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Abstract

Clark’s completion plays an important role in ASP
computation: it discards unsupported models via
unit resolution; hence, it improves the performance
of ASP solvers, and at the same time it simplifies
their implementation. In the disjunctive case, how-
ever, Clark’s completion is usually preceded by an-
other transformation known as shift, whose size is
quadratic in general. A different approach is pro-
posed in this paper: Clark’s completion is extended
to disjunctive programs without the need of inter-
mediate program rewritings such as the shift. As
in the non-disjunctive case, the new completion is
linear in size, and discards unsupported models via
unit resolution. Moreover, an ad-hoc propagator for
supported model search is presented.

1 Introduction

Answer Set Programming (ASP) is a well established declar-
ative language for knowledge representation and reasoning
[Niemeld, 1999; Marek and Truszczyfiski, 1999; Lifschitz,
2002; Baral, 2003; Gelfond and Kahl, 2014]. In fact, ASP
programs are interpreted according to stable model seman-
tics, where each stable model provides a plausible scenario
or solution to the encoded problem. The original definition
of stable model, applicable to programs with atomic heads,
was soon extended to handle programs with disjunctive heads
[Przymusinski, 1991]. In the subsequent years, relevant prop-
erties regarding stable model semantics for disjunctive pro-
grams were discovered, and discussed in the literature. In
particular, broad classes of programs with good computa-
tional properties were identified: stable model existence be-
longs to the first level of the polynomial hierarchy for head
cycle free [Ben-Eliyahu and Dechter, 19941, one level be-
low than the general case. Even more relevant, the notion of
tightness was extended to disjunctive programs [Fages, 1994;
Erdem and Lifschitz, 2003; Lee and Lifschitz, 20031, proving
that stable models actually coincide with supported models
for a huge class of programs.

*This work was partially supported by MIUR under PON project
“Ba2Know (Business Analytics to Know) Service Innovation -
LAB”, No. PONO3PE_00001_1, and by Gruppo Nazionale per il
Calcolo Scientifico (GNCS-INdAM).
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The notion of support is intuitive, and expected to be satis-
fied by any stable model of the input program: a model is sup-
ported if for each true atom there is a rule whose body is true,
and whose head is satisfied only by the atom itself. Such a
notion can be enforced by a transformation known as Clark’s
completion [Clark, 1977] possibly preceded by another trans-
formation known as shift [Ben-Eliyahu and Dechter, 1994],
which provide a concrete strategy for computing stable mod-
els of tight programs by means of efficient SAT solvers.
Moreover, since stable models are expected to be supported
models as well, shift, completion and SAT solving are usually
embedded in modern ASP solvers in combination with other
techniques such as unfounded set inference via source point-
ers [Simons et al., 2002], and stability check via SAT oracle
calls [Leone et al., 1997].

This paper highlights a source of inefficiency in current
ASP solvers: the shift of a rule is quadratic in the number
of atoms occurring in its head. Actually, this quadratic blow
up was underestimated so far because the size of disjunctive
heads is often bounded by the input program, which means
that the data complexity is not affected. However, recent pro-
gresses in the formalization of the input language of GRINGO
[Gebser et al., 2015al, a widely used ASP grounder, men-
tioned conditional literals, a construct that essentially allows
to specify unbounded disjunctions. As a consequence, the
quadratic blow up may occur for fixed non-ground programs.

Minimal Hitting Set computation is a prominent exam-
ple of a problem that can be naturally encoded in ASP by
means of unbounded disjunctions. Given a collection C' of
subsets of a set .S, a hitting set for C' is a subset S’ of S
such that S’ contains at least one element from each sub-
set in C'. A hitting set S’ for C' is minimal if there is no
S” S’ such that S” is a hitting set for C. Hitting sets are
widely used in artificial intelligence. For example, it is well-
known that minimal hitting sets provide a duality relationship
between Minimal Unsatisfiable Subsets (MUSs) and Mini-
mal Correction Subsets (MCSs) [Liffiton and Sakallah, 2008;
Ignatiev et al., 2015]. A natural encoding for this problem in
the input language of GRINGO is the following:

s'(X) :in(X,Y) = c(Y). 1)
where the database contains ¢(y) if set y belongs to C, and
in(x,y) if x € S belongs to y € C. The output of GRINGO
is the propositional program comprising, for all y € C, a rule
of the following form: \/ ., s'(z) <.



Empirical evidence of the inefficiency of currently imple-
mented algorithms for processing the above program, and any
other program containing at least one rule whose head size
is not negligible, motivates a more in depth analysis of the
problem. In particular, new techniques to handle rules with
unbounded heads are required in order to overcome the limits
of the shift. As proved in Section 3, simple arguments such
as bounding head sizes by means of auxiliary atoms would
solve the quadratic blow up of the shift, but would also de-
stroy the link between stable models of the original program
and supported models of the rewritten program. Even worse,
a single rule with three or more atoms in its head would be
sufficient to destroy other desirable computational properties
such as tightness and head cycle freeness.

The proposed solution is thus to rethink the completion
in the disjunctive case. As in the original completion, the
new technique consists in building a CNF whose models are
one-to-one with the supported models of the input program.
Moreover, and even more important from the computational
point of view, all inferences commonly implemented by ASP
solvers for supported model search are preserved by the pro-
posed transformation. As an additional contribution, a spe-
cific propagator for handling support inferences in disjunctive
rules is described and implemented. In the tested instances,
the new completion and the propagator provide a sensible per-
formance gain to the solver WASP [Alviano ef al., 2014].

2 Background
Let A be a fixed, countable set of (propositional) atoms, in-
cluding L. A literal { is either an atom p, or its negation —p.
Let ¢ denote the complement of /, i.e., p := —p, and =p := p,
for all p € A. For a set S of literals, S := {¢ | £ € S},
St:=5NA,and S~ :=5nNA.

A (disjunctive) rule r has the following form:

pl\/---\/pm<—£1/\---/\€n 2)
where m > 1, n > 0, p1,...,pm are distinct atoms, and
0y, ..., 0, are distinct literals. Define B(r) := {{1,...,¢,},

and H(r) := {p1,...,pm}, referred to as the body and
the head of r, respectively. A program 11 is a set of rules.
Let A¢(II) denote the set of atoms occurring in II, and
heads(II, p) be the set of rules in IT whose head contains p.
A CNF T is a set of clauses, where each clause ¢ is a set
of literals. For n > 0, and ¢y, . . ., ¢,, being literals, formula

3)
is a compact representation of the following clauses: {} U
{l; | i€ [l..n]}; {o, 4;}, forall i € [1..n]. Similarly,

€0<—>£1V"'\/€n

£0<_>£1/\"'/\€n

4)
is a compact representation of the following clauses: {¢g, ¢; },
forall i € [1.n]; {€o} U {¢; | i € [1.n]}. (Forn = 0, the
connective A or V on the right of <+ will be specified in order
to avoid ambiguities.)

For 7 being a set, a rule, a program, or a CNF, let || denote
the size of m, i.e., the number of atoms occurring in 7, where
each occurrence count 1. Note that formula (3) has size (n +
1)+ 2-n=23-n+ 1, the same for (4).
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A (partial) interpretation is a set I of literals containing
—L; I is consistent if IT N I~ = (), and total for a program
or CNF 7 if IT U T~ = At(w). Let V be a set of atoms.
The restriction of I to V is I|y := I N (V U V). Two sets
I,J of interpretations are equivalent wrt a set V' of (visible)
atoms, denoted I =y J, if both |I| = |J|, and {I|y | I €
I} = {J|v | J € J} (where the first condition is important
for counting and enumeration of models [Janhunen, 2006]).

Relation = is defined as follows: for r of the form (2),
I =rif H(r)NI # () whenever B(r) C I, for a program
ILI EifI = rforallr € II; foraCNF T, [ = Iif
NI # Pforall p € T'. For 7 being a program or a CNF,
a model of 7 is a total, consistent interpretation / such that
I = 7. A model I is possibly referred to by the set I of its
positive literals. Let Mod(7) denote the set of models of 7.
For a program II, I is supported in II if for all p € I there
is a rule r such that B(r) C I, and H(r) NI = {p}. A
supported model of 11 is a model of II that is supported in II.
Let SupMod(II) denote the set of supported models of II.

Example 1. The models of the following program I1;:
aVbVc<+— b<a

are {c}, {a, b}, {c, b}, and {a, b, c}. The first is the only sup-
ported model of IT;. Consider now the following CNF I';:

C <4 a

al & —b A e b - a a < al
bl & —a A —c A o a b« btV b2
¢t < —a A b cectved

Its only model is {c, ¢, ¢*}, and therefore Mod(T'1) = 44(m)
SupMod(I1y). |

A model I of a program II is stable if it satisfies the
following stability condition: there is no J+ C IT such
that J = TIf, where II' is the reduct obtained from II by
first removing each rule r such that B(r)~ NI # (), and
then removing all negative literals [Przymusinski, 1991]. Let
StMod(II) be the set of stable models of II. It is well known
that StMod(I1) C SupMod(IT) for any program II, while
StMod(IT) = SupMod(II) does not hold in general. Ac-
tually, the fact that StMod(II) C SupMod(II) can be used
in practice by ASP solvers: the stability condition has to
be checked only on supported models; moreover, there is
a relevant class of program, known as tight [Lee and Lif-
schitz, 2003] and defined below, for which StMod(Il) =
SupMod(II) holds.

The (positive) dependency graph of 11, denoted Gy, has
vertices At(IT), and arcs from any p € H(r) to any ¢ €
B(r)T, for all r € II. TII is tight if all (strongly con-
nected) components of Gy are singleton. A broader class
is referred in the literature as head cycle free (HCF) pro-
grams [Ben-Eliyahu and Dechter, 1994], defined next, and
particularly relevant for computational complexity: checking
StMod(IT) # 0 is known to be Y& -complete, but only NP-
complete if IT is HCFE. II is HCF if there is no rule r € II
of the form (2) such that p;,p;, forsome 1 < i < j < m,
belong to the same component of Gyy.

Example 2. Program II; from Example 1 is tight, and there-
fore {c} is its only stable model. Indeed, () is not a model of

Hic}:{a\/b\/tﬂ—,c(—}. [ |



Model search usually takes advantage of inference rules
that iteratively add inferred literals to an interpretation /.
Given a CNF T, if there is a clause ¢ € I' such that
o\ I = {¢}, then ¢ is inferred by unit resolution. Given a
program II, if there is a rule » € II such that both B(r) C I,
and H(r) \ I~ = {p}, then p is inferred by forward chain;
if there is a rule » € II such that both H(r) C I—, and
B(r) \ I = {{}, then ¢ is inferred by backward chain.

Supported model search for a program II can use more in-
ference rules. Let psup(Il, p, I) denote the set of possible
supports for p, i.e.,

{r € heads(l,p) | H(r)\ I C {p}, B(r)NnI=0}. (5)
If there is an atom p € A¢(II) such that psup(Il,p,I) = 0,
then —p is inferred by lack of support. If there is an atom
p € I'" such that psup(I1, p, I) = {r}, then literals in B(r)U
H(r) \ {p} are inferred by last support.

Let unit(I", I') be the set of literals inferred by unit reso-
lution on T and I; let unit* (T, I) be the limit of Iy := I,
Iivhw = L Uunit(T, I;), for all ¢ > 0. Let sinf(II, 1)
be the set of literals inferred by all inference rules on II
and I, i.e., forward and backward inference, and last and
lack of support; let sinf*(II,I) be the limit of Iy := I,
Iiv1 =1, Usinf(IL, I;), for all i > 0. A CNF I is inference
preserving wrt a program II, denoted I' J% TI, if for all
consistent interpretations I such that I C A¢(IT) U A¢(IT) the
following conditions are satisfied: Let I’ := sinf™ (I, T), and
1" = unit*(T, I); ) I' C I"; Giyif (I"YTu(I’)~ = At(10),
then (I")* U (I")~ = A¢(T). Intuitively, (i) guarantees that
all inferences on II are covered by unit resolution on I', and
(i) ensures that truth values of atoms in I" are implied by truth
values of atoms in II.

Example 3. T'; and II; from Example 1 satisfy I'; a1,
For example, for I = {-a}, I’ is {—a,c,—b} (c is inferred
by forward chain, and —b by lack of support). In this case,
I" is {=a,-a',c3, c,—b', —b? =b,c'}, and condition (i) is
satisfied. Also note that I’ and I" satisfy condition (ii): For
I = {a}, I is inconsistent (b is inferred by forward chain,
and then —a by lack of support); in this case, I is inconsis-
tent as well (and contains b, and —a). |

Stable model search is usually implemented by combin-
ing (supported) model search with other techniques widely
acknowledged in ASP computation, i.e., unfounded set infer-
ence via source pointers [Simons et al., 2002], and stability
check via SAT oracle calls [Leone et al., 1997]. These tech-
niques are out of the scope of the paper. The next section is
thus mainly focused on the computation of supported models.

3 Computation
Supported models of programs without disjunction can be
computed by means of the so-called Clark’s completion
[Clark, 1977]. Let II be a program without disjunction. The
completion of I, denoted comp(I1), is the set of clauses
Pyl NNy, (©6)
for all » € II of the form (2) with m = 1, where 7 is a fresh
atom (true if and only if r is a support of p;), together with

\ (7

r€heads(Il,p)

r

D= p
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for all p € A. Moreover, two other strengths of completion
are that inferences are preserved, and the construction is lin-
ear in size.

Proposition 1. If 11 is a program without disjunction, then:
1. Mod(comp(I1)) = 41y SupMod(I1);
2. comp(IT) 3 1I;
3. |comp(I)| € O(/11]).

Example 4. Let I1; be the following program:

b+ a
c+ —a

a<+ —bA-c
b+ —aAN-c
c<+ —aA-b

Its only supported model is {c}, and its completion
comp(Ily) is 'y from Example 1, whose only model is
{c,ct,c®}. As observed in Example 3, 'y 2 TI,. [ |

In order to apply completion to programs in general, a
transformation known as shift is first applied to the input pro-
gram II, so to obtain a program shift(II) with the same sup-
ported models. Formally, let shift(II) be the program com-
prising rules

A

JE[l..n],j#i
for all » € II of the form (2). The strength of the shift is to
preserve both supported models and inferences. On the other
hand, the construction is not linear, but quadratic in size.

Proposition 2. If 11 is a program, then:

1. SupMod(shift(I1)) =4 SupMod(Il), and therefore
Mod(comp(shift(I1))) =a¢my SupMod(IT);

2. comp(shift(I1)) 2™ 11,

3. |shift(IT)| € O(|I1]?), so |comp(shift(I1))| € O(|I1|?);

4. comp(I1) = comp(shift(I1)) if 11 is disjunction-free.
Example 5. Program II, from Example 4 is shift(II;). W

Point 3 of Proposition 2 highlights a weakness of shift.
Hence, an interesting question is whether a different strategy
to avoid the quadratic blow up of the shift can be obtained
when the computational task is to compute stable models, not
just supported models. Actually, it is sufficient to add auxil-
iary atoms in order to rewrite the input program II into a new
program IT" whose head size is bound to 2. However, since
such auxiliary atoms are essentially Tseitin’s variables, im-
plications in both directions have to be added to the program,
thus introducing dependencies that are likely to deteriorate
the performance of a solver. In more detail, auxiliary atoms
t1,...,t;, will be used to compactly represent subformulas
in rules of the form (2). The normalization of 11, denoted
norm(II), is the program comprising the following rules:

ty O AN, 9)

<+ p; Vi € [2..m] (10)

Byt Vi€ [2.m — 1] (11)

Di Vi <t Vie[l.m—1] (12)

Pm < by, (13)

for all r € II of the form (2), where ¢7,...,1], are fresh

atoms.



Theorem 1. If 11 is a program, then:
1. StMod(norm(I1)) = as(m) StMod(IT);
2. |norm(II)| € O(|11));
3. SupMod(norm(Il))  Zaymy  SupMod(Il), and
comp(shift(norm(I1))) 2 11 are possible;

4. if II contains some rule v such that |H(r)| > 3, then
norm(II) is not HCE.

Example 6. The normalization norm(Il;) of program II;
from Example 1 is the following program:

t aVity i b+ a
th b bV il t} ¢+ —a
th i cth

th ¢

Its only stable model is {c,t},t3,¢3}, and therefore
StMod(norm(Ily)) =aym,) StMod(Ily). On the other
hand, {t},#,b} is a supported model of norm(Il;), while
{b} is not a supported model of Iy . Also note that norm (11 )
is not HCF, as b,t3,t] belong to the same component of
gnm"m(l_[l)- u

Points 3—4 of Theorem 1 suggest that the weakness high-
lighted by point 3 of Proposition 2 may be better circum-
vented by directly extending completion to the disjunctive
case. Hence, auxiliary atoms p] will be used with the same
meaning of the disjunction-free case, i.e., rule r of the form
(2) supports atom p;, for i € [1..m]. However, since m may
be greater than 1, other atoms occurring in the head of r have
to be taken into account. Additional auxiliary atoms will be
thus used, and in particular: s}, true if and only if rule » may
support p;, for i € [1..m]; df, true if and only if the disjunc-
tion p; V -+ - V p,y, is true, for i € [2..m].

The completion of a (disjunctive) program II, denoted
comp” (II), is the set of clauses

& opvd,,  Yie2m—1  (14)

d;, < Dm ifm>2 (15)

ST b AN, (16)
Sp 4> Si_ Apict Vi € [2..m] (17)
p; < s; AN di Vi e [1.m —1] (18)
Pm € Sp, (19

for all » € II of the form (2), together with (7) for all p €
At(IT). Note that (15) defines d7, as an alias of p,. Similarly,
(19) defines s;,, as an alias of p;,. It turns out that d;,, and s7,
could be simplified in the above construction, but they are
left to ease the reading. Even more important, note that for
m = 1 the above equations essentially give (6): only (16)
and (19) are used in this case, and (16) is precisely (6) if s7 is
replaced by its alias pj.
Theorem 2. If1I is a program, then:

1. Mod(comp" (I1)) = 441y SupMod (II);

2. comp" (II) 2™ 11,

3. |comp" (IT)| € O(|11]);

4

. comp(I1) = comp” (I1) if 11 is disjunction-free.

Example 7. The completion of program II; from Example 1
is the following CNF comp" (114 ):

d} <> bVvdi di < c

{s1 55 ¢ st A—a s <> 83 A b
al < st A —dd b < a a <+ at

b < si A —d} A a b bl v?
ct st cerctve?

Its only model is {c, s}, d3, d3, —at, —bt, —a, 83, —b%, b, si,
ct, ¢3}, and therefore Mod(comp" (I11)) = SupMod(I1y).
As for inferences, for I = {-a}, sinf*(Il},I) is
{=a, c,—b}, and unit*(comp" (I1;), I) is {—a, —a', d}, 3,
¢, d}, b, —b? —b, s}, si, st ct}. Conditions (i)—(ii) of in-
ference preserving are satisfied. Moreover, for I = {a},
sinf* (111, I) and unit* (comp" (I11), I) are inconsistent. M

4 Implementation

The completion for disjunctive programs has been imple-
mented in WASP, an open source ASP solver previously ap-
plying completion after shifting the input program. In the
new version, the input program II is possibly simplified af-
ter its parsing, and its completion comp" (II) is computed. If
necessary, other data structures are computed as it was done
before. This is the case, for example, of non-tight compo-
nents, for which source pointers are used, and of non-HCF
components, for which stability checks are obtained via SAT
oracle calls.

ASP solvers may also take advantage of other propagators,
i.e., efficient data structures that essentially provide a com-
pact representation of a set of clauses. In particular, in WASP,
aggregates are handled by pseudo-Boolean constraints of the
following form:

wy byt w by >k (20)
where n,wy, ..., w,, k are positive integers, and {1, ..., ¢,
are literals. Intuitively, the above constraint compactly rep-
resents all clauses of the form C' C {/y,...,£,} such that
> iefi.n]0;¢c Wi < k. Efficient data structures are thus em-
ployed to extend unit resolution: for all ¢ € [1..n], ¢; is in-
ferred from (20) if Zje[l__n} it el Wi < k, i.e., if the sum
of the integers associated with true and undefined literals dif-
ferent from ¢; is smaller than k. Note that the propagator has
to receive notifications only for literals ¢; (j € [1..n]) whose
complement is added to the current interpretation.

Example 8. Literal ¢! is inferred by the following constraint:
2--s1+a+btcta +b+ct>2

if the current interpretation is {s}, ~a, —a', ¢, —b,=b'}. W

A new propagator implementing all the inference rules

for supported model search described in Section 2 has been

implemented in WASP. The propagator actually combines

ad-hoc data structures with a few clauses, and one pseudo-
Boolean constraint. The general idea is to use auxiliary atoms

ST, pY,...,pl (asin comp") for each rule r of the form (2),
and to compactly represent the following clauses:
{s1,—pj} vj € [l.m] Q1)
{=pi,—pj} Vi€ [l.m],Vje[l.m],i#j (22)

{=sLpi}U{pj|jell.m],j#i} Vie[l.m] (23)
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together with (16). Moreover, clauses of the form (7) are
added for each p € A¢(II). In more detail, (21)—(22) are
handled by storing two vectors, v{) 1, Pm, 8T]
and v := [p{,...,pl,]; when the i-th literal of vector vj,
(k € [0..1]) is added to the current interpretation, the com-
plement of each literal in position different from ¢ of v]_ is
inferred. Clauses from (23), instead, are handled by adding

the following pseudo-Boolean constraint:
2-281+p1+-F D P+ D, > 2 (24)

Indeed, since {p;, —p} } belongs to (7), whenever —p; is added
to the current interpretation, —p; is added as well. Thus, both
(23) and (24) satisfy the following conditions: if p1,...,pm
are false, then —sj is inferred; if p1,...,0i—1,Di+1,-- -, Dm>»
forsome i € [1..m], and s7 is true, then p; and p] are inferred;
no inference is done in the remaining cases.

Example 9. The disjunctive rule of program II; from Exam-
ple 1 (i.e., a V bV ¢ <) is handled by the following vectors:

v% = [al,bl,cl]

by clause {s1}, and by the pseudo-Boolean constraint re-
ported in Example 8. The remaining rules are handled as in
comp(I1;). Hence, the clauses defining a, b, c, b2, and ¢?
from Example 1 are also added. |

Transformation comp" has been also implemented in an
external tool producing DIMACS output in the style of
LP2SAT [Janhunen and Niemel4, 2011]. Finally, the normal-
ization norm introduced in Section 3 has been implemented
in an external tool whose input and output conform to the nu-
meric format of GRINGO.

vé = [a,b,c, ﬁs%]

S Experiment

The impact of the new techniques proposed in this paper was
assessed empirically on three benchmarks: (i) instances from
ASP Competitions containing choice rules easily replace-
able by unbounded disjunctions; (ii) instances of Minimal
Hitting Set downloaded from http://research.nii.ac.jp/~uno/
dualization.html; (iii) single rule

p(X): X =1.n.

i.e., the symbolic version of program {\/,, ¢ ,; p(;) <} for
increasing values of constant n > 1. The experiment was run
on an Intel Xeon CPU 2.4 GHz with 16 GB of RAM. Time
and memory were limited to 600 seconds and 15 GB. The
tested solvers are WASP, CLASP 3.1.3 [Gebser et al., 2015b],
and GLUCOSE 4.0 [Audemard and Simon, 2009].

Concerning the first benchmark, the tested encodings are
Sokoban, Solitaire, Visit All and Weighted Sequence Problem.
The number of instances solved by WASP rises from 74 to 79
when shift +comp is replaced by comp". The performance
achieved by using the propagator is similar, with 78 solved in-
stances. These are good results if compared with CLASP: 80
instances are solved in the allotted time when the original en-
codings based on choice rules are used (74 when choice rules
are replaced by disjunctions). On the other hand, on the tested
instances already norm provides a sensible performance gain
to shift +comp, even not reaching the same performance of
comp"': WASP solves 77 instances, and CLASP 78.
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Figure 1: Performance on Minimal Hitting Set.

As for the second benchmark, the tested encoding is pro-
gram (1). The execution time is plotted in Figure 1(a). It can
be observed that the performance of both WASP and CLASP
is affected negatively by the transformation norm. On the
other hand, replacing shift +comp by the new transforma-
tion comp" provides a sensible performance gain to WASP,
which can be also observed for CLASP on hard instances; for
WASP, an instance by instance comparison of shift +comp
and comp" is plotted in Figure 1(b), where the majority of
the points are below the diagonal, indicating that comp" is
faster than shift+comp in the majority of the tested instances.
The benefit of adopting comp" is also confirmed by the per-
formance of GLUCOSE, which improves considerably when
comp" replaces the shift +comp transformation applied by
LP2SAT; an instance by instance comparison is plotted in
Figure 1(c), where almost all points are below the diagonal.
Finally, the best performance is achieved by WASP with the
propagator; Figure 1(d) highlights that the propagator has an
advantage over shift+comp in all tested instances.

The last benchmark in the experiment highlights how the
quadratic blow up due to shift may kill the computation of
ASP solvers already before starting the actual stable model
search procedure. Indeed, as it can be observed in Figure 2,
the tested solvers cannot process disjunctions of size 30K in
the allotted memory when shift +comp is used. On the other
hand, the amount of memory required by the other techniques
discussed in this paper is linear, as expected.

6 Related Work

Supported model search is a significant part in the most fre-
quent computational task of ASP solving, that is, computing
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Figure 2: Memory consumption to handle long disjunctions.

stable models of an input program. When the input program
contains disjunctive heads, many efficient ASP solvers im-
plement all inference rules of supported model search via unit
resolution on the CNF obtained by applying shift+comp. For
example, CLASP 3 [Gebser et al., 2015b], CMODELS 3 [Lier-
ler, 2005], and WASP 2 [Alviano et al., 2015a] implement
this strategy. As a consequence, and since unbounded dis-
junctions were already used in the literature (for example in
Encoding 3 of [Abseher et al., 2015]), these excellent ASP
solvers are affected by the quadratic blow up highlighted by
the experiment reported in Section 5, and can be easily im-
proved by replacing shift +comp with the translation comp"
introduced in this paper.

Technically, CMODELS 3 implements support inferences
by means of an extension of Clark’s completion that can
be directly applied to disjunctive logic programs, and whose
output is a set of propositional formulas [Lee and Lifschitz,
2003]. In more detail, given a program IT, CMODELS 3 builds
an implication

byN- ANl —p1 V-V D 25)
for each rule r € II of the form (2), and an implication
p— \/ /\ LA /\ -q (26)

r€heads(IL,p) \L€B(r) q€H (r)\{p}

for each atom p € At(II). As a first observation, the above
construction is quadratic in size because of (26). Moreover,
note that replacing the implication with an equivalence in
(26), and rewriting it into an equi-satisfiable CNF by the
Tseitin’s transformation, would result into comp(shift(IL)).
In the above transformation, instead, the implication is suf-
ficient because of (25), which however has the side effect of
introducing more Tseitin’s variables during the computation
of an equi-satisfiable CNF.

It is an interesting fact that the quadratic blow up in the im-
plementation of support inferences for disjunctive logic pro-
grams does not affect DLV [Alviano et al., 20101, and WASP 1
[Alviano et al., 2013], which essentially take advantages of a
propagator for this task. However, their propagators have fun-
damental differences with the propagator presented in Sec-
tion 4. First of all, DLV does not implement conflict learning,
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which is instead supported by WASP and by its propagators:
in case of conflict, clauses compactly represented by propa-
gators are possibly provided to the learning procedure, which
is therefore the same of CDCL-based SAT solvers [Silva and
Sakallah, 1996]. Conflict learning is implemented by WASP 1
as well, but with a completely different approach: the learn-
ing procedure is properly adapted to handle all inference rules
of stable model search, and is therefore difficult to maintain
and optimize.

For non-tight programs, support inferences are not suffi-
cient to compute stable models. For these programs, un-
founded set inference is often implemented by means of
source pointers [Simons et al., 2002], which essentially en-
force acyclicity in supporting rules. The implementation of
source pointers requires notifications for variations of the pos-
sible supports of atoms in non-tight components, which are
easy to obtain by observing the truth values of atoms of the
form p”. Moreover, for non-HCF programs, stability of mod-
els is checked by means of calls to coNP-oracles [Leone et al.,
1997]. In particular, CLASP 3 builds a CNF for checking the
absence of unfounded sets in the model [Gebser et al., 2013],
which was observed to be quadratic in size and motivated the
introduction in WASP 2 of a CNF of linear size for checking
minimality of the model for the program reduct [Alviano et
al., 2015b]. The completion for disjunctive programs can be
combined with these two techniques.

Finally, CLASP 3 implements the so-called component-
wise shift in case of non-HCF programs [Drescher er al.,
2008]: head atoms belonging to the same component are
not shifted, and the completion of the resulting program is
computed by introducing additional Tseitin’s variables for
non-atomic heads. When all disjunctive rules contain atoms
from the same component, the component-wise shift is not
affected by the quadratic blow up of the shift. On the other
hand, support inferences are not preserved in general, which
is a weakness in comparison to the completion for disjunctive
programs proposed in this paper.

7 Conclusion

Support inferences play an important role in stable model
search. ASP solvers take advantage of SAT solving to han-
dle this computational task. The CNF built for this purpose
is thus a key component to achieve efficiency. Despite that,
a quadratic CNF is currently adopted by many ASP solvers.
The problem cannot be further underestimated because of
a recently formalized construct of GRINGO [Gebser ef al.,
2015a] that was already used in the literature [Abseher et al.,
2015]. Actually, two solutions to this problem are proposed in
this paper, one using a CNF of linear size, and another using
propagators for an even more efficient memory management.
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