78.98 (±4.1)

Splice*
Acc(rest) 96.05 - - 95.96 95.67
Acc(tuned) 97.43 - - 98.39 98.27
Acc 96.39 - - 96.55 96.40

Iris*
Acc(rest) 89.19 - - 89.19 86.48
Acc(tuned) 95.65 - - 100 91.30
Acc 91.67 - - 93.33 88.33

Table 2: Comparison of interactive martingale boosting with other methods
on UCI datasets. Accuracy and standard deviation on test set. *multiclass

MB MB-Tune(I-
ROOT)

MB-Tune-
Freeze

Spambase 1009 29394 27880
Ionosphere 288 1050 1030

Sonar 230 623 422
Liver 496 949 936

Table 3: Comparison of training time (in ms)

Granularity
(#Tuned)

Acc+ Acc- Acc

Spambase
I-ROOT 93.80 93.27 93.48
I-ALL (6) 93.12 94.37 93.86
I-SELECT (3) 92.86 93.97 93.22

Ionosphere
I-ROOT 88 96.67 93.57
I-ALL (6) 90.71 97.72 95.41
I-SELECT (2) 90.71 96.84 94.66

Table 4: Effect of granularity of interaction.

rises with the number of levels and flattens at high values of
L (Refer to Fig. 5). The behavior is consistent across MB-
Tune(I-ROOT) and MB-Tune-Freeze and across datasets. For
binary label MB, the label of an instance is based on which
half of the final level it ends up in. For smaller values of
L, this decision is based on fewer classifiers and tends to be
noisy. We therefore set L = 15 in our experiments.

Figure 5: Effect of varying L on model accuracy evaluated on
UCI Spambase

5.6 Run Time Analysis
Table 3 shows the average run time (in ms) to build 15 levels
of MB. Evaluation was done on an Intel i7 machine with 8GB
RAM and a 64-bit OS. Interactive MB indeed takes longer to
train. We believe it could be improved either by appropriate
grouping of features to limit the number of hyperparameters
or by a multi-threaded implementation. As expected, MB-
Tune-Freeze takes lesser time to train due to early freezing
of nodes, with only marginal impact on the accuracy (as seen
in Table 2). We believe that our interactive MB model with

the option of early freezing might be an acceptable choice
especially for large datasets.

5.7 Effect of Granularity of User Interaction
We grew a 4-stage martingale boosting program and inter-
actively tuned the learner at every node (I-ALL), with the
intent of achieving a reduction in false positives. We com-
pare its performance (Refer Table 4) with the one interac-
tively tuned only at the root node (I-ROOT). Although I-
ROOT does automatically tune other nodes, I-ALL benefits
from the interactive refinement at all nodes and does better in
meeting user preferences. In an attempt to check how many
user interactions significantly affect the accuracy, we selec-
tively tuned nodes (I-SELECT), where the advantage is be-
low certain threshold (set to 0.3). Combined with our node
freezing strategy, this further reduces the number of nodes re-
quiring manual tuning. On UCI Spambase and Ionosphere,
the number of nodes requiring manual tuning in I-SELECT
reduced by a factor of 2 and 3 respectively as compared to
I-ALL. Since the manual effort for our interactive MB model
is a function of the number of nodes tuned, we believe that
I-SELECT might significantly reduce the effort with little im-
pact on model accuracy.

6 Conclusion
We presented an approach and a system called interactive
martingale boosting for multiclass classification. Our ap-
proach attempts to meet user preferences on the performance
of a classifier through interactive tuning of a martingale
boosting-based classifier. We showed its effectiveness against
other approaches through evaluation on several datasets. We
also studied the trade-off between human effort and accuracy
using interaction at different granularity in the MB program.
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