
Incomplete Causal Laws in the Situation Calculus Using Free Fluents

Marcelo Arenas, Jorge A. Baier, Juan S. Navarro

Universidad Católica de Chile
{marenas, jabaier, juansnn}@ing.puc.cl

Sebastian Sardina

RMIT University, Australia
sebastian.sardina@rmit.edu.au

Abstract

We propose a simple relaxation of Reiter’s basic
action theories, based on fluents without succes-
sor state axioms, that accommodates incomplete-
ness beyond the initial database. We prove that fun-
damental results about basic action theories can be
fully recovered and that the generalized framework
allows for natural specifications of various forms of
incomplete causal laws. We illustrate this by show-
ing how the evolution of incomplete databases,
guarded action theories, and non-deterministic ac-
tions can be conveniently specified.

1 Introduction

The situation calculus [McCarthy and Hayes, 1969; Reiter,
2001] is a popular and well-established second-order logical
formalism for representing and reasoning about dynamic sys-
tems. Basic action theories (BATs) [Reiter, 1991] are axiom-
atizations in the situation calculus of a certain shape describ-
ing how the world evolves under the effects of actions. Im-
portantly, BATs provide a parsimonious and effective way to
solve the frame problem within classical logic, a problem that
resisted solution for decades [McCarthy and Hayes, 1969;
Shanahan, 1997]. This type of theories have been studied
at depth, and have been shown elaboration tolerant via mul-
tiple extensions, such as time [Pinto, 1994], high-level pro-
grams [Levesque et al., 1997], ramifications [Pinto, 1999;
McIlraith, 2000], and concurrency and natural actions [Re-
iter, 1996].

BATs enjoy a number of good properties. Among them
are the relative satisfiability and regression theorems. Both
reduce important tasks—including the projection task [Pirri
and Reiter, 1999; Reiter, 2001]—to first-order theorem prov-
ing on the axiomatization for the initial situation. This is im-
portant because the situation calculus is a second-order logic.

In BATs there ought to be exactly one successor state ax-
iom per fluent. Each of these axioms characterizes precisely
how each fluent evolves with actions. Possibly because of
such a requirement, there is an informal understanding that
BATs are not able to accommodate incomplete knowledge on
the causal laws of the domain. In the literature, this reflected
by at least three extensions to Reiter’s formalism for handling
incomplete knowledge at the causal level. Guarded action

theories (GATs) [De Giacomo and Levesque, 1999], allow
both the representation of the occlusion principle [Sandewall,
1994] and non-deterministic actions. An important limitation
of GATs is that they do not come with a complete regres-
sion procedure. The Probabilistic Situation Calculus [Pinto
et al., 2000] is major variant of Reiter’s BATs which can rep-
resent non-deterministic and probabilistic actions, requiring
different foundational axioms, a different meta-theory, and
a re-work of important theorems. Finally, Delgrande and
Levesque [2013] propose treatment a for non-deterministic
actions that builds on an epistemic view of the Situation Cal-
culus, which also requires different foundational axioms.

In this work, we show how non-determinism in causal laws
can be accommodated in the Situation Calculus by simply al-
lowing some fluents to have no successor state axiom. We
call such fluents free fluents, which are analogous to “deter-
mining fluents” in the Event Calculus [Shanahan, 1999]. Our
approach, which is a small modification to the simplest form
of the Situation Calculus, does not need any changes to foun-
dational axioms. Moreover, it allows the modeling of a range
of applications, such as incomplete databases, guarded action
theories, and non-deterministic actions.

Below we prove that fundamental theorems on BATs can
be fully recovered in our relaxation. Specifically, relative sat-
isfiability and the regression theorem still apply in our gener-
alized theories. Then we show how free fluents can be applied
to model non-deterministic actions and databases with incom-
plete knowledge. We continue by showing that GATs can
be mapped to our BATs. This has significance since known
forms of regression for GATs are limited to certain types of
regressable formulas, while our regression is not. We final-
ize with a discussion of related work in which we analyze
a few advantages, besides simplicity, that our approach has
over Pinto et al.’s and Delgrande and Levesque’s approaches.
Moreover, we explain that, surprisingly, free fluents can be
“compiled away” provided we allow infinite distinguished el-
ements in the domain, albeit yielding substantially more con-
voluted theories.

2 Action Theories in the Situation Calculus

The Situation Calculus [Reiter, 2001] Lsitcalc, is a many-
sorted second-order language with equality, designed for rep-
resenting dynamically changing worlds whose changes are
the result of actions. Terms of sort situation are finite se-

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

907

quences of actions: the empty sequence is denoted by the dis-
tinguished constant S0, and do(a, s) denotes the situation that
results from performing action a in situation s. For legibility,
we write do([A1, . . . , Ak], s) to denote the situation resulting
from executing actions A1, . . . , Ak in situation s. Sort object
is a catch-all sort for terms that denote objects of the world.

In Lsitcalc, fluents describe the dynamic aspects of the
world. A relational (functional) fluent is a predicate (func-
tion) whose last argument is a situation, and thus whose truth
value (value) can change from situation to situation. For ex-
ample, relational fluent Broken(x, s) can be used to denote
that object x is broken in situation s, and functional fluent
salary(x, s) to denote the salary of employee x in situation s.

Actions need not be executable in all situations. Predicate
Poss(a, s) is used to state that action a is executable in sit-
uation s. Finally, the distinguished binary predicate s @ s0

states that situation s represents a sub-history of situation s,
that is, s0 = do([A1, . . . , Ak], s), for some non-empty se-
quence of actions A1, . . . , Ak.

A formula ' of Lsitcalc is called uniform in situation term
� [Reiter, 2001] if the only situation term mentioned in '
is �, neither Poss, @, nor equalities between situations are
mentioned, and there is no quantification over situations.

In this paper we embrace Reiter’s basic action theories

(BATs), which is a well-established form to build Lsitcalc
theories. Let D = Dposs [Dssa [Duna [DS0 [⌃ such
that: (1) Dposs is the set of precondition axiom of the form
Poss(A(~x), s) ⌘ ⇧A(~x, s), where ⇧A(~x, s) is a formula uni-
form in s; (2) Dssa is the set of successor state axiom charac-
terizing how fluents evolve w.r.t. actions (see below); (3) Duna
is the set of unique names axioms for actions; (4) DS0 is a set
of formulae uniform in S0, defining the initial situation; and
(5) ⌃ is a set of domain-independent foundational axioms.

In particular, the set Dssa contains one successor state ax-

iom (SSA) per relational fluent F and functional fluent f of
the form F (~x, do(a, s)) ⌘ �F (~x, a, s) and f(~x, do(a, s)) =
y ⌘ �f (~x, y, a, s), resp., where �F and �f are formulas
uniform in s characterizing how F and f evolve, resp., in sit-
uation s when action a is performed. Reiter [1991] defined a
way to generate successor SSAs from a set of so-called effect

axioms, stating how an action changes the value of a fluent.
A BAT is a set of axioms D of the form above and satis-

fying the consistency property such that for each functional
SSA f(~x, do(a, s)) = y ⌘ �f (~x, y, a, s) in Dssa we have:1

Duna [DS0 |= 9y.�f (~x, y, a, s),

Duna [DS0 |= �f (~x, y1, a, s) ^ �f (~x, y2, a, s) � y1 = y2.

In the rest of the paper we also utilize Reiter’s notion of
legal (or executable) situation

[2001], that is, one in which
all actions are possible. For ground situation terms:

Legal(do([A1, . . . , Ai], s))
.
=

n̂

i=1

Poss(Ai, do([A1, . . . , Ai�1], S0)).

1In this paper, non-quantified variables are assumed universally
quantified at the outermost level.

2.1 Two Key Results: Regression & Satisfiability

A fundamental task in the situation calculus is the projec-

tion task: given a BAT D and a query formula ' uniform in
do([A1, . . . , An], s), check whether D |= ' holds.

Reiter [1991] proves that the projection task, for a gen-
eral class of sentences '—the regressable sentences—can
be carried out only using first-order theorem proving on the
initial situation. Roughly speaking, a sentence W in Lsitcalc
is regressable iff each term of sort situation has the form
do([A1, . . . , An], S0) and each atom of the form Poss(↵, s) is
such that ↵ has the form A(t1, . . . , tn). For such sentences, a
regression operator R['] can be defined to transform ' into
a formula—the regression of '—that is uniform in S0 (i.e., it
only talks about what is true in the initial situation).
Theorem 1 (Regression Theorem; Reiter, 1991). If ' is an
Lsitcalc regressable query sentence and D is a BAT, then:

D |= ' iff DS0 [Duna |= R['].

This is an important result from a practical standpoint in that
second-order axioms in ⌃ are not needed: a query against the
initial situation and unique name axioms is sufficient.

The other fundamental result for BATs states that the con-
sistency of a BAT depends, basically, on building a consistent
initial situation:
Theorem 2 (Relative Satisfiability; Reiter, 1991, 2001). A
BAT D is satisfiable iff Duna [DS0 is satisfiable.

3 Basic Actions Theories with Free Fluents

In this section, we lift the requirement of having one succes-
sor state axiom per fluent in a basic action theory. It turns out
that the fundamental results for BATs can be be recovered.

A basic action theory with free fluents (BAT with free flu-
ents) D is defined exactly as a basic action theory but where
the set Dssa contains at most one successor state axiom per
fluent. A free fluent is one that has no successor state ax-
iom, and hence, as “determining fluents” in the Event Cal-
culus [Shanahan, 1999], they are not subject to the common
law of inertia. Intuitively, a free fluent can be used to denote a
non-determined truth value in a situation (relational free flu-
ent) or to denote an un-determined object or action value in a
situation (functional free fluent). For the sake of readability,
we shall annotate fluent symbols with a hat symbol, such as
F̂ (~x, s) or f̂(~x, s), to denote that these are free fluents.

Our first fundamental result states that BATs with free flu-
ents satisfy the Relative Satisfiability condition.
Theorem 3 (Relative Sat.). A BAT with free fluents Dposs [
Dssa[Duna[DS0[⌃ is satisfiable iff Duna[DS0 is satisfiable.

The second fundamental result relates to regression. We
prove that BATs with free fluents do admit a sound and com-
plete regression operator, which as with standard basic action
theories, can be used to solve the projection task by querying
the initial situation and unique name axioms only.

Without loss of generality, and for the sake of legibility, we
define our regression operator for formulae of a certain shape.
A formula ' of Lsitcalc is in normal form (for regression) iff
it satisfies the following syntactic conditions: (i) every term

908

of sort action in ' is of the form either A(~u) or a(~u), where
A is a constant of sort action, a is a variable of sort action and
every component of tuple ~u is either a constant or a variable
of sort object; and (ii) every atomic formula in ' mentioning
a fluent is of the form either F (~u,�) or f(~u,�) = v, where F
is a relational fluent, f is a functional fluent, � is a term of sort
situation (where every term of sort action satisfies condition
(i)), every component of ~u is a variable or a constant of sort
object, and v is a variable or a constant of sort object.

It is not difficult to see that, by using some extra variables,
every formula ' of Lsitcalc can be transformed into a logically
equivalent formula T (') that is in normal form. In addition,
if the original formula is regressable (see Section above), so
will be its normal form equivalent. For instance, the formula

'
.
= F (c1, f(s1), do(A(c1, g(c3, do(B(c4, h(x, s2)), s3))), S0))

is logically equivalent to the normal form formula:

T (')
.
= 9y19y29y3.[y1 = f(s1) ^ y2 = h(x, s2) ^

y3 = g(c3, do(B(c4, y2), s3)) ^
F (c1, y1, do(A(c1, y3), S0))].

By assuming formulae are in normal form, a simpler regres-
sion operator can be defined, as it is not necessary to roll
back fluents in a special order in terms of prime functional
fluents [Reiter, 2001, Definition 4.7.1].

Next, given a regressable formula ' in normal form, the
regression operator R over ', denoted by R['], is induc-
tively defined following [Reiter, 2001, Definition 4.7.4]. Con-
cretely, assume first that ' is an atomic formula:

• If ' does not mention any fluent (i.e., it is a rigid atom),
only mentions free fluents, or is of the form F (~u, S0) or
f(~u, S0) = v, then R['] = '.

• If ' is of the form F (~u, do(↵,�)), where F is a
non-free relational fluent with successor state axiom
F (~x, do(a, s)) ⌘ �F (~x, a, s), then assuming that all
quantified variables in �F (~x, a, s) are renamed to be
distinct from the variables in F (~u, do(↵,�)), we have
that R['] = R[T (�F (~u,↵,�))].

• If ' is of the form f(~u, do(↵,�)) = v, where f is
a non-free functional fluent with successor state axiom
f(~x, do(a, s)) = y ⌘ �f (~x, y, a, s), then assuming
that all quantified variables in �f (~x, y, a, s) are renamed
to be fresh, we have that R['] = R[T (�f (~u, v,↵,�))].

• If ' is of the form Poss(A(~u),�), where the precondi-
tion axiom for A is Poss(A(~x), s) ⌘ ⇧A(~x, s), then as-
suming that all quantified variables of ⇧A(~x, s) are re-
named to be fresh, then R['] = R[T (⇧A(~u,�))].

For non-atomic formulas, R['] is defined as usual: (1) if
'=¬ , then R['] = ¬R[]; (2) if '= 1^ 2, then R['] =
R[1] ^R[2]; and (3) if '=9x , then R['] = 9x.R[].

As with standard BATs, the regression operator yields a
formula whose validity can be checked by considering only
the initial state and the unique name axioms for actions.
Theorem 4 (Regression). Suppose ' is a regressable sen-
tence of Lsitcalc and D is a BAT with free fluents. Then:

D |= ' iff DS0 [Duna |= R['].

It is important to note that the formula R['] may not be
uniform in S0, as free fluents are not “rolled back” by R and
hence will be left with a situation term in their last argument
different from S0. Nonetheless, because such fluents have no
constraint whatsoever, the special interpretation of situations
given by the foundational axioms in ⌃ is irrelevant. Thus, the
non-uniform formula that is left can still be checked against
DS0 [Duna (with no special interpretation of situations).

4 Non-Deterministic Actions

An important feature of dynamic systems that our BATs can
represent is actions with non-deterministic effects. A stan-
dard approach to modeling such actions is to associate an ac-
tion with a set of effects. For example, the action of rolling a
dice can be captured with a combination of a successor state
axiom and a precondition axiom as follows:

diceNo(d, do(a, s)) = n ⌘
(a = ROLL(d) ^ v̂(d, s) = n) _

(diceNo(d, s) = n ^ a 6= ROLL(d));

Poss(ROLL(d), s) ⌘ [v̂(d, s) � 1 ^ v̂(d, s)  6)].

The SSA states that the dice’s top number is equal to the value
of v̂(d, s), a free fluent, while the precondition axiom, follow-
ing Bacchus et al. [1995]’s idea for modeling noisy sensors,
constrains the value of v̂(d, s) to be between 1 and 6 (other-
wise, the action of rolling the action is not legally executable).
Note that the free fluent v̂(d, s) has d as an argument, allow-
ing a possibly different assignment to each dice.

Then, to verify whether a certain property Q holds in a
ground situation S, we check whether D |= Legal(S) �
Q(S). Observe that this disregards models where S is not
legal. Thus, by exploiting our regression result (Theorem 4)
it is possible to prove that D |= Legal(do(ROLL(d1), S)) �W6

i=1 diceNo(d1, do(ROLL(d1), S)) = i whereas, for any
k 62 {1, . . . , 6}, D |= Legal(do(ROLL(d1), S)) �
¬(diceNo(d1, do(ROLL(d1), S)) = k).

More complex situations that involve arbitrary non-
deterministic effects can also be accommodated in our BATs.
Consider for example the Liar’s dice game, popular in South
America, in which players place a number of dices (typically
5) in a opaque cup. In one shot, all players roll the dice by
turning their cups upside down onto the table. The game goes
from here, but we just focus on how we can model the turning
of all cups with a single non-deterministic action, TURNALL.

We use fluent in(d, c, s) to state that the dice d is in cup c
in situation s. Now the SSA for fluent diceNo is as follows:
diceNo(d, do(a, s)) = n ⌘

(a = TURNALL ^ 9c in(d, c, s) ^ v̂(d, s) = n) _
(diceNo(d, s) = n ^ (a 6= TURNALL _ ¬9c in(d, c, s))).

To restrict the range of v̂ to legal dice values, we use the pre-
condition axiom:

Poss(TURNALL, s) ⌘
8d [(9c in(d, c, s)) ! (v̂(d, s) � 1 ^ v̂(d, s)  6)].

Note how using a free fluent, together with a combination
of successor state and precondition axioms as above, allows

909

us to model a rolling dice action that affects an arbitrary num-
ber of dices at the same time. It is not difficult to see how
those axioms would look like for an action TURNCUP(c) to
roll only those dices in cup c.

5 Databases with Incomplete Information

A fundamental result about BATs shows they can be used
to formalize the evolution of a database under a sequence
of updates [Reiter, 1995]. For example, consider a rela-
tion Teaches(did, pid, cid) in a university database that stores,
for every department with identifier did, the identifier pid
of a professor teaching the course with identifier cid. A
standard way to update this relation is by executing ac-
tions ADD(did, pid, cid) and DEL(did, pid, cid), which add
and delete a tuple from the relation Teaches, respectively.
This naturally gives rise to the following SSA for Teaches:

Teaches(did, pid, cid, do(a, s)) ⌘
a = ADD(did, pid, cid) _
(Teaches(did, pid, cid, s) ^ a 6= DEL(did, pid, cid)).

Nonetheless, the formalization proposed by Reiter [1995] is
not amenable to handling databases with null values. For
example, we may need to record that a professor teaches a
course for a specific department without knowing the iden-
tifier of the course. To do so, we would like an action
ADD PD(did, pid) to add the fact that a professor with iden-
tifier pid teaches in a department with identifier did. Note
that such an update is possible in a relational database, and
will generate a tuple with a null value in the cell for the
course identifier [Ramakrishnan and Gehrke, 2002]. Unfor-
tunately within Reiter’s BATs, any SSA for Teaches would
specify every single value of a new tuple added by any ac-
tion. Indeed, while the effects of actions ADD(did, pid, cid)
and DEL(did, pid, cid) can be stated by the effect axioms:

a = ADD(did, pid, cid) � Teaches(did, pid, cid, do(a, s)),
a = DEL(did, pid, cid) � ¬Teaches(did, pid, cid, do(a, s)),

one we be tempted to write an effect axiom such as:

a = ADD PD(did, pid) �
9x Teaches(did, pid, x, do(a, s)), (1)

which expresses that ADD PD(did, pid) adds a tuple with
some (unknown) value. Unfortunately, this axiom is not in
the form allowed by Reiter [1995], which does not admit ex-
istential quantification in the consequent of the implication.

At this point, the notion of free fluent comes to the rescue.
Indeed, the generation of an “unknown” value in axiom (1)
can be naturally modeled by using a functional free fluent f̂ :

a = ADD PD(did, pid) ^ cid = f̂(s) �
Teaches(did, pid, cid, do(a, s)).

Note that f̂ should not have a successor state axiom since the
value of cid, which is equal to f̂(s), should not be determined
when the action ADD PD(did, pid) is executed. In addition,
observe that f̂ has to be a fluent (i.e., with its last argument of

sort situation), otherwise after multiple executions of action
ADD PD(did, pid) professor pid would wind up teaching the
same course in department did. Taking into account the new
effect axiom, we obtain the following SSA for Teaches:

Teaches(did, pid, cid, do(a, s)) ⌘
a = ADD(did, pid, cid) _
(a = ADD PD(did, pid) ^ cid = f̂(s)) _
(Teaches(did, pid, cid, s) ^ a 6= DEL(did, pid, cid)).

Fluent f̂ above only has s as an argument in this example,
since the action ADD PD(did, pid) is meant to add just one tu-
ple in a specific situation. However, an action can add several
tuples in the same situation, in which case we will need to
consider free functional fluents with extra arguments. For ex-
ample, assume our database contains a relation Aff (pid, did),
which indicates that the professor with identifier pid is affili-
ated to the department with identifier did. Moreover, assume
that the execution of an action ADD AFF(did) has as effect
that every professor affiliated with department did teaches a
course in such a department. Since the specific course is not
specified when executing ADD AFF(did), the effect of this ac-
tion is modeled by using a functional free fluent ĝ:

a = ADD AFF(did) ^ Aff (pid, did) ^
cid = ĝ(pid, s) � Teaches(did, pid, cid, do(a, s)).

Notice that in this case pid cannot be removed as an argument
of ĝ, as otherwise all the professors affiliated with the depart-
ment did will end up teaching the same course as the result of
executing ADD AFF(did).

Null values are widely used in theory and practice to repre-
sent missing information in databases. In relational database
systems, only one symbol NULL is used to represent the pres-
ence of a null value, without assuming that nulls in differ-
ent positions are equal. A way to formalize this semantics
is by using different symbols for null values in different po-
sitions, which is what we are doing with a successor state
axiom like the one before for Teaches. But free fluents allow
us to go further, towards modeling more expressive database
formalisms with incomplete information. For example, if we
assume that relation Teaches(did, pid, pname, cid) also stores
the name pname of professor with identifier pid, then when
modeling the effect of action ADD PD(did, pid), we do not
expect the name of the professor pid to change every time
this action is executed. In fact, we expect this name to be
the same over time even if we do not have it in the database.
Thus, we would like to associate only one null value for pro-
fessor pid that corresponds to his/her name, and which can
be used in several different positions in the database. Such
a database is called a Naı̈ve table [Imielinski and Jr., 1984;
Abiteboul et al., 1995], and its evolution can be formalized
by using the following effect axioms:

a = ADD PD(did, pid) ^ cid = f̂(s) ^
9x9y Teaches(x, pid, pname, y, s) �

Teaches(did, pid, pname, cid, do(a, s)),

910

a = ADD PD(did, pid) ^
¬9x9y Teaches(x, pid, pname, y, s) ^

cid = f̂(s) ^ pname = ĥ(s) �
Teaches(did, pid, pname, cid, do(a, s)).

Note that when ADD PD(did, pid) is executed, if we find a
name for professor pid in table Teaches, then this name is
reused, even if it is a null value. Otherwise, the (unknown)
name of the professor is created by using free fluent ĥ.

We can prove that our framework can specify update poli-
cies proposed for databases with incomplete information
[Abiteboul and Grahne, 1985]. However, we focus on this
section on how free fluents allow the specification of update
policies that go beyond. Below, we give two such examples:
data anonymization and the specification of general condi-
tions on null values.
Anonymization. Consider the well-known area of data
anonymization [Lakshmanan et al., 2005; Tao, 2008; Zhou
et al., 2008]. In our university database, we would like to
have an action to anonymize the information about professor
identifiers, professor names and course identifiers in the ta-
ble Teaches. We model this with action ANONYMIZE, that
replaces every value by a null, and can be described by:

a = ANONYMIZE ^ Teaches(did, pid, pname, cid, s) ^
x = f̂1(pid, s) ^ y = f̂2(pname, s) ^ z = f̂3(cid, s) �

Teaches(did, x, y, z, do(a, s))
a = ANONYMIZE ^ Teaches(did, pid, pname, cid, s) �

¬Teaches(did, pid, pname, cid, do(a, s)).

The first axiom replaces every occurrence of a professor iden-
tifier pid by the same unknown value f̂1(pid, s), and likewise
for pname and cid. The second axiom removes existing tu-
ples from the table. Notice that in this case pid cannot be re-
moved as an argument of f̂1, as otherwise all professors will
end up having the same identifier as the result of executing
ANONYMIZE, and likewise for f̂2 and f̂3.

Even though data has been anonymized, its structure has
not been lost. Indeed, immediately after action ANONYMIZE
is executed, we can analyze sensitive information without re-
vealing the identities of the entities involved. For example,
consider the following query Q1(s):

9did19did29pid9pname9cid (

Teaches(did1, pid, pname, cid, s) ^
Teaches(did2, pid, pname, cid, s) ^ did1 6= did2),

which asks whether there exist two different departments
where the same professor is teaching the same course. Then
we have that the answer to Q1 in S0 is true if and only if it
is true in do(ANONYMIZE, S0); in other words, if D is the
BAT with free fluents of our running example, then have that
D |= Q1(S0) if and only if D |= Q1(do(ANONYMIZE, S0)).
However, if we consider a more specific query Q2(x, y, s)
that asks for the identifiers and names of the professors that

are teaching the same course in two different departments
9did19did29cid (Teaches(did1, x, y, cid, s) ^

Teaches(did2, x, y, cid, s) ^ did1 6= did2),
and we have that D |= Q2(c, d, S0) for a professor with iden-
tifier c and name d, then D 6|= Q2(c, d, do(ANONYMIZE, S0))
so the identity of this professor is not revealed.
Conditions on null values. Our formalism can also ac-
commodate updates on Conditional tables [Imielinski and Jr.,
1984; Abiteboul et al., 1995], which allow to have global con-
ditions on null values and to add or remove tuples according
to some conditions. In what follows, we show an example of
such updates but considering a more general condition on null
values than those in [Imielinski and Jr., 1984; Abiteboul et
al., 1995]. Assume that in our running example the salary of
professors is stored in a functional fluent salary(did, pid, s).
Setting a specific salary value can be done via an action
SET SAL(did, pid, sal). Here we go further, showing how to
model an action SET SALR(did, pid, salL, salH), that sets the
salary of a professor to a value within the range [salL, salH]?
To represent the “unknown” value of the salary we use the
effect axiom:
a = SET SALR(did, pid, salL, salH) ^

sal = f̂(salL, salH, s) � salary(did, pid, do(a, s)) = sal,

where f̂(salL, salH, s) is a free functional fluent, whose
range is restricted by including the following axiom in Dposs:

Poss(SET SALR(did, pid, salL, salH), s) ⌘
[f̂(salL, salH, s) � salL ^ f̂(salL, salH, s)  salH)].

Now to verify whether a query Q holds after the updates de-
termined by situation S, we check whether D |= Legal(S) �
Q(S). Recall that Legal(s) denotes whether situation s is
executable, that is, whether the precondition of each action
in s holds. For example, consider the query Q(x, s) =
salary(math, p1, s) � x, which checks whether a Math pro-
fessor with identifier p1 has a salary above the threshold x. In
addition, consider action ↵ .

= SET SALR(cs, p1, 50, 90) that
updates the professor’s salary to some value between $50K
and $90K. Then, as expected, we obtain that:

D |= Legal(do(↵, S0)) � ¬Q(100, do(↵, S0)).
This can be verified via regression:

R[Legal(do(↵, S0)) � ¬Q(100, do(↵, S0))] =

(f̂(50, 90, S0) � 50 ^ f̂(50, 90, S0)  90)) �
¬(f̂(50, 90, S0) � 100).

In fact, we have that (assuming arithmetic is incorporated in
classical entailment |=):

DS0 [Duna |=
(f̂(50, 90, S0) � 50 ^ f̂(50, 90, S0)  90)) �

¬(f̂(50, 90, S0) � 100),
so DS0 [Duna |=R[Legal(do(↵, S0))�¬Q(100, do(↵, S0))].
As mentioned before, the result of the regression only needs
to be checked against the initial situation and the set of unique
name axioms, even if some free fluents are present. An anal-
ogous regression-based query can be performed to conclude
that DS0[Duna |= R[Legal(do(↵, S0)) � Q(40, do(↵, S0))].

911

6 Guarded Action Theories via Free Fluents

Guarded action theories [De Giacomo and Levesque, 1999;
De Giacomo et al., 2001] (GATs) are an extension of BATs,
where successor state axioms are generalized with guard con-
ditions of the form:

↵(~x, a, s) � [F (~x, do(a, s)) ⌘ (~x, a, s)], (2)

where ↵(~x, a, s) and (~x, a, s) are uniform in s. Formula
↵(~x, a, s) is the guard of the axiom denoting the conditions
under which the causal law encoded in (~x, a, s) applies.2
In a GAT, each fluent can have zero, one, or more guarded

successor state axioms (GSSAs) of the above form.
Guarded theories allow for expressing incomplete knowl-

edge in the causal laws of the domain and accommodate the
principle of occlusion [Sandewall, 1994]: in some circum-
stances, the effect of actions on a fluent are unknown and the
common sense law of inertia does not apply. For example, if
the robot is alone in the building, the state of doors are com-
pletely determined by the robot’s open and close actions:

Alone(s) �
DoorOpen(x, do(a, s)) ⌘
a = OPEN(x) _ (DoorOpen(x, s) ^ a 6= CLOSE(x)).

Generalized Regression. De Giacomo and Levesque [1999]
provided a generalized form of regression for GBATs, but one
that is “tricky, because of the interaction between the various
GSFAs and GSSAs, requiring us to solve (auxiliary) projec-
tion tasks at each step.” Concretely, the generalized regres-
sion requires that the theory entails the guards of all used
GSSAs: a formula ' can be regressed to a formula in a the-
ory ⌃, iff for each fluent F (~t, do(↵,�)) mentioned in ' there
exists a GSSA as in (2) such that ⌃ |= ↵(~t,↵,�).

While De Giacomo and Levesque claimed that this type
of regression achieves a “sensible compromise between syn-
tactic transformations and logical reasoning,” the fact is that,
unlike regression for BATs, it relies on logical reasoning to
decide which GSSAs to apply.

6.1 Representing GSSAs Using Free Fluents

We show here that, under plausible assumptions on GSSAs,
allowing free fluents in BATs is enough to capture GATs.
This is significant in that regression with no logical reason-
ing can also be applied to guarded theories.

So, given a set of n � 0 GSSAs for F (~x, s) of the form:

↵i(~x, a, s) � [F (~x, do(a, s)) ⌘ �i(~x, a, s)],

with i 2 {1, . . . , n}, we define its corresponding SSA as:
F (~x, do(a, s)) ⌘

[
_

i

↵i(~x, a, s) ^ �i(~x, a, s)] _ [
^

i

¬↵i(~x, a, s) ^ Ĥ(~x, a, s)],

where Ĥ(~x, a, s) is a free relational fluent. If a fluent F has
no GSSA, then its SSA is just F (~x, do(a, s)) ⌘ Ĥ(~x, a, s).

When the GSSAs for a fluent respect a certain coherency
among each other, the transformed successor state axiom cap-
tures all corresponding GSSAs. Concretely, a set of GSSAs

2Standard successor state axioms can be represented using the
trivial True guard. For simplicity, we do not consider here sensors.

for fluent F (~x, s) as above is coherent if for every pair of
GSSA i, j 2 {1, . . . , n}, ⌃ [Duna entails

↵i(~x, a, s) ^ ↵j(~x, a, s) � [�i(~x, a, s) ⌘ �j(~x, a, s)].

The following result states that coherent GSSAs can be
combined together into a single successor state axiom, such
that the original GAT theory and the resulting BAT with free
fluents agree on every formula in the original vocabulary.
Theorem 5. Let D be a GAT with coherent fluents, and D0 be
the BAT with free fluents obtained by replacing all GSSAs of
each fluent with the combined SSA as above. Then, for every
formula ' in the vocabulary of D: D |= ' iff D0 |= '.

It follows that, for coherent theories, we obtain a complete
form of regression for guarded theories, that is, we can always
regress formulas regardless of the truth of the guards. (Note
that non-coherent GATs may translate into consistent BATs.)

Let us close the section with an example. Consider the
guarded theory with GSSAs:

• True � [G(do(a, s)) ⌘ G(s)],
• True � [F (do(a, s)) ⌘ G(s)],
• G(s) � [W (do(a, s)) ⌘ True],

and an empty DS0 . Then, the formula:

�
.
= F (do(↵, S0)) � W (do(↵, S0)) (3)

cannot be regressed using generalized regression [De Gia-
como and Levesque, 1999], as the theory does not entail
G(S0), which is necessary to regress fluent W (s).

Now, the corresponding theory with free fluents includes
SSAs G(do(a, s)) ⌘ G(s) and F (do(a, s)) ⌘ G(s) for flu-
ents G(s) and F (s), and the following SSA for W (s):

W (do(a, s)) ⌘ G(s) _ ¬(G(s) ^ Ĥ(a, s)).

By using regression for theories with free fluents, as de-
scribed before, we obtain that formula � regresses to

G(S0) � [G(S0) _ ¬(G(S0) ^ Ĥ(↵, S0))],

which turns out to be a tautology. By Theorem 5, this indi-
cates that � holds in the original guarded theory.

7 Related Work

Other languages for reasoning about action have also been
extended to provide support for non-determinism. The Event
Calculus logical language supports various kinds of non-
deterministic causal laws [Miller and Shanahan, 2002]. In
one of these forms, the so-called determining fluents [Shana-
han, 1999] are used. Such fluents are analogous to our free
fluents: their truth value is not determined initially or by any
other causal law, and they are used to condition the effect that
becomes active depending on how they are interpreted. In
the Event Calculus, undetermined fluents are natural because
there are no requirements for successor state axioms for flu-
ents, like in Reiter’s BATs.

The A language [Gelfond and Lifschitz, 1993] has also
been extended with nondeterminism by Kartha and Lifs-
chitz [1994]. Rather than using free fluents, Kartha and Lif-
schitz define a specific operator for specifying incomplete

912

causal laws, and provide a logical account of this operator
via logical circumscription.

Dynamic Linear Time Temporal Logic (DLTL) [Giordano
et al., 2001] is a language for reasoning about action in which
it is required to mention whether or not a fluent f will respect
the law of intertia after performing an action a. Our coin
toss example could be modeled in this framework by explic-
itly specifying that fluent Heads does not satisfy the law of
inertia after performing action Toss. While formulae anal-
ogous to successor state axioms can be directly specified in
DLTL for fluents that are not affected by a non-deterministic
action, a potentially large number of frame axioms seem to
be needed to specify fluents that are.

In the Situation Calculus, the approaches most related to
ours are those by Delgrande and Levesque [2013] (with re-
gression treated in [Belle and Levesque, 2014]) and Pinto
et al. [2000]. Both provide mechanisms to associate a non-
deterministic action with a number of deterministic actions.
In our dice example, Delgrande and Levesque’s axiom:

Alt(ROLL(d), DETROLL(d, n), 0, s) ⌘ 1  n ^ n  6 (4)

would establish that the deterministic action DETROLL(d, n),
which sets the top of dice d to n, is a possible choice of
“nature” when an agent executes action ROLL(d). Similarly,
Pinto et al. replace regular actions with pairs of the form
hROLL(d), DETROLL(d, n)i for every possible value of n.

In these two approaches the parameters of deterministic ac-
tions arguably simulate non-deterministic values (in our ex-
ample, the dice’s top after performing DETROLL(d, n) be-
comes equal to parameter n). As such, it is not immediately
obvious how to use them to model non-deterministic actions
like those in our Liar’s Dice and anonymization examples
(see Sections 4 and 5, respectively). Intrinsic to both exam-
ples is the setting of multiple, unbounded non-deterministic
values by performing a single non-deterministic action. For
instance, notice that replacing the right-hand side of (4) by
9c in(d, c, s)^ 1  n^n  6, would not allow to model cor-
rectly the action TURNALL in our Liar’s Dice example, as we
would be indicating that both d and n are possible choices
of “nature.” A possible, but non-trivial way out for these
approaches would be to provide support to associate a non-
deterministic action with a sequence of deterministic actions
of unbounded length.

Another epistemic related approach in the Situation Cal-
culus is that of Demolombe and Pozos Parra [2000] (stud-
ied further by Petrick and Levesque [2002]). Here fluents of
the form KF and K¬F are used to express that “fluent F
is known to be true (respectively, false)”. This framework
allows expressing some non-deterministic actions by model-
ing the fluents affected by them at the knowledge level. For
example in our coin toss example KHeads and K¬Heads
could be used to express that we know the coin is heads-up
and tails-up respectively. Queries then need to refer to this
particular fluent representation. It is not immediately obvious
how null values can be modeled using this approach because,
intuitively, knowledge (or lack of knowledge) can only refer
to complete tuples.

8 Discussion and Future Work

In this work, we have shown that simply relaxing the
“one SSA per fluent” requirement on Situation Calculus
BATs [Pirri and Reiter, 1999; Reiter, 2001] allows for con-
venient specification of various types of incompleteness in
causal laws without giving up any of the original proper-
ties. Concretely, we studied the “free fluent technique” in
BATs, a technique which has arguably been already intro-
duced and used in the Event Calculus [Shanahan, 1999;
Miller and Shanahan, 2002] and Sandewall [1994]’s Feature
and Fluents reasoning about action formalisms in the ’90s. It
is then remarkable that such a technique had not been studied
yet within the Situation Calculus. We showed this technique
has broad applications and that it can simulate some existing
extensions of the Situation Calculus and, hence, that it is more
general than these. Furthermore, we extended key theorems
of the Situation Calculus to free fluents.

It turns out, maybe surprisingly, that free fluents can be
compiled away using static relations, yielding then standard
BATs. Informally, this is because, due to Relative Satisfia-
bility (Theorem 3), the situation argument of free fluents is
independent from the foundational axioms:
Theorem 6. Given a BAT with free fluents D, which allows
models with infinite objects, there exists a standard BAT D0

and a rewrite '0 of any formula ' s.t. D |= ' iff D0 |= '0.

The theory D0 above is arguably very convoluted. Among
other things, it involves the use of static functions for non-
deterministic values, each of which requires an index param-
eter which must be updated (incremented) by each action.

We close by pointing out two options for future work that
we are interested on. First, we would like to investigate the
use of GOLOG-like high-level programs [Levesque et al.,
1997] as a complex mechanism for database update. For ex-
ample, the non-deterministic program:

� = ⇡sal.(sal � salL ^ sal  salH); SET SAL(did, pid, sal),

can achieve the update discussed before to set the salary of
professor pid on department did to an unspecified value that
falls within the range [salL, salH].

Secondly, a side issue which came up while encoding
guarded theories into theories with free fluents is the lack of
a principled methodology on how to build guarded succes-
sor state axioms from effect axioms, as available for Reiter’s
standard basic action theories. We believe it is possible to ob-
tain guarded successor state axioms from basic effect axioms,
but under a more sophisticated explanation closure assump-
tion than the ones used for basic action theories.

Acknowledgments

We acknowledge the support of the Australian Research
Council (DP120100332) and the Millennium Nucleus Cen-
ter for Semantic Web Research under Grant NC120004. This
work originated as part of a Visiting Professorship of the
last author from the School of Engineering at Universidad
Católica de Chile. We thank the anonymous reviewers for
their feedback which was helpful to improve the article final
version.

913

References

[Abiteboul and Grahne, 1985] Serge Abiteboul and Gösta
Grahne. Update semantics for incomplete databases. In
VLDB, pages 1–12, 1985.

[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and Vic-
tor Vianu. Foundations of Databases. Addison-Wesley, 1995.

[Bacchus et al., 1995] Fahiem Bacchus, Joseph Y. Halpern, and
Hector J. Levesque. Reasoning about noisy sensors in the sit-
uation calculus. In IJCAI, pages 1933–1940, 1995.

[Belle and Levesque, 2014] Vaishak Belle and Hector J.
Levesque. PREGO: an action language for belief-based
cognitive robotics in continuous domains. In AAAI, pages
989–995, 2014.

[De Giacomo and Levesque, 1999] Giuseppe De Giacomo and
Hector J. Levesque. Projection using regression and sensors.
In IJCAI, pages 160–165, 1999.

[De Giacomo et al., 2001] Giuseppe De Giacomo, Hector J.
Levesque, and Sebastian Sardina. Incremental execution of
guarded theories. ACM Transactions on Computational Logic,
2(4):495–525, October 2001.

[Delgrande and Levesque, 2013] James P. Delgrande and Hec-
tor J. Levesque. A formal account of nondeterministic and
failed actions. In IJCAI, 2013.

[Demolombe and Pozos Parra, 2000] Robert Demolombe and
Maria del Pilar Pozos Parra. A simple and tractable exten-
sion of situation calculus to epistemic logic. In ISMIS, pages
515–524, 2000.

[Gelfond and Lifschitz, 1993] Michael Gelfond and Vladimir
Lifschitz. Representing action and change by logic programs.
Journal of Logic Programming, 2-4:301–323, 1993.

[Giordano et al., 2001] Laura Giordano, Alberto Martelli, and
Camilla Schwind. Reasoning about actions in dynamic linear
time temporal logic. Logic Journal of the IGPL, 9(2):273–288,
2001.

[Imielinski and Jr., 1984] Tomasz Imielinski and Witold Lipski
Jr. Incomplete information in relational databases. Journal of
the ACM, 31(4):761–791, 1984.

[Kartha and Lifschitz, 1994] Neelakantan G. Kartha and
Vladimir Lifschitz. Actions with indirect effects (preliminary
report). In KR, pages 341–350, 1994.

[Lakshmanan et al., 2005] Laks V. S. Lakshmanan, Raymond T.
Ng, and Ganesh Ramesh. To do or not to do: The dilemma of
disclosing anonymized data. In SIGMOD, pages 61–72, 2005.

[Levesque et al., 1997] Hector J. Levesque, Ray Reiter, Yves
Lespérance, Fangzhen Lin, and Richard B. Scherl. GOLOG:
A logic programming language for dynamic domains. Journal
of Logic Programming, 31:59–84, 1997.

[McCarthy and Hayes, 1969] John McCarthy and Patrick J.
Hayes. Some philosophical problems from the standpoint
of Artificial Intelligence. Machine Intelligence, 4:463–502,
1969.

[McIlraith, 2000] Sheila A. McIlraith. Integrating actions and
state constraints: A closed-form solution to the ramification
problem (sometimes). Artificial Intelligence, 116(1-2):87–
121, 2000.

[Miller and Shanahan, 2002] Rob Miller and Murray Shanahan.
Some alternative formulations of the event calculus. In Com-
putational Logic: Logic Programming and Beyond, Essays in
Honour of Robert A. Kowalski, Part II, volume 2408 of LNCS,
pages 452–490. Springer, 2002.

[Petrick and Levesque, 2002] Ron Petrick and Hector J.
Levesque. Knowledge equivalence in combined action
theories. In KR, Toulouse, France, April 2002.

[Pinto et al., 2000] Javier Pinto, Amı́lcar Sernadas, Cristina Ser-
nadas, and Paulo Mateus. Non-determinism and uncertainty
in the situation calculus. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, 8(2):127–
150, 2000.

[Pinto, 1994] Javier A. Pinto. Temporal Reasoning in the Situa-
tion Calculus. PhD thesis, Department of Computer Science,
University of Toronto, Toronto, Canada, 1994.

[Pinto, 1999] Javier Pinto. Compiling ramification constraints
into effect axioms. Computational Intelligence, 15:280–307,
1999.

[Pirri and Reiter, 1999] Fiora Pirri and Ray Reiter. Some contri-
butions to the metatheory of the situation calculus. Journal of
the ACM, 46(3):261–325, 1999.

[Ramakrishnan and Gehrke, 2002] Raghu Ramakrishnan and
Johannes Gehrke. Database Management Systems. McGraw-
Hill, third edition, 2002.

[Reiter, 1991] Ray Reiter. The frame problem in the situation
calculus: A simple solution (sometimes) and a completeness
result for goal regression. In AI and Mathematical Theory of
Computation: Papers in Honor of John McCarthy, pages 359–
380. Academic Press, 1991.

[Reiter, 1995] Ray Reiter. On specifying database updates. Jour-
nal of Logic Programming, 25(1):53–91, 1995.

[Reiter, 1996] Ray Reiter. Natural actions, concurrency and con-
tinuous time in the situation calculus. In KR, pages 2–13,
1996.

[Reiter, 2001] Ray Reiter. Knowledge in Action. Logical Foun-
dations for Specifying and Implementing Dynamical Systems.
The MIT Press, 2001.

[Sandewall, 1994] Erik Sandewall. Features and Fluents. A Sys-
tematic Approach to the Representation of Knowledge about
Dynamical Systems. Oxford U. Press, 1994.

[Shanahan, 1997] Murray Shanahan. Solving the Frame Prob-
lem: A Mathematical Investigation of the Common Sense Law
of Inertia. The MIT Press, 1997.

[Shanahan, 1999] Murray Shanahan. The event calculus ex-
plained. In Artificial Intelligence Today, volume 1600 of
LNCS, pages 409–430. Springer, 1999.

[Tao, 2008] Yufei Tao. Privacy preserving publication:
Anonymization frameworks and principles. In Handbook of
Database Security - Applications and Trends, pages 489–508.
2008.

[Zhou et al., 2008] Bin Zhou, Jian Pei, and Wo-Shun Luk. A
brief survey on anonymization techniques for privacy preserv-
ing publishing of social network data. SIGKDD Explorations,
10(2):12–22, 2008.

914

