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Abstract
Autonomous mobile robots navigate in our spaces
by planning and executing routes to destinations.
When a mobile robot appears at a location, there is
no clear way to understand what navigational path
the robot planned and experienced just by look-
ing at it. In this work, we address the generation
of narrations of autonomous mobile robot naviga-
tion experiences. We contribute the concept of ver-
balization as a parallel to the well-studied concept
of visualization. Through verbalizations, robots
can describe through language what they experi-
ence, in particular in their paths. For every exe-
cuted path, we consider many possible verbaliza-
tions that could be generated. We introduce the
verbalization space that covers the variability of ut-
terances that the robot may use to narrate its ex-
perience to different humans. We present an al-
gorithm for segmenting a path and mapping each
segment to an utterance, as a function of the de-
sired point in the verbalization space, and demon-
strate its application using our mobile service robot
moving in our buildings. We believe our verbaliza-
tion space and algorithm are applicable to different
narrative aspects for many mobile robots, including
autonomous cars.

1 Introduction
Service robots can autonomously generate and execute plans
to successfully perform tasks for humans, appropriately han-
dling the uncertainty of their surroundings. With mobile
robots performing more autonomous behaviors without hu-
man intervention, humans in the environment may wonder
what exactly the robot was perceiving, predicting, planning,
and doing. Robotics researchers have developed logging ap-
proaches to enable the recording of the robot experience. For
debugging purposes, such developers must dig through the
accumulated robot logs to find out about the robot experience
in great detail. In addition to researchers, an office worker
may want the robot to identify why it was late in completing
its task. And a person accompanying the robot may want the
robot to summarize its speed and distance traveled. To the au-
thors’ knowledge, there are no robots that currently narrate in

plain English their planned and executed experiences through
a translation of sensor data and plans into natural language. In
this work, we introduce verbalization as the process of con-
verting or narrating robot experiences via natural language.
A robot that verbalizes its experiences could help each of the
above example users resolve questions they have about au-
tonomous robot behavior.

Different humans interacting with autonomous robots, as
exemplified above, are interested in different specific infor-
mation, for specific parts of the robot’s experience, and at
different levels of detail. A one-size-fits-all verbalization will
not satisfy all users. We contribute the concept of the ver-
balization space to represent ways in which verbalizations
may vary for different reasons, including user preferences
and needs. We define our verbalization space across three or-
thogonal parameters that prior research has indicated per-user
needs or preferences over [Dey, 2009; Bohus et al., 2014;
Thomason et al., 2015]. The first parameter, abstraction,
varies the vocabulary and concepts used in the narrative from
concrete robot concepts, such as distances, speed, and time to
abstract concepts, such as hallways, rooms, landmarks. Sec-
ond, specificity varies the total number of concepts or words
used in the summaries, allowing the robot to generate single-
sentence general, or multi-sentence detailed, narratives. Fi-
nally, locality varies the particular parts of the experience that
the narration focuses on, from the global path to a local region
or landmark of interest. Our verbalization space is general
and can be extended to many other parameters.

We first formalize the concept of verbalizing experiences,
as well as each of the parameters of our verbalization space
with a focus on navigation tasks. We contribute our algo-
rithm for generating narratives using the three verbalization
space parameters, and we provide examples of how to com-
bine these parameters. Our algorithm can be adapted to use
other natural language generation techniques or verbalization
space parameters. Finally, we demonstrate the use of our
verbalization space to narrate our mobile robot’s experiences
through our building, and validate that it generates narratives
of different abstraction, specificity, and locality.

2 Related Work
Prior work in automatically generating explanations or sum-
maries of planned behavior can be roughly divided into three
categories: 1) intelligibility or explanation of machine learn-
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ing algorithms, 2) summarizing perceived behavior, and 3)
generating directions for humans to follow.

As machine learning gains popularity in many different
applications, much human-computer interaction research has
focused on ways machine learning applications can intelli-
gibly explain their reasoning algorithms to users (e.g., for
context-aware systems [Dey, 2009]). HCI intelligibility stud-
ies have focused on ways that users can query applications
for information or explanations (e.g., [Lim et al., 2009]) as
well as how those explanations can affect users’ mental mod-
els of how the applications work (e.g., [Kulesza et al., 2012;
2013]). The studies find that explanations increase trust of
machine learning applications [Bussone et al., 2015] as well
as improve users’ mental models. Due to the success of in-
telligibility across many applications, intelligibility toolkits
have been implemented for consistency of explanation across
different machine learning algorithms [Lim and Dey, 2010].
While prior work shows that varying the focus of explana-
tions is important and useful to users, no one implements it.

Another growing area of research is in summarizing or
generating narratives of perceived behavior. For example,
RoboCup soccer commentators aim to use the input of sim-
ulated RoboCup games [Voelz et al., 1999] or live RoboCup
games [Veloso et al., 2008] to generate realtime summaries
of the actions in the games. Activity recognition algorithms
and natural language generation have also been used to pro-
duce annotated accounts of wartime exercises [Luotsinen et
al., 2007], video conferencing sessions [Yengui and Mah-
moud, 2009], and sports games [Allen et al., 2010]. While
some work generates a variety of summaries to maintain hu-
man interest (e.g., [Veloso et al., 2008]), the work does not
vary the length or depth of summaries as we do.

Finally, and perhaps most closely related to our work,
GPS applications (e.g., [Belvin et al., 2001]) and robot ap-
plications (e.g., [Kirby et al., 2005; Bohus et al., 2014;
Thomason et al., 2015]) are automatically generating navi-
gation instructions and dialog for people to follow and under-
stand. In the prior work, a path is converted into language
and ideally presented in an easy-to-understand yet accurate
way for the person to follow it seamlessly every time. While
these navigation directions do not vary in the language used,
recently [Bohus et al., 2014] found that navigation directions
should 1) provide differing levels of specificity at different
locations in the route and 2) use abstract landmarks in addi-
tion to more concrete details. Similarly, prior work on human
direction givers shows that humans do not generate the same
directions for every person [MacFadden et al., 2003].

We note that none of the prior work focuses on summariz-
ing both perception and plans of a robot or other autonomous
vehicle. And while the prior work extensively documents the
need for parameterized summaries, none of the prior work,
to our knowledge, measures those parameters and contributes
an algorithm for actually varying them. In this work, we first
contribute verbalization as a method of summarizing what
robots actually experience. Based on the findings from prior
work as well as the needs of our robots’ users, we then pro-
pose and formalize our verbalization space that represents the
variability in narratives, and we provide an algorithm for gen-
erating variable verbalizations of route plans.

Figure 1: Robot route plan (green lines), nodes {S,P1,...P6},
Starting node S, and finish node P6.

3 Route Verbalization
We define verbalization as the process by which an au-
tonomous robot converts its own experience into language.
In this work, we consider mobile navigation experience in
the physical world, and verbalize what the robot experienced
while traversing its route. We define route verbalization as
the process by which an autonomous robot converts its own
route experience into language. A robot can generate route
verbalizations mentioning the planned route that will be tra-
versed or the route that has been traversed (i.e., a narrative in
the future tense is equivalent to GPS driving directions, while
a narrative of the past traversed route describes the actual ex-
perience). At this time, we do not distinguish between the
future and past tenses, exemplifying the applicability across
language generation domains.

We first define simple route verbalizations over common
robot map and route representations. Then, we describe our
annotations to the map and route to accommodate the varia-
tion in verbalization that humans require.

3.1 Robot Map and Route Plan
We define an indoor mobile robot’s map M = hP,Ei as
set of points p = (x, y, b, z) 2 P representing unique lo-
cations (x, y) in our buildings b for each floor z and edges
e = hp1, p2, d, ti 2 E that connect that connect two points
taking time t to traverse distance d.

The points on the map are annotated with semantic land-
marks represented as room numbers (e.g., 7412, 3201) and
room type (office, kitchen, bathroom, elevator, stairs, other).
Points could be annotated with additional information, in-
cluding the occupants of the office or the names of laboratory
spaces (e.g., as in [Rosenthal et al., 2010]). We also main-
tain lists of corridors and bridges as points that reside within
them (e.g., “7400 corridor” contains office 7401, office 7402,
office 7404, etc. and the “7th floor bridge” contains other 71,
other 72, etc.). Some points may not appear in any corridor
or bridge list if they are in open areas, and some points may
reside in two hallways if they occur at hall intersections.

Using our map, our route planner produces plans as trajec-
tories through the environment composed of:

• a starting point S,

• a finish point F ,

• an ordered list of intermediate waypoints W ⇢ P , and
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Table 1: Narrated information depends on preferred Verbalization Space parameters. Information for Abstraction A and Speci-
ficity S are shown assuming Locality L is Global. For a different Locality, a subset of the route is generated, and the information
provided is computed in terms of the subset.

• a subset of straight line edges in E that connect S to F

through W .
Our planner labels waypoints as turning points representing
the only places the robot turns after traversing straight edges.
Figure 1 shows a route plan, the starting point S, and finish
point F = P6, as the destination of a task requested by a user.
The figure shows turning points W = {P1, P2, P3, P4, P5},
connected by straight line edges (as pictured in green).

3.2 Simple Route Verbalization
Using the map and route plan described above, a simple route
verbalization algorithm could interleave turn angles at each
point p and distances traversed for each edge e between way-
points. For the route depicted in Figure 1, this simple route
verbalization algorithm would produce:

I went straight for 8.5 meters and turned left,
then straight for 24.9 meters and turned left, then
straight for 3.62 meters to reach the destination.

While this verbalization successfully describes the robot’s
route, different people in the environment may be expecting
more or different information to be provided. For example,
we as robotics researchers could be interested in the exact
(x, y, b, z) coordinates of the points where the robot turns.
Other people in the environment may find landmarks such as
room numbers to be useful. We next describe the use of our
semantic annotations within our verbalization space.

4 Verbalization Space
We represent the variations in possible narratives of the same
route as the verbalization space. Each region of the verbal-
ization space represents a different way to generate text to de-
scribe the route plan. A user may specify their personalized
preferences for verbalization within this space, or the pref-
erences may be inferred from some other source. Our ver-
balization space contains three orthogonal parameters – ab-
straction, locality, and specificity – that are well-documented
as personal preferences in the literature (e.g., [Dey, 2009;

Bohus et al., 2014; Thomason et al., 2015]). Our verbaliza-
tion space is general and could be extended to include more
parameters as needed.

4.1 Verbalization Space Definitions
Table 1 details the way we instantiate verbalizations for spec-
ified parameters (a, l, s) 2 (A,L, S).

Abstraction A: Our abstraction parameter represents the
vocabulary or corpus used in the text generation. In the most
concrete form (Level 1), we generate text in terms of the
robot’s world representation, directly using points (x, y, b, z)
from the route plan. Our Level 2 derives turn angles and uses
expected or actual traversal time and distances from the points
and edges in the plan. Level 3 abstracts the angles and dis-
tances into right/left turns and straight segments. And finally,
in the highest level of abstraction, Level 4 contains the se-
mantic annotations described above.

Locality L: Locality describes the segment(s) of the route
the user is interested in. In the most general case, the user is
interested in the route through the entire Global Environment
including all buildings and floors. However, an office occu-
pant may only be interested in a particular predefined Region
of the route composed of multiple points in the maps (e.g.,
we limit our regions by building b or building floor b, z). Fi-
nally, the occupant may specify a single particular point or
landmark for the robot to summarize its route around (e.g., a
constant distance around the 8th floor kitchen or Office 4002).

Specificity S: Specificity indicates the number of concepts
or details to discuss in the text: the General Picture, the Sum-
mary, and the Detailed Narrative. The General Picture con-
tains the most general description of the robot’s route, namely
the start and finish points (or landmarks), the total distance
covered, and/or the time taken (see Table 1). Our Summaries
contain this same information for the subroute on each floor
of each building. The Detailed Narrative contains a descrip-
tion of each edge of the robot’s route.

Next we describe how these verbalization space parameters
are used to generate verbalization text.
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Algorithm 1 Variable Verbalization Algorithm
Input: route, verb pref, map Output: narrative

//The verbalization space preferences
1: (a, l, s) verb pref

//Choose which abstraction vocabulary to use
2: corpus ChooseAbstractionCorpus(a)

//Annotate the route with relevant map landmarks
3: annotated route AnnotateRoute(route, map, a)

//Subset the route based on preferred locality
4: subset route SubsetRoute(annotated route, l)

//Divide the route into segments, one per utterance
5: route segs SegmentRoute(subset route, s)

//Generate utterances for each segment
6: utterances NarrateRoute(route segs, corpus, a, l, s)

//Combine utterances into full narrative
7: narrative FormSentences(utterances)

4.2 Variable Verbalization Algorithm
The Variable Verbalization (VV) algorithm pseudocode is
presented in Algorithm 1. The algorithm directly translates
the robot’s route plan into plain English given the map and
the incorporated annotations described above. It takes as
input a route, a verbalization space preference verb pref =
(a, l, s) 2 (A,L, S), and a map of the environment with lo-
cations labeled as above. It starts by choosing what corpus
(Level 1-4) to use when generating utterances depending on
abstraction preference a (Line 2). Then, the VV algorithm an-
notates the given route by labeling each point with landmarks
and corridor/bridge names using the map (Line 3).

Once the route is annotated with relevant locations, the al-
gorithm extracts the subset of the route that is designated as
relevant by the locality preference l (Line 4). We subset Re-
gions by building and floor and Landmarks by a threshold
distance around a given point. Both of these subset types can
be directly computed from our point representation - Regions
using b, z and Landmarks using a distance function around
x, y for the given building/floor. The output of this step is an-
other annotated route that is a copy of the route if l=Global
Environment. Otherwise, the output is a subset of the route
with a new start and finish point.

Using the subset route, the VV algorithm then computes
route segments to narrate with respect to the specificity pref-
erence s (Line 5). If the specificity preference is a General
Picture, our algorithm computes the required abstraction in-
formation for a single route segment from S to F . For Sum-
maries, it computes one route segment for each floor of each
building and then computes the relevant abstraction informa-
tion for those segments. In Detailed Narratives, all edges are
included in the narrative.

The Algorithm then translates the route segments from
Line 5 into plain English using the corpus vocabulary from
the annotated map and template sentences (Line 6, examples
described next). Finally, after the sentences have been gener-
ated for each route segment, the VV algorithm stitches them
together (Line 7). The final narrative is returned as the output
of the function.

In the next section, we describe our implementation of our
algorithm on our mobile robot and its routes.

5 Mobile Robot Route Verbalizations
Our mobile service robot plans and executes tasks au-
tonomously in our buildings [Biswas and Veloso, 2013;
2014], such as accompanying visitors to their meetings and
carrying objects to offices [Veloso et al., 2015]. It regularly
interacts with humans in the environment through dialog and
symbiotic interactions to ask for help [Rosenthal et al., 2010;
Perera et al., 2015; Perera and Veloso, 2015]. We found many
different people in our environment are interested in what our
robot is doing and experiencing as it acts. We as researchers
tend to be interested in high specificity, detailed narratives
about the global environment. Other people may be inter-
ested in narratives about their own office locations at a gen-
eral picture level. The Variable Verbalization algorithm is im-
plemented on our robot and allows each person to receive a
personalized narrative based on their priorities and interests.

We first describe our annotated map and corpus for verbal-
izations that are input into our Variable Verbalization algo-
rithm. Then, we describe two narratives based on different
verbalization space preferences for the same route. Finally,
we test our algorithm on different routes through our build-
ing to demonstrate how the number of words and numbers
changes with each instantiation of our verbalization space.

5.1 Robot Map and Language Corpus
Our robot’s environment includes three buildings connected
by bridges. Each floor of each building has its own coordi-
nate system. The individual floor maps are linked to each
other via the elevators and bridges, so that the robot can use
multiple floors while planning and executing. The set of all
floors and all buildings is defined as our map M . Our map
contains points p representing any arbitrary location on the
map. Points can be labeled as landmarks representing specific
room numbers and room types including office, lab, kitchen,
bathroom, elevator, stairs, printers, and other. We also main-
tain lists of corridors and bridges as outlined above. Given
any two points, start S and finish F , our route planner com-
putes a set of edges and waypoints to travel from S to F .

Our corpus of landmarks on the map (exerpt below) is used
for Level 4 of our Abstraction parameter. Our other corpora
for our other levels of abstraction are much smaller and in-
clude (x, y) “points”, “angle” degrees, distance in “meters”,
“left turns”, “right turns”, and “u-turns”.

8
>>>>>>>><

>>>>>>>>:

. . . . . .

Office-3201(x, y,Gates, 3rd floor)
Bathroom-3(x, y,Gates, 3rd floor)
Stairs-34 (x, y,Gates, 3rd floor)
Kitchen-71 (x, y,Gates, 7th floor)
Office-7401(x, y,Gates, 7th floor)
Office-7412(x, y,Gates, 7th floor)
. . . . . .

5.2 Route Experience Variable Verbalization
Using our map, our mobile robot plans routes between points
in our building. Figure 2 Top shows one example route (in
green) from the 3rd Floor Office 3201 to the 7th Floor Of-
fice 7416 in our Gates building. We have labeled in black
our annotations over the map including the corridors, the el-
evators, a bridge, and a kitchen. Figure 2 Bottom shows a
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Elevator

3rd Floor map 7th Floor map

Figure 2: Top: Example of our mobile robot’s multi-floor plan in our building (blue walls, green route, red connects elevator
between floors). Bottom: Images of our robot navigating the route. The robot (1) starts at Office 3201, (2) travels down the
3200 corridor, and turns right to (3) reach the elevator. Once it (4) reaches the 7th floor, it (5) travels straight across the bridge,
(6) turns left at the kitchen, (7) travels down the 7400 corridor, and then (8) makes its first right to Office 7416.

visual depiction of the robot traveling along this route. We
demonstrate two variations of verbalizations for the route.

Example 1: Long, Detailed Verbalization
With our map and corpus, we consider the preference:

(Level 4, Global Environment, Detailed Narrative)
that represents a researcher in our lab who wants a detailed
description of what happens on each edge of the robot’s route.
We will review our algorithm’s analysis of the route plan to
generate a verbalization fitting this preference.

Choose Abstraction Corpus: Because the abstraction
level preference is Level 4, the VV algorithm chooses the
large corpus of room numbers, room types, and corridors and
bridges for its language model.

Annotate Route: Next, the input route is annotated with
these landmarks from the corpus. In this case, the VV algo-
rithm labels starting point Office-3201; the points leading to
the elevator are Corridor-3200; the elevator on the 3rd floor
is labeled Elevator-31 and similarly the 7th floor is labeled
Elevator-71; points on the bridge are Bridge-7; the Kitchen-
71 is labeled; the hallway points are labeled Corridor-7400;
and finally the finish point is Office-7416.

Subset Route: The researcher is interested in the Global
Environment Locality, and thus the route is not subsetted.

Segment Route: The researcher would like s =Detailed
Narrative. Our algorithm merges all same-labels, resulting in
seven route segments. We write segments in terms of their
meaning here because there are too many points to enumer-
ate; the robot maintains the list of points on the route.

�
s1: Office-3201, s2: Corridor-3200, s3: Elevator,

s4: Bridge-7, s5: Kitchen-71,

s6: Corridor-7400, s7: Office-7416
 

Narrate Route: Our algorithm’s ability to narrate a route
depends on filling in templates matching different route seg-
ments. We manually created the following templates for
Level 4 abstractions. We note next to the D whether the type
of landmark is specific (e.g., the template must be filled in
by a corridor, bridge, etc.), and we note with a slash that the
choice of verb is random to prevent repetition by replacing the
verbs with a synonym (e.g., [Veloso et al., 2008]). We have
similar templates for other abstraction levels that include dis-
tances and time to complete the route segments.

• “[I]
N

[visited/passed]
V

the [ ]
D:room”

• “[I]
N

[took]
V

the elevator and went to the [ ]
D:floor”

• “[I]
N

[went through/took]
V

the [ ]
D:corridor/bridge”

• “[I]
N

[started from]
V

the [ ]
D:start”

• “[I]
N

[reached]
V

[ ]
D:finish”

Using the templates, the VV Algorithm generates utter-
ances for each of the segments.8
>>>>>>>>><

>>>>>>>>>:

s1: “I started from Office 3201”,
s2: “I went through the 3200 corridor”,
s3: “I took the elevator to the seventh floor”,
s4: “I took the 7th floor bridge”,
s5: “I passed the kitchen”,
s6: “I went through the 7400 corridor”,
s7: “I reached Office 7416”,

Form Sentences: Finally, the algorithm combines the sen-
tences with “then”s (more complex concatenation could be
used):
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I started from office 3201, then I went through the
3200 corridor, then I took the elevator and went to
the seventh floor, then I took the 7th floor bridge,
then I passed the kitchen, then I went through the
7400 corridor, then I reached office 7416.

Example 2: Short Overview Verbalization
To contrast the long detailed landmark-based narrative, a
short verbalization can be achieved with preference

(Level 2, Gates 7th Floor Region, General Picture)
Here, a person accompanying the robot wants to know how
far they traveled only on the 7th floor. The VV algorithm first
annotates our entire route with abstraction Level 2, adding
distances to the edges in the route between each pair of points.
Since the required locality is Region, the algorithm subsets
the route containing only the required Gates 7th floor points.
As the specificity is General Picture, a single route segment
is generated as the combination of all edges from the new 7th
floor start node S to the finish node F . The route is annotated
with the total distance and time taken for the route. Next the
algorithm narrates the route using the template “[I]

N

[trav-
eled] [x] meters in [t] seconds on the [ ]

D:floor”. Finally
these utterances could be combined (not necessary here) to
form the final narrative:
I traveled 56.18 meters and took 75 seconds on the 7th floor.

5.3 Validation
Given the well-documented need for verbalizations, we focus
our experiment on whether we succeed at varying our ver-
balizations based on those needs. We randomly generated 12
multi-floor routes in our Gates building and 12 single-floor
routes, ran the VV algorithm over the route plans, and an-
alyzed the content of the 36 ⇥ 24 verbalizations that were
generated.

Figure 3 shows the average number of words for two of our
parameters: abstraction and specificity. There are many more
words in Detailed Narratives (55-104 words) compared to
Summaries (14-21) or General Pictures (10-18). We note that
the number of words is nearly the same for Summaries and
General Pictures. Because our VV implementation creates
one phrase per floor of the building for Summaries, it gener-
ates the same narrative as the General Picture for single-floor
navigation routes. Given that half of our routes are single-
floor, the average number of words for Summaries is similar
to that of General Picture rather than Detailed Narratives.

Additionally, there are more words generated for Sum-
mary/General Picture Level 4 Abstraction than Level 3 or 2.
This is due to the landmark descriptions that are more verbose
than the time and distances reported. In contrast, for Abstrac-
tion Level 4, there are no numbers in most of our narratives as
the landmarks are entirely made up of words (Figure 4). The
exception is Level 4 Abstractions with Detailed Narratives,
which do include office numbers.

The addition of the locality parameter reduces the overall
number of words and numbers but shows the same patterns.
As the narratives become more focused around a region and
then a landmark, there are fewer route segments to describe.
We conclude that overall we do successfully vary narratives
within our verbalization space.

Figure 3: Average number of words generated.

Figure 4: Average number of numbers generated.

6 Conclusion

It is hard, if not impossible, for humans to understand the ex-
perience of an autonomous mobile robot. In this paper, we
have contributed a novel approach to capture verbalization
by a robot as a way for the robot to narrate its experience in
natural language. Our mobile robot translates its route ex-
periences in into verbalization utterances. We contribute the
verbalization space as a formalization of multiple levels of
detail in which narrations can be generated. We introduce
different axes of the space to represent different dimensions
of verbalization, namely abstraction, locality, and specificity,
though the space can be extended.

The approach we present aims at being applicable beyond
mobile robots to other planning algorithms, allowing lan-
guage to be adjusted to the desired levels of detail. For au-
tonomous vehicles, we can imagine using a new map and
semantic landmark labels with our same verbalization space
and the same verbalization algorithm to produce narrations
of driven routes. Autonomous vehicles would reason over
points in GPS space, and use landmarks such as buildings,
roads, and street signs to create a variety of narrations. Other
intelligible machine learning applications could also produce
new formalisms for the verbalization space to produce vari-
able narrations.

We demonstrate the use of verbalizations on our mobile
service robot. We present two examples of narrations corre-
sponding to different points in the verbalization space for one
multi-floor route through our building environment. Then, we
validate on 24 routes that a variety of narrations that can be
generated from any single plan. Future work will focus on
studying techniques for the personalization of verbalization
preferences among our building occupants.
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