
On the Relationship between P-log and LPMLN⇤

Evgenii Balai and Michael Gelfond
Texas Tech University, Lubbock Texas

{evgenii.balai, michael.gelfond}@ttu.edu

Abstract
The paper investigates the relationship between
knowledge representation languages P-log [Baral
et al., 2004] and LPMLN [Lee et al., 2015] de-
signed for representing and reasoning with logic
and probability. We give a translation from an im-
portant subset of LPMLN to P-log which preserves
probabilistic functions defined by LPMLN programs
and complements recent research [Lee and Wang,
2016] by the authors of LPMLN where they give a
similar translation from a subset of P-log to their
language. This work sheds light on the different
ways to treat inconsistency in both languages.

1 Introduction
Combining logic and probability has been one of the most
important directions of artificial intelligence research in re-
cent years. Many different languages and formalisms have
been developed to represent and reason about both proba-
bilistic and logical arguments, such as ProbLog [De Raedt
et al., 2007; Fierens et al., 2015], PRISM [Sato, 1995; 2009],
LPADs [Vennekens et al., 2004], CP-Logic [Vennekens et al.,
2009], MLN [Richardson and Domingos, 2006], and others.

In this paper we focus on two such languages, P-log and
LPMLN. They are distinguished from other mentioned alterna-
tives by their common logic base, Answer Set Prolog (ASP)
[Gelfond and Lifschitz, 1991], a logical formalism model-
ing beliefs of a rational agent. ASP is powerful enough to
naturally represent defaults, non-monotonically update the
knowledge base with new information, define relations re-
cursively, reason about causal effects of actions, etc. The
language serves as the foundation of the so called Answer
Set Programming paradigm [Marek and Truszczynski, 1999;
Niemela, 1998] and has been used in a large number of appli-
cations [Brewka et al., 2011].

An agent associated with an ASP knowledge base reasons
about three degrees of belief – he can believe that p is true,
believe that p is false, or remain uncommitted about his be-
lief in p. In the latter case the truth of p remains unknown.

⇤This work was sponsored by NASA under the grant Cert-
Ware ABSA: Argument Based Safety Assurance, Grant #: NRA
NNH11ZEA001N-SSAT2

An extension of ASP, called P-log, allows the reasoner to
express and reason with finer, numerically expressed, grada-
tion of the strength of his beliefs. In other words, it preserves
the power of ASP and, in addition, allows an agent to do so-
phisticated probabilistic reasoning.

The main goal of the P-log designers was to provide the
language and reasoning mechanism which can be used for
clear and transparent modeling of knowledge involving logi-
cal and probabilistic arguments. There are a number of non-
trivial scenarios formalized in [Baral et al., 2009]. More
computationally challenging scenarios, including probabilis-
tic planning and diagnosis, can be found in [Zhu, 2012],
where their P-log representations and performance analysis
are given.

A new version of P-log , introduced in [Gelfond and Rush-
ton, 2010], replaces ASP by its extension CR-Prolog [Balduc-
cini and Gelfond, 2003], which expands logical power of ASP
(and hence the original P-log) by allowing so called consis-
tency restoring rules (cr-rules) used for restoring consistency
of the program by a certain form of abductive reasoning.

Despite the presence of cr-rules, the underlying philoso-
phy of P-log requires the corresponding knowledge base to
be consistent. A rational reasoner is assumed to trust its rules
and refuses to deal with a knowledge base containing state-
ments p and ¬p. Possible means to ensure consistency of the
program should be supplied by a knowledge engineer. This
is natural from a theoretical goal of the authors but is also
important in many practical applications, for example, where
inconsistency of the knowledge base may be a sign of some
errors in its design and therefore should be addressed by mak-
ing the necessary changes.

The language LPMLN, introduced in [Lee et al., 2015], is
based on a different philosophy. Its first goal seems to be
similar to that of P-log – it is supposed to provide means for
combining ASP based reasoning with reasoning about prob-
ability. But, in addition, the new language is aimed at pro-
viding a powerful (though somewhat less predictable) way of
resolving inconsistencies which may appear in LPMLN pro-
grams due to mechanical combination of different knowledge
bases, designer mistakes, or some other reasons. The design
of the language was influenced by Markov Logic Networks
[Richardson and Domingos, 2006] and seems to be practi-
cally independent from P-log. As a result, the relationship
between these two languages with seemingly similar goals

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

915

remains unclear. This paper is a step in remedying this situ-
ation. In particular, we give a translation from an important
subset of LPMLN to P-log which preserves probabilistic func-
tions defined by LPMLN programs. The work complements
resent research[Lee and Wang, 2016] by Lee and Wang in
which the authors give a translation from a subset of P-log to
LPMLN .

The rest of this paper is organized as follows. In section 2
we define the subset of P-log used in this paper. In section
3 we briefly describe the syntax and semantics of LPMLN.
In section 4 we describe a translation from LPMLN to P-log
and define the correspondence between LPMLN programs and
their P-log translations precisely. Section 5 uses the results
from sections 4 to describe certain properties of probabilities
defined by LPMLN programs. Section 6 concludes the paper
by summarizing the obtained results and future work.

2 Language P-log
In this section we introduce a simplified version of P-log
with consistency restoring rules from [Gelfond and Rush-
ton, 2010] which is sufficient to define the translation from
LPMLN. We do so by considering a simple domain consisting
of two adjacent rooms, r1 and r2, and a robot initially located
in r1. We present a P-log program, ⇧0, modeling direct ef-
fects of the action move of the robot attempting to enter the
second room. The program is presented to illustrate the lan-
guage constructs so we ignore concerns about its generality,
elaboration tolerance, etc.

We start with declarations of objects and functions of the
domain. In P-log such functions are usually referred to as
attributes, while expressions of the form f(x̄), where f is an
attribute, are called attribute terms. We need the sort

step = {0, 1}

where 0 and 1 denote time-steps before and after the execu-
tion of the action respectively. We also need the sort

room = {r1, r2}

and attributes

move, broken : boolean

loc : step! room

Here move is true iff at step 0 the robot has attempted to
move to room r2; broken holds if the robot has been broken
and hence may exhibit some non-deterministic behavior; loc
gives the location of the robot at a given step. Declarations of
P-log are followed by the program rules. In our case we will
have rules

loc(0) = r1 (1)

move (2)

indicating that at step 0 the robot located in room r1 at-
tempted to move to room r2. Here move is a shorthand for
move = true. We use this convention for all boolean func-
tions: f(x̄) = true and f(x̄) = false are written as f(x̄)
and ¬f(x̄) respectively.

As expected the effect of action move for the well-
functioning robot is given by the rule:

loc(1) = r2 not broken,move. (3)

If the robot is malfunctioning however we need to state that
the effect of move is random – the robot can still success-
fully move to room r2 or to stay in room r1. In P-log this is
expressed by the following random selection rule r

[r] random(loc(1)) broken,move (4)

which says that if the malfunctioning robot will attempt to
move to room r2 then, in the resulting state, attribute term
loc(1) will randomly take a value from the range of loc. The
rules of the program described so far can be easily trans-
lated into regular ASP rules – we simply need to replace
random(loc(1)) in the last rule by (loc(1) = r1 or loc(1) =
r2), replace atoms of the form f(x̄) = y by f(x̄, y) and, for
every term f(x̄), add a constraint { f(x̄) = y1, f(x̄) =
y2, y1 6= y2}. In general, an atom of the form random(f(x̄))
is replaced by the disjunction f(x̄) = y1 or . . . or f(x̄) = yk

where {y1, . . . , yk} is the range of f .
Answer sets of the translation of a P-log program ⇧

into ASP are viewed as possible worlds of the probabilis-
tic model defined by ⇧. It is easy to see that program
⇧0 consisting of rules (1)–(4) has one such possible world
W0 = {move, loc(0) = r1, loc(1) = r2}1 . Program
⇧1 = ⇧0 [{broken} will have two possible worlds, W1 =
{broken,move, loc(0) = r1, loc(1) = r2} and W2 =
{broken,move, loc(0) = r1, loc(1) = r1}. In the case of
multiple possible worlds we need some device allowing to
specify the numeric probabilities of possible values of ran-
dom attributes. This is expressed in P-log through causal
probability statements, or, simply, pr-atoms. A pr-atom takes
the form

prr(f(x̄) = y) = v

where f(x̄) is a random attribute, y is a value from the range
of f , and v 2 [0, 1] is the probability of y to be selected as
the value of f(x̄) as the result of firing random selection rule
r. In case of ⇧1 such pr-atoms may look as, say,

prr(loc(1) = r1) = 0.3

and
prr(loc(1) = r2) = 0.7

Unnormalized probabilistic measure of a possible world W

is defined as the product of probabilities of the random atoms
f1(x̄1) = y1, . . . , fk(x̄k) = yk from W . These probabilities
are obtained from the corresponding pr-atoms. Normalized
probabilistic measures and probability function on the sets of
possible worlds and on the literals of the language are defined
as usual. Let P0 and P1 be the probability functions defined
by ⇧0 and ⇧1 respectively. W0 has no random atoms, the
empty product is 1, and hence the probabilistic measure of

1for convenience we will often identify original P-log liter-
als with corresponding ASP ones (e.g, we will sometimes write
loc(1) = r1 in place of loc(1, r1))

916

W0 and P0(loc(1) = r1) are both equal to 1. The probabilis-
tic measures of W1 and W2 are 0.7 and 0.3 respectively and
hence P1(loc(1) = r1) = 0.3.

As mentioned in the introduction, a P-log program can be
inconsistent. For instance, program ⇧2 = ⇧0[{loc(1) = r1}
has no possible worlds. To avoid this particular inconsistency
the program designer can expand ⇧0 by a cr-rule:

broken

+ . (5)

which allows to restore inconsistency of ⇧2 by assuming that
the robot is broken. Since the original program ⇧0 is consis-
tent, the resulting program, ⇧0

new will define the same proba-
bilistic model as ⇧0. The program ⇧2

new, consisting of ⇧0
new

and the fact {loc(1) = r1}, unlike the program ⇧2, will be
consistent and have one possible world, W2. The extension
of ⇧0 by a new information changed the probability of the
robot being in room r2 after execution of move from 1 to 0.

3 Language LPMLN

In this section we give a brief summary of LPMLN ([Lee et
al., 2015]). We limit out attention to ground programs whose
rules contain no double default negation not not and no dis-
junction. To the best of our knowledge, no example in the
literature demonstrating the use of LPMLN for formalization
of knowledge uses these constructs. As usual, we may use
rules with variables viewed as shorthands for the sets of their
ground instances. A program of the language is a finite set of
LPMLN rules – ground ASP rules preceded by a weight: sym-
bol ↵ or a real number. Rules of the first type are called hard
while rules of the second are referred to as soft. Despite their
name the hard rules are not really “hard”. Their behavior is
reminiscent of that of defaults. According to the semantics
of the language the reasoner associated with a program con-
structs possible worlds with non-zero probability by trying to
satisfy as many hard rules as possible. The satisfiability re-
quirement for the soft rules and the use of their weights for
assigning the probability measure to possible worlds of M

are more subtle. In what follows we give the necessary defi-
nitions and illustrate them by an example of LPMLN program.
Sometimes we abuse the notation and identify an LPMLN pro-
gram M with its ASP counterpart obtained from M by drop-
ping the weights of its rules. Stable models of such a coun-
terpart will be referred to as ASP models of M . By MI we
denote the set of rules of M which are satised by an interpre-
tation I of M . An interpretation W is a possible world of M
if it is a ASP model of MW . We will say that a possible world
W is supported by MW . As usual, by ⌦M we denote the set
of all possible worlds of M . Unnormalized measure of a pos-
sible world W 2 ⌦M (denoted by wM (W)) is exp� where �

is the sum of weights of all rules of M satisfied by W . Note
that, in case M contains rules with ↵-weights satisfied by W ,
wM (W) is not a numerical value and should be understood as
a symbolic expression. The probability function, PM , defined
by program M is

PM (W) = lim
↵!1

wM (W)P
V 2⌦M

wM (V)

It is easy to check that PM maps possible worlds of M into
the interval [0, 1] and satisfies standard axioms of probability.

As expected, the probabilistic model defined by M consists
of ⌦M and PM .

Let us now use LPMLN to formalize the stories from the pre-
vious section. Program M

0 will capture the first such story
corresponding to P-log program ⇧0. It clearly should contain
rules (1) – (3) of ⇧0. In addition, for every attribute f it must
include a constraint

 f(X) = Y1, f(X) = Y2, Y1 6= Y2 (6)

which is hidden in P-log semantics of ⇧0. All these rules,
however, should be supplied with some weights. Since we
strongly believe that the rules are correct, we would like to
preserve as many of them as possible. Hence, we view them
as hard. LPMLN does not have a direct analog of rule (4) but,
it seems natural to represent it by two rules:

ln(0.3) : loc(1) = r1 broken,move (7)

and
ln(0.7) : loc(1) = r2 broken,move (8)

where the logarithms are added to the probabilities to cancel
the exponentiation from the definition of unnormalized mea-
sure wM . In addition, the hard rule

↵ : not loc(1) = r1, not loc(1) = r2 (9)

is added to force loc(1) to take a value (in P-log this is guar-
anteed by the semantics of disjunction). This concludes con-
struction of M0. It is worth noting that M0 is similar to the
program obtained from ⇧0 by a general translation from P-
log to LPMLN described in [Lee and Wang, 2016].

We will show that there is a simple relationship between
probabilistic models defined by ⇧0 and M

0. The possible
worlds of ⇧0 correspond to the possible worlds M0 with non-
zero probability (also called probabilistic stable models of
M

0 in [Lee et al., 2015]). Moreover, probability functions
PM0 and P⇧0 coincide on probabilistic stable models of M0.

Let us first notice that W0 = {move, loc(0) =
r1, loc(1) = r2} is an ASP model of M

0
W0

and hence is a
possible world of M0. The probability of W0 is 1. Clearly,
W0 is the only possible world of M0 satisfying all its hard
rules. M

0 however has other possible worlds. For instance,
V = {move} satisfies all the rules of M0\{(1), (3), (9)} and
is the stable model of this program. Therefore, it is a possible
world of M0. It is easy to check however that V is not a prob-
abilistic stable model of M0. In fact, this is a consequence of
a general result in [Lee et al., 2015] which says that if there
is a possible world of LPMLN program M which satisfies all
its hard rules then every probabilistic stable model of M also
satisfies them. The result clearly implies that W0 is the only
probabilistic stable model of M0.

The program M

1 = M

0[{↵ : broken} is again similar to
⇧1. It has two probabilistic stable models, W1 and W2 with
probabilities equal to 0.7 and 0.3 respectively. As before,
there are other possible worlds but none of them satisfies all
the hard rules of M1 and hence they have probability 0.

917

A more serious difference can be observed however be-
tween the program ⇧2 and the new program M

2 obtained
from M

0 by adding the rule

↵ : loc(1) = r1 (10)

Since the rules of ⇧2 are strict and, therefore, should be satis-
fied by possible worlds, the program ⇧2 is inconsistent. M2

however does not have such a restriction. It will have three
probabilistic stable models. The first one is an ASP model
of M

2 \ {(2)}. It resolves contradiction by assuming that
the robot failed to move. The second is an ASP model of
M

2 \{(3)}. The contradiction is removed by abandoning the
causal law (3). Another possible explanation may given by
an ASP model of M2 \ {(10)} which assumes that our obser-
vation of the robot being in r1 after the execution of move is
incorrect. This seems to be a reasonable answer.

Finally, to model the effect of consistency restoring rule
(5), we extend M

0 with the rule

w : broken (11)

where w is a very large negative weight. The resulting pro-
gram M

0
new will have 3 probabilistic stable models, in two of

which the robot is believed to be broken, however the prob-
abilities of both of them are very low. This behavior is quite
different (and, in some sense, less elegant) from the similar
case in P-log where the cr-rule (5) was not used since the
program ⇧0 is consistent. Similarly to ⇧2

new, the program
M

2
new consisting of M

0
new and the fact {loc(1) = r1} has

exactly one probabilistic stable model W2 (which satisfies all
the hard rules of the program). As in P-log, the semantics of
LPMLN allow updating of the probability of the robot to be
in room r2 at step 1 from 0 to 1 by adding new information.
However, unlike in P-log, extending the original program M

0

with a soft counterpart (11) of the cr-rule (5) leads to intro-
ducing new probabilistic stable models of the program with
negligible probabilities.

4 From LPMLN to P-log
In this section we state the main result of this paper: estab-
lishing a relationship between LPMLN and P-log programs.

First we need a definition. Let M be an LPMLN program
and At(M) be the set of atoms in M .
Definition 1 (Counterpart). A P-log program ⇧ is called a
counterpart of M if there exists a bijection � from the set of
probabilistic stable models of M to the set of possible worlds
of ⇧ such that

1. for every probabilistic stable model W of M , if PM

and P⇧ are probability functions defined by M and ⇧
respectively, then PM (W) = P⇧(�(W))

2. for every probabilistic stable model W of M ,
W ⌘At(M) �(W), that is, W and �(W) coincide on
the atoms of M .

Main Theorem. For every LPMLN program M (as defined in
section 3) there exists its P-log counterpart, ⌧(M), which is
linear-time constructible. 2

The previous theorem immediately implies the following im-
portant corollary:
Corollary 1. If A is atom of an LPMLN program M , then

PM (A) = P⌧(M)(A)

where the probabilities PM (A) and P⌧(M)(A) are defined as
the sum of probabilities of possible worlds which contain A

of the corresponding program. 2

To prove the theorem we need the following Lemma which
gives an alternative characterization of probabilistic stable
models of M .
Lemma 1. Let W be an interpretation satisfying n hard rules
of M . W is a probabilistic stable model of M if and only if

1. W is a possible world of M supported by some M

0 ✓
M ;

2. no possible world of M supported by some M

1 ✓ M

satisfies more than n hard rules of M .

2

Proof of the Main Theorem: Due to space limitations, we
only provide a construction of ⌧(M) given a program M and
define a map � from definition 1 (the complete proof of the
theorem, including a proof of lemma 1 and a short outline,
can be found in the extended version of the paper2).

We will assume that all atoms in ⇧ are of the form p, where
p is an identifier (in the general case, the atoms of the form
p(t1, . . . , tn) can be translated into unique identifiers).

In what follows we will construct a P-log program which
chooses a subprogram M

0 of M and computes ASP models
of M supported by M

0 such that no possible world of M

is supported by a program containing more hard rules than
M0. By Lemma 1, they will be probabilistic stable models of
M . Appropriate probability atoms will ensure that the corre-
sponding probabilities match.

Let r1, . . . , rn be the enumeration of rules of M . We will
refer to i as the label of ri.

The translation ⌧(M) is defined as follows:

1. ⌧(M) contains

(a) declarations of the sorts hard and soft – sets of
labels of hard and soft rules of M respectively.

(b) declaration a : boolean for each atom a in the sig-
nature of ⇧.

(c) declarations of the auxiliary attributes

h, b, selected, sat : soft! boolean

ab : hard! boolean

whose meaning will be explained later.

We refer to this part of the translation as the declaration
part of ⌧ .

2http://www.depts.ttu.edu/cs/research/krlab/pdfs/papers/
mlplogfull.pdf

918

2. For every hard rule ri of the form

↵ : head body (12)

⌧(M) contains the rules:

head body, not ab(i) (13)

ab(i)
+ . (14)

The auxiliary relation ab(i) says that “rule ri is abnor-
mal (or not-applicable))”. The addition of not ab(i)
turns the translation (13) of ⇧’s rule (12) into a default
rule of P-log. The cr-rule (14), called Contingency Ax-
iom [Gelfond and Rushton, 2010], says that, the rea-
soner may possibly believe ab(i). This possibility, how-
ever, may be used only if there is no way to obtain a
consistent set of beliefs by using only regular rules of
the program. It is commonly used to capture indirect ex-
ceptions to defaults [Gelfond and Kahl, 2014]. Together,
these rules allow to stop the application of a minimal
number of the hard rules of M thus avoiding possible
inconsistency and conforming to the semantics of such
rules in LPMLN.
This completes the translation for programs consisting
of hard rules only.

3. For every soft rule ri of the form

w : head body (15)

⌧(M) contains the rules:

head body, selected(i) (16)

random(selected(i)) (17)

 ¬selected(i), sat(i) (18)

The auxiliary relation selected(i) says that “the rule
with label i is selected”; relation sat(i) stands for ‘the
rule with label i is satisfied‘. The addition of selected(i)
to the body of the translation (16) of M ’s rule (15) to-
gether with random selection rule (17) allows a reasoner
to select soft rules of a candidate subprogram M0 of M .
Constraint (18) is used to ensure that computed models
of M0 satisfy condition 1 from the Lemma 1. Of course,
to make this work we need the definition of sat which is
given by the following rules:

sat(i) b(i), h(i) (19)

sat(i) not b(i) (20)

b(i) B (21)

where B is the body of soft rule ri, and

h(i) l (22)

for every literal l in the head of soft rule ri. As expected,
b(i) stands for ‘the body of ri is satisfied‘ and h(i) for
‘the head of ri is satisfied‘.

4. Finally, for every selected(i), ⌧(M) contains probabil-
ity atom:

pr(selected(i)) =
e

wi

1 + e

wi
(23)

which says ‘the soft rule ri with weight wi is selected
(that is, added to M

0) with probability ewi

1+ewi
.

It is easy to see that the size of ⌧(M) is linear in terms of
the size of M . Moreover, ⌧(M) is modular, that is, it can be
easily extended if new rules are added to M .
The map � is defined is follows:

�(W) =W [{ab(i) | i 2 hard,W does not satisfy ri}
[{sat(i) | i 2 soft,W satisfies ri}
[{selected(i) | i 2 soft,W does not satisfy ri}
[{¬selected(i) | i 2 soft,W satisfies ri}
[{b(i) | i 2 soft,W satisfies the body of ri}
[{h(i) | i 2 soft,W satisfies the head of ri}

The rest of the proof can be outlined as follows. We first need
to show that for every probabilistic stable model W , �(W) is
a possible world of ⌧(M). This can be done by using standard
techniques suitable for CR-Prolog programs. After that, we
show the bijectivity of �. This step can be split into two parts.
Firstly, the surjectivity of �(W) follows from the fact that a
probabilistic stable model V of M obtained from a possible
world W of ⌧(⇧) by dropping all newly introduced literals
from W satisfies �(V) = W . Secondly, the injectivity fol-
lows trivially from the definition of �. Finally, the required
probability equality from definition 1 follows from the defi-
nition of probabilistic functions in both languages. 2

The following is an example of the translation.

Example. Consider the following LPMLN program M from
[Lee et al., 2015]:

↵ : concertBooked.

↵ : longDrive concertBooked, not cancelled.

ln(0.2) : cancelled.
ln(0.8) : cancelled.

The program has two probabilistic stable models (each of
which satisfy both its hard rules):

1. V1 = {concertBooked, cancelled}
2. V2 = {concertBooked, longDrive}

with corresponding probabilities equal to 0.2 and 0.8.

The corresponding translation ⌧(M) looks as follows:

% declaration part:
soft = {3, 4}.
hard = {1, 2}.
concertBooked, cancelled, longDrive : boolean.
b, h, selected, sat : soft! boolean.

ab : hard! boolean.

% translation of hard rules:
concertBooked not ab(1).
longDrive concertBooked, not cancelled, not ab(2).

919

ab(R)
+ .

% translation of soft rules:
cancelled selected(3).
 cancelled, selected(4).
random(selected(R)).
 ¬selected(R), sat(R).
% definition of satisfiability:
sat(R) not b(R).
sat(R) b(R), h(R).
b(3).
b(4) cancelled.

h(3) cancelled.

% probability atoms:
pr(selected(3)) = 0.2/(1 + 0.2).
pr(selected(4)) = 0.8/(1 + 0.8).

The translation ⌧(M) has two possible worlds:
1. U1 = {selected(3),¬selected(4), h(3), cancelled,

b(3), b(4), sat(3), concertBooked}
2. U2 = {¬selected(3), selected(4), b(3), longDrive,

concertBooked, sat(4)}
As expected, on the atoms of M , U1 and U2 co-
incide with the corresponding probabilistic sta-
ble models {cancelled, concertBooked} and
{concertBooked, longDrive} of M (more specifically,
U1 = �(V1) and U2 = �(V2)). It can be easily checked
that, as promised, P⌧(M)(U1) = PM (V1) = 0.2 and
P⌧(M)(U2) = PM (V2) = 0.8.

5 Probabilities of Soft Rules in LPMLN

Let M be an LPMLN program with at least one soft rule ri of
the form wi : head body. The authors of LPMLN view ri as
an implication and define the probability PM (ri) as follows:

PM (ri) =
X

W2⌦M ,W |=ri

PM (W) (24)

Note that replacing ⌦M with the set of all probabilistic sta-
ble models of M gives an equivalent definition. We will use
the result obtained in the previous section to investigate the
relationship between the reasoner’s confidence in ri, i.e, its
weight wi and its probability PM (ri).

It seems natural to assume that PM (ri) would be propor-
tional to w. However, this is not necessarily the case. Let us
consider the following program:

ln(3) : a.

ln(3) : a.

ln(2) : b.

Despite the larger weight, the first rule has smaller probability
than the third one (the corresponding probabilities are equal
to 1/2 and 2/3 respectively).

Informally speaking, this happens because the first rule is
inconsistent with the second one, while the third one doesn’t
have such a restriction.

We next use the results from the previous section to ob-
tain an alternative understanding of the probability PM (ri).
Let ⌧(M) be the counterpart of M described there and � be

the bijection from Definition 1. It can be easily seen that ri
is satisfied by a possible world W of M iff �(W) contains
selected(i). This, together with the first clause of Definition
1 implies that:

PM (ri) = P⌧(M)(selected(i)) (25)
That is, the probability of ri in M is equal to the prob-

ability of selected(i) in P-log program ⌧(M). In general,
this probability depends on all possible worlds of ⌧(M) and
their probabilities. However, for some cases it can be de-
termined uniquely by the weight of ri. This is always the
case if ⌧(M) belongs to the class of coherent P-log programs,
where this probability is equal to the value of the pr-atom
pr(selected(i)) in (23). This class, and the sufficient condi-
tions for a P-log program to be in it, are given in [Baral et al.,
2009].

For instance, it can be checked that the translation of the
program M

3 consisting of soft facts ln(3) : a and ln(2) : b
is coherent. Thus, the fact that probability of a is equal to
e

ln(3)
/(1 + e

ln(3)) = 3/4 can be obtained directly from the
corresponding pr-atom (23) of ⌧(M3). Note that, in general,
to compute the probability of an atom, we may need to per-
form fairly complex inference (e.g, compute possible worlds
of the program).

6 Conclusion and Future Work
We have defined a linear-time constructible modular transla-
tion ⌧ from LPMLN programs into P-log programs. Non-zero
probability possible worlds of an LPMLN program M coincide
with possible worlds of ⌧(M) on atoms of M . Moreover, the
probabilistic functions defined by M and ⌧(M) coincide on
atoms M . The work allowed us to better understand both lan-
guages, including their treatment of potential inconsistencies,
and opened a way to the development of LPMLN solvers based
on P-log inference engines. We also believe that this work,
together with the new complementary results from [Lee and
Wang, 2016], will allow to use the theory developed for one
language to discover properties of the other.

Our plans for future work are as follows.
1. We plan to complete the current work on the develop-

ment of an efficient inference engine for P-log and use
the translation ⌧ to turn it into a solver for LPMLN .

2. In the near future, we expect the appearance of
LPMLN solver based on the algorithm from Section 3.4
[Lee et al., 2015]. It will be interesting to use the trans-
latiom from [Lee and Wang, 2016] to turn it into P-log
solver and compare its performance with that of the one
mentioned above.

3. We plan to investigate the possibility of adapting infer-
ence methods developed for MLN

[Gogate and Domin-
gos, 2012] and LPMLN for improving efficiency of P-log
solvers.

Acknowledgments
We would like to thank Joohyung Lee and Yi Wang for useful
discussions on the topic.

920

References
[Balduccini and Gelfond, 2003] Marcello Balduccini and

Michael Gelfond. Logic programs with consistency-
restoring rules. In International Symposium on Logical
Formalization of Commonsense Reasoning, AAAI 2003
Spring Symposium Series, volume 102. The AAAI Press,
2003.

[Baral et al., 2004] Chitta Baral, Michael Gelfond, and Nel-
son Rushton. Probabilistic reasoning with answer sets. In
Logic Programming and Nonmonotonic Reasoning, pages
21–33. Springer, 2004.

[Baral et al., 2009] Chitta Baral, Michael Gelfond, and Nel-
son Rushton. Probabilistic reasoning with answer sets.
Theory and Practice of Logic Programming, 9(01):57–
144, 2009.

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and
Mirosław Truszczyński. Answer set programming at a
glance. Communications of the ACM, 54(12):92–103,
2011.

[De Raedt et al., 2007] Luc De Raedt, Angelika Kimmig,
and Hannu Toivonen. Problog: A probabilistic prolog and
its application in link discovery. In IJCAI, volume 7, pages
2462–2467, 2007.

[Fierens et al., 2015] Daan Fierens, Guy Van den Broeck,
Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo
Thon, Gerda Janssens, and Luc De Raedt. Inference and
learning in probabilistic logic programs using weighted
boolean formulas. Theory and Practice of Logic Program-
ming, 15(03):358–401, 2015.

[Gelfond and Kahl, 2014] Michael Gelfond and Yulia Kahl.
Knowledge representation, reasoning, and the design
of intelligent agents: The answer-set programming ap-
proach. Cambridge University Press, 2014.

[Gelfond and Lifschitz, 1991] Michael Gelfond and
Vladimir Lifschitz. Classical Negation in Logic Programs
and Disjunctive Databases. New Generation Computing,
9(3/4):365–386, 1991.

[Gelfond and Rushton, 2010] Michael Gelfond and Nelson
Rushton. Causal and probabilistic reasoning in p-log.
Heuristics, Probabilities and Causality. A tribute to Judea
Pearl, pages 337–359, 2010.

[Gogate and Domingos, 2012] Vibhav Gogate and Pedro
Domingos. Probabilistic theorem proving. arXiv preprint
arXiv:1202.3724, 2012.

[Lee and Wang, 2016] Joohyung Lee and Yi Wang.
Weighted rules under the stable model semantics. In
Proceedings of International Conference on Principles of
Knowledge Representation and Reasoning (KR), 2016.

[Lee et al., 2015] Joohyung Lee, Yunsong Meng, and
Yi Wang. Markov logc style weighted rules under the
stable model semantics. In Technical Communications of
the 31st International Conference on Logic Programming,
2015.

[Marek and Truszczynski, 1999] Victor W. Marek and
Miroslaw Truszczynski. Stable Models and an Alternative
Logic Programming Paradigm, pages 375–398. The
Logic Programming Paradigm: a 25-Year Perspective.
Springer Verlag, Berlin, 1999.

[Niemela, 1998] Ilkka Niemela. Logic Programs with Stable
Model Semantics as a Constraint Programming Paradigm.
In Proceedings of the Workshop on Computational Aspects
of Nonmonotonic Reasoning, pages 72–79, Jun 1998.

[Richardson and Domingos, 2006] Matthew Richardson and
Pedro Domingos. Markov logic networks. Machine learn-
ing, 62(1-2):107–136, 2006.

[Sato, 1995] Taisuke Sato. A statistical learning method for
logic programs with distribution semantics. In In Proceed-
ings of the 12th International Conference on Logic Pro-
gramming (ICLP95. Citeseer, 1995.

[Sato, 2009] Taisuke Sato. Generative modeling by prism. In
Logic Programming, pages 24–35. Springer, 2009.

[Vennekens et al., 2004] Joost Vennekens, Sofie Verbaeten,
and Maurice Bruynooghe. Logic programs with anno-
tated disjunctions. In Logic Programming, pages 431–445.
Springer, 2004.

[Vennekens et al., 2009] Joost Vennekens, Marc Denecker,
and Maurice Bruynooghe. Cp-logic: A language of causal
probabilistic events and its relation to logic programming.
TPLP, 9(3):245–308, 2009.

[Zhu, 2012] Weijun Zhu. Plog: Its algorithms and applica-
tions. PhD thesis, Texas Tech University, 2012.

921

