Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

Query Answering with Transitive and Linear-Ordered Data

Antoine Amarilli
LTCI, CNRS, Télécom ParisTech
Université Paris-Saclay

Pierre Bourhis
CNRS CRIStAL, Université Lille 1
INRIA Lille

Abstract

We consider entailment problems involving power-
ful constraint languages such as guarded existential
rules, in which additional semantic restrictions are
put on a set of distinguished relations. We consider
restricting a relation to be transitive, restricting a
relation to be the transitive closure of another rela-
tion, and restricting a relation to be a linear order.
We give some natural generalizations of guarded-
ness that allow inference to be decidable in each
case, and isolate the complexity of the correspond-
ing decision problems. Finally we show that slight
changes in our conditions lead to undecidability.

1

The query answering problem (or certain answer problem),
abbreviated here as QA, is a fundamental reasoning prob-
lem in both knowledge representation and databases. It asks
whether a query (e.g. given by an existentially-quantified con-
junction of atoms) is entailed by a set of constraints and a set
of facts. A common class of constraints used for QA are the
existential rules, also known as tuple generating dependen-
cies (TGDs). Although query answering is known to be un-
decidable for general TGDs, there are a number of subclasses
that admit decidable QA, such as those based on guarded-
ness. For instance, guarded TGDs require all variables in the
body of the dependency to appear in a single body atom (the
guard). Frontier-guarded TGDs (FGTGDs) relax this condi-
tion and require only that some guard atom contains the vari-
ables that occur in both head and body [Baget et al., 2011].
This includes standard SQL referential constraints as well
as important constraint classes (e.g. role inclusions) arising
in knowledge representation. Guarded existential rules can
be generalized to guarded logics that allow disjunction and
negation and still enjoy decidable QA, e.g. the guarded frag-
ment of first-order logic (GF) [Andréka er al., 1998] and the
Guarded Negation Fragment (GNF) [Béréany et al., 2011].

A key challenge is to extend these results to capture ad-
ditional semantics of the relations. For example, the prop-
erty that a binary relation is fransitive cannot be expressed
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directly in guarded logics, and neither can the property that
one relation is the transitive closure of another. Going be-
yond transitivity, one cannot express that a binary relation is
a linear order. Since ordered data is common in applications,
this means that a key part of data semantics is being lost.

There has been extensive work on decidability results for
guarded logics thus extended with semantic restrictions. We
first review known results for the satisfiability problem.

Ganzinger et al. [1999] showed that satisfiability is not de-
cidable for GF when two relations are restricted to be transi-
tive, even on arity-two signatures (i.e. with only unary and bi-
nary relations). For linear orders, [Kieronski, 2011] showed
GF is undecidable when three relations are restricted to be
(non-strict) linear orders, even with only two variables (so on
arity-two signatures). Otto [2001] showed satisfiability is de-
cidable for two-variable logic with one relation restricted to
be a linear order. For transitive relations, one way to regain
decidability for GF satisfiability was shown by Szwast and
Tendera [2004]: allow transitive relations only in guards.

We now turn to the QA problem. Gottlob er al. [2013]
showed that query answering for GF with transitive relations
only in guards is undecidable, even on arity-two signatures.
Baget et al. [2015] studied QA with respect to a collection of
linear TGDs (those with only a single atom in the body and
the head). They showed that the query answering problem is
decidable with such TGDs and transitive relations, if the sig-
nature is binary or if other additional restrictions are obeyed.

Transitivity has also been studied in description logics,
where the signature contains unary relations (concepts) and
binary relations (roles). In this arity-two context, QA is de-
cidable for many description logics featuring expressive oper-
ators as well as transitivity, such as Z7Q, Z0Q, ZOT [Cal-
vanese et al., 2009], Horn-SROZQ [Ortiz et al., 2011], or
regular-€ L1 [Krotzsch and Rudolph, 20071, but they often
restrict the interaction between transitivity and some features
such as role inclusions and Boolean role combinations. QA
becomes undecidable for more expressive description logics
with transitivity such as ALCOZF* [Ortiz et al., 2010] and
ZOZQ [Ortiz de la Fuente, 2010], and the problem is open
for SROZQ and SHOZQ [Ortiz and Simkus, 2012].

The main contribution of this work is to introduce a broad
class of constraints over arbitrary-arity vocabularies where



query answering is decidable when additional semantics are
imposed on some distinguished relations. We show that tran-
sitivity restrictions can be handled in guarded and frontier-
guarded constraints, as long as these distinguished relations
are not used as guards — we call this new kind of restriction
base-guardedness. The base-guarded restriction is orthogo-
nal to prior decidable cases such as transitive guards [Szwast
and Tendera, 2004] or linear rules [Baget ef al., 2015].

On the one hand, we show that the condition allows us
to define very expressive and flexible decidable logics, ca-
pable of expressing not only guarded existential rules, but
guarded rules with negation and disjunction in the head. They
can express not only integrity constraints but also conjunc-
tive queries and their negations. On the other hand, a by-
product of our results is new query answering schemes for
some previously-studied classes of guarded existential rules
with extra semantic restrictions. For example, our base-
frontier-guarded constraints encompass all frontier-one TGDs
(where at most one variable is shared between the body and
head) [Baget er al., 2009]. Hence, our results imply that
QA is decidable with transitive closure and frontier-one con-
straints, which answers a question of [Baget ef al., 2015]. In
fact, beyond transitivity assertions, our results even extend
to frontier-one TGDs with distinguished relations that are re-
quired to be the transitive closure of other relations.

Our results are shown by arguing that it is enough to con-
sider entailment over “tree-like” sets of facts. By representing
the set of witness representations as a tree automaton, we de-
rive upper bounds for the combined complexity of the prob-
lem. The sufficiency of tree-like examples also enable a re-
fined analysis of data complexity (when the query and con-
straints are fixed). Further, we use a set of coding techniques
to show matching lower bounds within our fragment. We also
show that loosening our conditions leads to undecidability.

Finally, we solve the QA problem when the distinguished
relations are linear orders. We show that it is undecidable
even assuming base-guardedness, so we introduce a stronger
condition called base-coveredness: not only are distinguished
relations never used as guards, they are always covered by a
non-distinguished atom. Our decidability technique works by
“compiling away” linear order restrictions, obtaining an en-
tailment problem without any special restrictions. The cor-
rectness proof for our reduction to classical QA again relies
on the ability to restrict reasoning to sets of facts with tree-
like representations. To our knowledge, these are the first
decidability results for the QA problem with linear orders.
Again, we give tight complexity bounds, and show that weak-
ening the base-coveredness condition leads to undecidability.

Proofs are omitted in this extended abstract.

2 Preliminaries

We work on a relational signature o where each relation
R € o has an associated arity (written arity(R)). A fact R(a)
(or R-fact) consists of a relation R € ¢ and domain elements
d, with |@| = arity(R). We denote a (finite or infinite) set of
facts over o by F. We write elems(F) for the set of elements
mentioned in the facts in F.

We consider constraints and queries given in fragments of
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first-order logic (FO). For simplicity, we disallow constants
in constraints and queries, although our results extend with
them. Given a set of facts F and a sentence ¢ in FO, we talk
of F satisfying ¢ in the usual way.

The queries that we will use are conjunctive queries (CQ),
namely, existentially quantified conjunction of atoms, which
we restrict for simplicity to be Boolean. We also allow unions
of conjunctive queries (UCQs), namely, disjunctions of CQs.

Problems considered. Given a finite set of facts F, con-
straints > and query () (given as FO sentences), we say that
Fo and ¥ entail () if for every (possibly infinite) F 2 Fy
satisfying X, F satisfies (). This amounts to asking whether
Fo AE A Q) is satisfiable (by a possibly infinite set of facts).
We write QA(Fy, X, @) for this decision problem, called the
query answering problem.

In this paper, we study the QA problem when imposing se-
mantic constraints on some distinguished relations. We thus
split the signature as o := op Ll op, where o3 is the base sig-
nature (its relations are the base relations), and op is the dis-
tinguished signature. All distinguished relations are required
to be binary, and they will be assigned special semantics. We
study three kinds of special semantics.

We say Fo, 3 entails () over transitive relations, and write
QAtr(Fo, X, Q) for the corresponding problem, if Fy A 3 A
—( is satisfied by some set of facts F where each distin-
guished relation Rj in op is required to be transitive' in F.

We say Fy, X entails () over transitive closure, and write
QAtc(Fp, X, Q) for this problem, if the same holds on some
JF where each relation R:r of op is interpreted as the transi-
tive closure of a corresponding binary base relation R; € op.

We say Fy, X% entails Q over linear orders, and write
QAlin(Fy, X, @), if the same holds on some F where each
relation <;€ op is required to be a strict linear order on the
elements of F.

We now define the constraint languages (which are all frag-
ments of FO) for which we study these QA problems.

Dependencies. The first constraint languages we study are
restricted classes of tuple-generating dependencies (TGDs).
A TGD is a first-order sentence 7 of the form V&' (A, v;(¥) —
3y A, pi(Z,7) ) where A\, ~; and A, p; are conjunctions of
atoms respectively called the body and head of 7.

We will be interested in TGDs that are guarded in various
ways. A guard for Z is an atom from o using every variable
in Z. We will be particularly interested in base-guards, which
are guards coming from the base relations 0.

A frontier-guarded TGD (FGTGD) is a TGD whose body
contains a guard for the frontier variables — variables that
occur in both head and body. It is a base frontier-guarded
TGD (BaseFGTGD) if there is a base-guard for the frontier
variables. We allow equality atoms x = x to be guards, so
BaseFGTGD subsumes frontier-one TGDs, which have one
frontier variable. Frontier-guarded and frontier-one TGDs

"Note that we work with transitive relations, which may not be
reflexive, unlike, e.g., R* roles in ZOZQ description logics [Cal-
vanese ef al., 2009]. However, our results are easily seen to adapt
when replacing transitive predicates (and transitive closure) by tran-
sitive and reflexive predicates (and closure).



GNF

Fragment QAtr QAtc QAlin 1

data  combin. data combin. data  combin. BaseGNF FGTGD
BaseGNF coNP-¢ 2EXP-c  coNP-c 2EXP-c undecidable BaseCIJvGNF BaseFTGTG\ID
BaseCovGNF coNP-¢c 2EXP-c  coNP-c 2EXP-c  coNP-¢c 2EXP-c —
BaseFGTGD in coNP 2EXP-c  coNP-c 2EXP-c undecidable BaseCovFGTGD fr-one]
BaseCovFGTGD P-c 2EXP-c  coNP-c 2EXP-c  coNP-¢c 2EXP-c —

BaselD

(a) Summary of QA results (for base-covered fragments, queries are also base-covered)

have been shown to have an attractive combination of expres-
sivity and computational properties [Baget et al., 2011].

We also introduce the more restricted class of base-
covered frontier-guarded TGDs (BaseCovFGTGD): they are
the BaseFGTGDs where, for every op-atom in the body,
there is a base guard in the body containing its variables (but
each op-atom may have a different base guard).

An important special case of frontier-guarded TGDs for
applications are inclusion dependencies (ID). An ID is a
FGTGD where the body and head contain a single atom, and
no variable occurs twice in the same atom. A base inclusion
dependency BaselD is an ID where the body atom is in o3, s0
it is both base-guarded and base-covered.

Guarded logics. Moving beyond TGDs, the second kind
of constraint that we study are guarded logics.

The guarded negation fragment (GNF) is the fragment of
FO which contains all atoms, and is closed under conjunction,
disjunction, existential quantification, and the following form
of negation: for any GNF formula (&) and atom A(Z, )
with free variables exactly as indicated, the formula A(Z, ) A
(&) is in GNF. That is, existential quantification may be
unguarded, but the free variables in any negated subformula
must be guarded; universal quantification must be expressed
with existential quantification and negation. GNF can express
all FGTGDs, as well as non-TGD constraints and UCQs. For
instance, as it allows disjunction, GNF can express disjunctive
inclusion dependencies, DIDs, which generalize IDs: their
body is a single atom with no repeated variables, and their
head is a disjunction of atoms with no repeated variables.

We introduce the base-guarded negation fragment
BaseGNF over o: it is defined like GNF, but requires
base guards instead of guards. The base-covered guarded
negation fragment BaseCovGNF over o consists of BaseGNF
formulas such that every op-atom A that appears negatively
(i.e., under the scope of an odd number of negations) appears
conjoined with a base guard — i.e., a og-atom containing all
variables of A. This technical condition is designed to gen-
eralize BaseCovFGTGDs. Indeed, a BaseCovFGTGD of the
form VZ(A v; — 3§ A\ p;) can be written in BaseCovGNF as
—3Z(Avi A =3G N pi)-

We call a CQ @Q base-covered if each op-atom in ) has
a op-atom of () containing its variables. This is the same as
saying that =@ is in BaseCovGNF. A UCQ is base-covered
if each disjunct is.

Examples. We conclude the preliminaries by giving a few
examples. Consider a signature with a binary base relation B,
a ternary base relation C, and a distinguished relation R™.

o Vayz((R*(z,y) A R™(y,2)) - R*(z,z)) is a TGD,

but is not a FGTGD since the frontier variables x, z are
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(b) Taxonomy of fragments

not guarded. It cannot even be expressed in GNF.
Voy(RT(2z,y) — B(z,y)) is an ID, hence a FGTGD.
It is not a BaselD or even in BaseGNF, since the frontier
variables are not base-guarded.

Vayz((B(z, ) AR (z,y) ART(y,2)) = RT (2, 2)) is
a BaseFGTGD. It is not a BaseCovFGTGD since there
are no base atoms in the body to cover x, y and v, z.
Jwazyz(R* (w, x) ARY(z,y) AR (y,2) ARY (2, w) A
C(w,z,y) AN C(y, z, w)) is a base-covered CQ.
Jay(B(z, y) A=(RY (z,y) AR (y,2)) A (R (z,y) V
R*(y,x))) cannot be rewritten as a TGD. But it is in
BaseCovGNF.

Our main results are summarized in Table a, and the lan-
guages that we study are illustrated in Figure b. In particular,
QAtr and QAtc are decidable for BaseGNF. This includes
base-frontier-guarded rules, which allow one to use a transi-
tive relation such as “part-of” (or even its transitive closure)
whenever only one variable is to be exported to the head. This
latter condition holds in the translations of many classical
description logics. Our results also imply that QAlin is de-
cidable for BaseCovGNF, which allows constraints that arise
from data integration and data exchange over attributes with
linear orders — e.g. views defined by selecting rows of a table
where some inequality involving the attributes is satisfied.

3 Decidability results for transitivity

We first consider QAtc, where o includes binary relations
Ry, ..., R,, and op consists of binary relations RT, L RY
such that RZT" is the transitive closure of R;.

Theorem 1. We can decide QAtc(Fo, %, Q) in 2EXPTIME,
where Fo ranges over finite sets of facts, ¥ over BaseGNF
constraints, and @ over UCQs. In particular, this holds when
3 consists of BaseFGTGDs.

In order to prove Theorem 1, we give a decision proce-
dure to determine whether Fy A X A —() is satisfiable, when
R} is interpreted as the transitive closure of R;. When
3} € BaseGNF and @ is a Boolean UCQ, then 3 A =@ is
in BaseGNF. So it suffices to show that BaseGNF satisfiabil-
ity is decidable, when properly interpreting Rj.

As mentioned in the introduction, our proofs rely heavily
on the fact that in query answering problems for these con-
straint languages, one can restrict to sets of facts that have a
“tree-like” structure. We now make this notion precise. A
tree decomposition of F consists of a tree (7', Child) and a
labelling function A associating each node of the tree 7" to a
set of facts of F, called the bag of that node, that satisfies the
following conditions: (i) each fact of F must be in the image



of A; (ii) for each element e € elems(F), the set of nodes
whose bag uses e is a connected subset of T'. It is Fy-rooted
if the root node is associated with Fq. It has width k — 1 if
each bag other than the root mentions at most &k elements.
For a number k, a ¢ sentence ¢ is said to have transitive-
closure friendly k-tree-like witnesses if: for every finite set of
facts Fy, if there is an F DO Fy satisfying ¢ in which each
R is interpreted as the transitive closure of R, then there is
such an F that has an Fy-rooted (k — 1)-width tree decompo-
sition. We can show that BaseGNF sentences have this kind
of k-tree-like witness for an easily computable k. The proof
uses a standard technique, involving an unravelling based on
“guarded negation bisimulation” [Bardny er al., 20111:

Proposition 1. Every sentence o in BaseGNF has transitive-
closure friendly k-tree-like witnesses, where k < |p|.

Here k can be taken to be the “width” of ¢ [Béréany et al.,
2011], which is roughly the maximum number of free vari-
ables in any subformula. Hence, it suffices to test satisfiability
for BaseGNF restricted to sets of facts with tree decomposi-
tions of width || — 1. It is well known that sets of facts of
bounded tree-width can be encoded as trees over a finite al-
phabet that depends only on the signature and the tree-width.
This makes the problem amenable to tree automata tech-
niques, since we can design a tree automaton that runs on rep-
resentations of these tree decompositions and checks whether
some sentence holds in the corresponding set of facts.

Theorem 2. Let ¢ be a sentence in BaseGNF, and let Fy be
a finite set of facts. We can construct in 2EXPTIME a 2-way
alternating parity tree automaton A, r, such that

Fo A g is satisfiable  iff L(Ay 7,) # 0

when each R;" € op is interpreted as the transitive closure
of R; € op. The number of states of A, 7, is exponential in
| o] - | Fo| and the number of priorities is linear in ||

The construction can be viewed as an extension of [Cal-
vanese et al., 20051, and incorporates ideas from automata for
guarded logics (see, e.g., [Gridel and Walukiewicz, 1999]).

Because 2-way tree automata emptiness is decidable in
time exponential in the number of states and priorities [Vardi,
1998], this yields the 2EXPTIME bound for Theorem 1.

Consequences for QAtr. We can derive results for QAtr
by observing that the QAtc problem subsumes it: to enforce
that R* € op is transitive, simply interpret it as the transitive
closure of a relation R that is never otherwise used. Hence:

Corollary 1. We can decide QAtr(Fy, X, Q) in 2EXPTIME,
where F( ranges over finite sets of facts, ¥ over BaseGNF
constraints (in particular, BaseFGTGD), and Q over UCQs.

In particular, this result holds for frontier-one TGDs (those
with a single frontier variable), as a single variable is always
base-guarded. This answers a question of [Baget et al., 2015].

Data complexity. Our results in Theorem 1 and Corol-
lary 1 show upper bounds on the combined complexity of the
QAtr and QAtc problems. We now turn to the complexity
when the query and constraints are fixed but the initial set of
facts varies — the data complexity.

We first show a CoNP data complexity upper bound for
QAtc for BaseGNF constraints. The algorithm uses the fact
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that a counterexample to QAtc can be taken to have a F'-
rooted tree decomposition, for some F’ that does not add new
elements to F, only new facts. While such a decomposition
could be large, it suffices to guess F’ and annotations describ-
ing, for each |p|-tuple ¢ in F’, sufficiently many formulas
holding in the subtree that interfaces with ¢. The technique
generalizes an analogous result in [Bardny et al., 2012].

Theorem 3. For any fixed BaseGNF constraints ¥ and
UCQ @, given a finite set of facts Fo, we can decide
QAtc(Fo, X, Q) in CoNP data complexity.

For FGTGDs, the data complexity of QA is in PTIME
[Baget et al., 2011]. We can show that the same holds, but
only for BaseCovFGTGDs, and for QAtr rather than QAtc:

Theorem 4. For any fixed BaseCovFGTGD constraints %
and base-covered UCQ @, given a finite set of facts Fg, we
can decide QAtr(Fo, X, Q) in PTIME data complexity.

The proof uses a reduction to the standard QA problem for
FGTGDs, and then applies the PTIME result of [Baget et
al., 2011]. The reduction again makes use of tree-likeness
to show that we can replace the requirement that the R;r
are transitive by the weaker requirement of transitivity within
small sets (intuitively, within bags of a decomposition). We
will also use this idea for linear orders (see Proposition 3).

Restricting to QAtr is in fact essential to make data com-
plexity tractable, as hardness holds otherwise.

Hardness. We now show complexity lower bounds. We
already know that all our variants of QA are 2EXPTIME-hard
in combined complexity, and CoNP-hard in data complexity,
when GNF constraints are allowed: this follows from existing
bounds on GNF reasoning [Barany et al., 2012] even without
distinguished predicates. However, in the case of the QAtc
problem, we can show the same result for the much weaker
language of BaselDs.

We do this via a reduction from QA with disjunctive inclu-
sion dependencies, which is known to be 2EXPTIME-hard
in combined complexity [Bourhis er al., 2013, Theorem 2]
and CoNP-hard in data complexity [Calvanese et al., 2006;
Bourhis er al., 2013], even without distinguished relations.
We use the transitive closure to emulate disjunction (as was
already suggested in the description logic context [Horrocks
and Sattler, 1999]) by creating an Rj'-fact and limiting the
length of a witness R;-path (this limit is imposed by Q’). The
choice of the length of the witness path among two possibili-
ties is used to mimic the disjunction. We thus show:
Theorem 5. For any finite set of facts Fy, DIDs %, and
UCQ Q on a signature o, we can compute in PTIME a set
of facts F), BaselDs X/, and a base-covered CQ Q' on a

signature o’ (with a single distinguished relation), such that
QA(}—Ov Zv Q) lﬁcQAtC( (/)7 Elv Q/)

This implies the following, contrasting with Theorem 4:
Corollary 2. The QAtc problem with BaselDs and base-

covered CQs is CoNP-hard in data complexity and
2EXPTIME-hard in combined complexity.

In fact, the data complexity lower bound for QAtc even
holds in the absence of constraints:

Proposition 2. There is a base-covered CQ Q) such that the
data complexity of QAtc(Fo, D, Q) is CoNP-hard.



We prove this by reducing the problem of 3-coloring a di-
rected graph, known to be NP-hard, to the complement of
QAtc. It is well-known how to do this using TGDs that have
disjunction in the head. As in the proof of Theorem 5, we
simulate this disjunction by using a choice of the length of
paths that realize transitive closure facts asserted in Fj.

In all of these hardness results, we first prove them for
UCQEs, and then show how the use of disjunction can be elim-
inated, using a prior “trick” (see, e.g., [Gottlob and Papadim-
itriou, 2003]) to code the intermediate truth values of disjunc-
tions within a CQ.

4 Decidability results for linear orders

We now move to QAlin, the setting where the distinguished
relations <; of op are linear (total) strict orders, i.e., they are
transitive, irreflexive, and total. We consider constraints and
queries that are base-covered. We prove the following result.

Theorem 6. We can decide QAlin(Fo, X, Q) in 2EXPTIME,
where JFo ranges over finite sets of facts, X over
BaseCovGNF, and Q) over base-covered UCQs. In partic-
ular, this holds when X consists of BaseCovFGTGDs.

Our technique here is to reduce this to traditional QA where
no additional restrictions (like being transitive or a linear or-
der) are imposed. Starting with BaseCovGNF constraints, we
reduce to a traditional QA problem with GNF constraints, and
hence prove decidability in 2EXPTIME using [Bdrany et al.,
2012]. However, the reduction is quite simple, and hence
could be applicable to other constraint classes.

The idea behind the reduction is to include additional con-
straints that enforce the linear order conditions. However, we
cannot express transitivity or totality in GNF. Hence, we will
only add a weakening of these properties that is expressible
in GNF, and then argue that this is sufficient for our purposes.

The reduction is described in the following proposition.

Proposition 3. For any finite set of facts Fy, constraints
Y. € BaseCovGNF, and base-covered UCQ @, we can
compute F) and ¥’ € BaseGNF in PTIME such that
QAlin(f()» Ev Q) lﬁCQA( (l)v E,v Q)

In particular, F; is Fy together with facts G(a, b) for ev-
ery pair a, b € elems(Fp), where G is some fresh binary base
relation. X' is X together with the k-guardedly-linear ax-
ioms for each distinguished relation <, where k& is |X A =Q)|;
namely: (i) guardedly total: Vay((guarded,, (%, y) A
x £y = x < yVy < z) (i) k-guardedly transitive:
Vry((guarded,, gy (@, y) Az <Fy) =z < y) (i) k-
cycle free: =3x(z <* ), where guarded, (2, y) is the
formula expressing that x, y is base-guarded (an existentially-
quantified disjunction over all possible base-guards contain-
ing x and y) and = <* y expresses that there is some <-path
of at most k elements that starts at x and ends at y. Note that
x <¥ 5 can be written in BaseGNF so, unlike the property
of being a linear order, the k-guardedly-linear axioms can be
expressed in BaseGNF.

We now sketch the argument for the correctness of
the reduction. The easy direction is where we assume
QA(FL, X', Q) holds, so any F' D F| satisfying ¥/ must
satisfy ). Now consider F D Fy that satisfies ¥ and where
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all < in op are strict linear orders. We must show that F
satisfies (). First, observe that F satisfies Y’ since the k-
guardedly-linear axioms for < are clearly satisfied for all k
when < is a strict linear order. Now consider the extension
of F to F’ with facts G(a,b) for all a,b € elems(Fy). This
must still satisfy >': adding these facts means there are addi-
tional k-guardedly-linear requirements on the elements from
Fo, but these requirements already hold since < is a strict lin-
ear order. Hence, by our initial assumption, F’ must satisfy
Q. Since @ does not mention G, the restriction of F’ back to
F still satisfies @ as well. Therefore, QAlin(Fp, X, Q) holds.

For the harder direction, suppose for the sake of contradic-
tion that QA(F}, X/, Q) does not hold, but QAlin(Fy, 2, Q)
does. Then there is some F' O F{ such that 7' satisfies
%' A =Q. We will again rely on the ability to restrict to tree-
like 7/, but with a slightly different notion of tree-likeness.

We say a set E of elements from elems(F) are base-
guarded in F if there is some op-fact in F that mentions all
of the elements in E. A base-guarded-interface tree decom-
position (T, Child, \) for F is a tree decomposition satisfying
the following additional property: for all nodes n; that are not
the root of T', if n5 is a child of ny and F'is the set of elements
mentioned in both n; and no, then F is base-guarded in F. A
sentence ¢ has base-guarded-interface k-tree-like witnesses
if for any finite set of facts Fy, if there is some F O F satis-
fying ¢ then there is such an F with a Fy-rooted (k—1)-width
base-guarded-interface tree decomposition.

Although the transformation from X to ¥’ makes the for-
mula larger, it does not increase the “width” that controls the
bag size of tree-like witnesses. Hence, we can show:

Lemma 1. The sentence ¥’ A—Q has base-guarded-interface
k-tree-like witnesses for some k < |¥ A =Q)|.

Using this lemma, we can assume that we have some
F' D F{ which has a (k — 1)-width base-guarded-interface
tree decomposition and witnesses ¥/ A =Q. If every < in
op is a strict linear order in F”, then restricting 7' to the set
of o-facts yields some F that would satisfy ¥ A =@, a con-
tradiction. Hence, there are some distinguished relations <
that are not strict linear orders in 7’. We can show that such
an F' can actually be extended to some F” that still satisfies
¥’ A =@ but where all < in op are strict linear orders, which
we already argued is impossible.

The crucial part of the argument is thus about extending
k-guardedly-linear counterexamples to genuine linear orders:

Lemma 2. [f there is F' D F|, that satisfies ¥’ N —Q and
has a F|-rooted base-guarded-interface (k — 1)-width tree
decomposition, then there is F"' D F' that satisfies ¥’ N\ —Q
where each distinguished relation is a strict linear order.

The proof of Lemma 2 proceeds by showing that sets of
facts that have (k — 1)-width base-guarded-interface tree de-
compositions and satisfy k-guardedly-linear axioms must al-
ready be cycle-free with respect to <. Hence, by taking the
transitive closure of < in F, we get a new set of facts where
every < is a strict partial order. Any strict partial order can
be further extended to a strict linear order using known tech-
niques, so we can obtain 7/ O F’ where < is a strict par-
tial order. This " may have more < facts than F’, but the



k-guardedly linear axioms ensure that these new <-facts are
only about pairs of elements that are not base-guarded.

It remains to show that 7" satisfies ¥/ A =(Q). It is clear that
F" still satisfies the k-guardedly-linear axioms, but it could
no longer satisfy > A —=(Q). However, this is where the base-
covered assumption is used: it can be shown that satisfiability
of ¥ A =@ in BaseCovGNF is not affected by adding new <
facts about pairs of elements that are not base-guarded.

Data complexity. Again, the result of Theorem 6 is a com-
bined complexity upper bound. However, as it works by re-
ducing to traditional QA in PTIME, data complexity upper
bounds follow from [Bérény et al., 2012].

Corollary 3. For any BaseCovGNF constraints 3 and base-
covered UCQ @, given a finite set of facts Fy, we can decide
QAlin(Fo, X, Q) in CoNP data complexity.

This is similar to the way data complexity bounds were
shown for QAtr (in Theorem 4). However, unlike for
the QAtr problem, the constraint rewriting in this section
introduces disjunction, so rewriting a QAlin problem for
BaseCovFGTGDs does not produce a classical query answer-
ing problem for FGTGDs. Thus the rewriting does not imply
a PTIME data complexity upper bound for BaseCovFGTGD.
Indeed, we will see in Proposition 4 that this is CoONP-hard.

Hardness. QAlin for BaseCovGNF constraints is again im-
mediately CoNP-hard in data complexity, and 2EXPTIME-
hard in combined complexity, from the corresponding bounds
on GNF [Bérdny et al, 2012]. However, we can show
that hardness holds for the much weaker constraint language
BaselD, by a reduction from DID reasoning, as in Section 3.

Theorem 7. For any finite set of facts Fo, DIDs ¥, and
UCQ Q on a signature o, we can compute in PTIME a set
of facts F|, BaselDs ¥/, and CQ Q' on a signature o' (with
a single distinguished relation), such that QA(Fo, X, Q) iff
QAlin(FL, X, Q.

The reduction allows us to transfer hardness results for DID
from [Calvanese et al., 2006; Bourhis et al., 2013], exactly as
was done in Theorem 5, to conclude:

Corollary 4. The QAlin problem with BaselD and base-
covered CQs is CoNP-hard in data complexity and
2EXPTIME-hard in combined complexity.

Again, as in the previous section, the data complexity lower
bound even holds in the absence of constraints:

Proposition 4. There is a base-covered CQ Q) such that the
data complexity of QAlin(F, 0, Q) is CoNP-hard.

5 Undecidability results for transitivity

We have shown in Section 3 that query answering is de-
cidable with transitive relations (even with transitive clo-
sure), BaseFGTGDs, and UCQs (Theorem 1). Removing our
base-guarded condition leads to undecidability of QAtc, even
when constraints are inclusion dependencies:

Theorem 8. There is a signature 0 = o Ll op with a single
distinguished predicate S in op, a set ¥ of IDs on o, and a
CQO Q on op, such that the following problem is undecidable:
given a finite set of facts Fo, decide QAtc(Fp, X, Q).
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The proof is by reduction from a tiling problem. The con-
straints use a transitive successor relation to define a grid of
integer pairs. It then uses transitive closure to emulate dis-
junction, as in Theorem 5, and relies on () to test for forbid-
den adjacent tile patterns.

An analogous result can be shown for QAtr, using (non-
base-guarded) disjunctive inclusion dependencies:

Theorem 9. There is an arity-two signature 0 = o U op
with a single distinguished predicate ST in op, a set ¥ of
DIDs on o, a CQ Q on op, such that the following prob-
lem is undecidable: given a finite set of facts Fy, decide
QAtr(]:Ov Ea Q)

These results complement the undecidability results of
[Gottlob et al., 2013, Theorem 2], which showed that, on
arity-two signatures, QAtr is undecidable with guarded TGDs
and atomic CQs, even when transitive relations occur only in
guards. Our results also contrast with the decidability results
of [Baget et al., 2015] which apply to QAtr: our Theorem 8
shows that their results cannot extend to QAtc.

6 Undecidability results for linear orders

Section 4 has shown that QAlin is decidable for base-covered
CQs and BaseCovGNF constraints. Dropping the base-
covered requirement on the query leads to undecidability:

Theorem 10. There is a signature ¢ = op U op where op
is a single strict linear order relation, a CQ @ on o, and a
set 33 of inclusion dependencies on og (i.e., not mentioning
the linear order, so in particular base-covered), such that the
following problem is undecidable: given a finite set of facts
Fo, decide QAlin(Fo, 2, Q).

This result is close to [Gutiérrez-Basulto ef al., 2013, Theo-
rem 3], which deals not with a linear order, but inequalities in
queries, which we can express with a linear order. However,
this requires a UCQ. As in our prior hardness and undecid-
ability results, we can adapt the technique to use a CQ.

By letting ¥’ := ¥ A =@ where ¥ and @ are as in the pre-
vious theorem, we obtain base-guarded constraints for which
QAlin is undecidable. In fact, ¥’ can be expressed as a set
of BaseFGTGDs. This implies that the base-covered require-
ment is necessary for the constraint language:

Corollary 5. There is a signature 0 = op U op where
op is a single strict linear order relation, and a set ' of
BaseFGTGD constraints, such that, letting T be the tauto-
logical query, the following problem is undecidable: given a
finite set of facts Fo, decide QAlin(Fp, X', T).

7 Conclusion

We have given a detailed picture of the impact of transitiv-
ity, transitive closure, and linear order restrictions on query
answering problems for a broad class of guarded constraints.
We have shown that transitive relations and transitive closure
restrictions can be handled in guarded constraints as long as
they are not used in guards. For linear orders, the same is
true if order atoms are covered by base atoms. This implies
the analogous results for frontier-guarded TGDs, in particu-
lar frontier-one. But in the linear order case we show that
PTIME data complexity cannot always be preserved.



We leave open the question of entailment over finite sets of
facts. There are few techniques for deciding entailment over
finite sets of facts for logics where it does not coincide with
general entailment (and for the constraints considered here it
does not coincide). An exception is [Bardny and Bojariczyk,
2012], but it is not clear if the techniques there can be ex-
tended to our constraint languages.
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