Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

Ontology-Mediated Queries
Distributing Over Components

Gerald Berger, Andreas Pieris
Institute of Information Systems, TU Wien, Austria
{gberger,pieris } @dbai.tuwien.ac.at

Abstract

Ontology-based data access is concerned with the
problem of querying incomplete data sources in the
presence of an ontology. A key notion in this set-
ting is that of ontology-mediated query, which is a
database query coupled with an ontology. An inter-
esting issue is whether the answer to an ontology-
mediated query can be computed by parallelizing
it over the connected components of the database,
i.e., whether the query distributes over components.
This allows us to evaluate the query in a distributed
and coordination-free manner. We investigate dis-
tribution over components for classes of ontology-
mediated queries where the database query is a con-
junctive query and the ontology is formulated using
existential rules. For each such class, we syntacti-
cally characterize its fragment that distributes over
components, and we study the problem of deciding
whether a query distributes over components.

1

Ontology-based data access (OBDA) has recently emerged
as a promising application of knowledge representation and
reasoning technologies in information management systems.
The aim of OBDA is to facilitate access to data that is signif-
icantly heterogeneous and incomplete. This is achieved via
an ontology that provides a unified conceptual view of the
data, and makes it accessible via database queries formulated
solely in the vocabulary of the ontology. The actual database
query and the ontology can be seen as two components of one
composite query, called ontology-mediated query [Bienvenu
et al., 2014]. OBDA can then be realized as the problem of
answering ontology-mediated queries.

A challenging and important topic for declarative database
query languages, and in particular (extensions of) Datalog,
is coordination-free evaluation. This has its roots in declar-
ative networking [Loo et al., 2009], an approach where dis-
tributed computations are programmed using Datalog-based
formalisms. In this setting, programs (or queries) are speci-
fied over a global schema, and are executed by multiple com-
puting nodes over which the database is distributed. These
nodes can perform local computations, and also communicate

Introduction

943

asynchronously with each other via messages. The model as-
sumes that messages can never be lost but can be arbitrarily
delayed. An intrinsic source of inefficiency in such systems
are the global barriers raised by the need for synchronization
in computing the result of queries. This has motivated a fruit-
ful line of research for isolating classes of queries that can
be evaluated in a coordination-free manner [Zinn et al., 2012;
Ameloot et al., 2013; 2014; 2015; Alvaro et al., 2014].

It is quite natural to ask wether the results on coordination-
free evaluation for declarative database query languages can
be transferred to ontology-mediated queries. Undoubtedly, a
positive answer to this question, apart from possible applica-
tions to declarative networking, will significantly contribute
towards more efficient procedures for OBDA, since it will
enable distributed ontology-mediated query evaluation in a
coordination-free way. The goal of the present work is to ini-
tiate the study of coordination-free evaluation for ontology-
mediated queries, and give strong indications that the answer
to the above challenging question is affirmative.
Distribution Over Components. More concretely, we focus
on the question whether the answer to an ontology-mediated
query can be computed by parallelizing it over the (maxi-
mally connected) components of the database, i.e., whether
the query distributes over components. In other words, given
an ontology-mediated query @, the question is whether for
every database D the answer to) over D, denoted Q(D),
coincides with |J,,.,, Q(D;), where Dy,...,D,, are the
components of D. In this case, Q(D) can be computed with-
out any communication over a network using a distribution
where every computing node is assigned some of the con-
nected components of the database, and every component is
assigned to at least one computing node.

The notion of distribution over components has been in-
troduced in [Ameloot et al., 2014], and explicitly considered
for Datalog queries in [Ameloot et al., 2015]. It has been
shown that connected Datalog, that is, the fragment of Data-
log where all rule-bodies are connected, provides an effective
syntax for Datalog queries that distribute over components,
while the problem of deciding whether a Datalog query dis-
tributes over components is undecidable.

Aims and Objectives. As said, this work is concerned about
ontology-mediated queries and their distribution over com-
ponents. We focus on ontology-mediated queries where the
database query is a conjunctive query and the ontology is for-

mulated using existential rules (a.k.a. tuple-generating depen-
dencies or Datalog® rules). It is widely accepted that exis-
tential rules form a natural and convenient way for modeling
ontologies. This has led to a flurry of activity for designing
ontology languages based on existential rules; see e.g., [Baget
etal.,2011; Cali et al., 2012a; 2012b; Thomazo et al., 2012;
Leone et al., 2012]. We consider several ontology-mediated
query languages, where the ontology is modeled using either
arbitrary existential rules (without syntactic restrictions), or
one of the basic decidable classes of existential rules, namely
guarded, linear, or sticky (more details are given is Section 2),
and we perform similar analysis as the one in [Ameloot et al.,
2015] for Datalog queries. In particular, we would like to un-
derstand whether connectedness is the right notion for charac-
terizing the fragment of the query languages in question that
distributes over components, and understand the complexity
of checking distribution over components.

QOur Results. Our results can be summarized as follows:

» We show that for all the ontology-mediated query lan-
guages @ in question, the fragment of Q that distributes over
components has the same expressive power as the fragment of
Q where both the existential rules and the conjunctive query
are connected (Theorem 2). For the language where the ontol-
ogy is expressed using arbitrary existential rules, similar ideas
as the ones in [Ameloot et al., 2015] for Datalog queries can
be applied. However, the situation changes once we focus on
the languages based on guarded, linear, or sticky existential
rules, since these languages are not powerful enough to ex-
press transitivity axioms, which can be used to compute the
connected components of the input database.

» The problem of deciding distribution over components
is undecidable for all the ontology-mediated query languages
that capture Datalog; implicit in [Ameloot ez al., 2015]. In-
terestingly, we show that for the languages based on guarded,
linear, or sticky existential rules, the problem is decidable
(Theorems 15, 16 and 18).! Furthermore, for the languages
based on linear and sticky rules, we obtain precise complexity
results that range from 1" up to coNEXPTIME.

» It turned out that our techniques and results have inter-
esting consequences to ontology-mediated query languages
based on Description Logics (Corollary 8, and Theorem 19),
and to central database query languages, i.e., (unions of) con-
junctive queries, and non-recursive Datalog queries (Corol-
lary 11, and Theorems 20 and 21).

2 Preliminaries

Instances and Queries. Let C, N, and V be pairwise dis-
joint countably infinite sets of constants, (labeled) nulls and
(regular) variables (used in queries and dependencies), re-
spectively. A schema S is a finite set of relation symbols (or
predicates) with associated arity. We write R/n to denote that
R has arity n. A term is either a constant, null or variable. An
atom over S is an expression R(t), where R is a relation sym-
bol in S of arity n > 0 and ¢ is an n-tuple of terms. A fact
is an atom whose arguments consist only of constants. An

'For guarded-based queries, this holds under the assumption that
the conjunctive query is answer-guarded, i.e., it has an atom that
contains all the answer variables.

944

instance over S is a (possibly infinite) set of atoms over S
that contain constants and nulls, while a database over S is a
finite set of facts over S. The active domain of an instance I,
denoted adom(T), is the set of all terms occurring in 1.

A query over S is a mapping ¢ that maps every database D
over S to a set of answers q(D) C adom(D)™, where n > 0
is the arity of q. If n = 0, then q is a Boolean query, and we
write ¢(D) = 1if () € ¢(D), and ¢(D) = 0 otherwise.

The usual way of specifying queries is by means of (frag-
ments of) first-order logic. A conjunctive query (CQ) q over S
is a conjunction of atoms of the form 37 ¢(Z, §), where T U §
are variables of 'V, that uses only predicates from S. The free
variables of a CQ are called answer variables. The evaluation
of CQs over instances is defined in terms of homomorphisms;
we assume the reader is familiar with the standard notion of
homomorphism. Let I be an instance over S. The evalua-
tion of g over I, denoted ¢([I), is the set of all tuples h(Z) of
constants such that h is a homomorphism from ¢ to I. Each
schema S and CQ ¢ = 37 ¢(x1, . .., xn, §) give rise to the n-
ary query g4 s defined by setting, for every database D over
S, ¢p,s(D) = {¢ € adom(D)" | ¢ € ¢(D)}. Let CQ be
the class of all queries definable by some CQ. Analogously,
we define UCQ as the class of all queries definable by some
union of conjunctive queries (UCQ), that is, a disjunction of
CQs with the same answer variables.

Two queries ¢; and g over S are equivalent, written q; =
qo, if, for every database D over S, ¢1 (D) = ¢2(D). A query
language Q- is at least as expressive as query language Q1,
written Q1 = Qo, if, for every ¢; € QO over schema S, there
is g2 € Qs over S such that ¢; = ¢o. Q1 and Qs have the
same expressive power, written Q1 = Qo,if Q1 <X Qs < 9.

Tgds for Specifying Ontologies. An ontology language is
a fragment of first-order logic. Here, we focus on languages
that are based on tuple-generating dependencies. A tuple-
generating dependency (tgd) is a first-order sentence of the
form VzVij(¢(Z, §) — 3z1(Z, Z)), where both ¢ and 1) are
conjunctions of atoms without nulls and constants. For sim-
plicity, we write this tgd as ¢(Z,§) — 3z (T, Z), and use
comma instead of A for conjoining atoms. We call ¢ and ¥
the body and head of the tgd, respectively, and write sch(X)
for the set of predicates occurring in . An instance I satis-
fies the above tgd if the following holds: For every homomor-
phism A such that h(¢(Z,g)) C I, there is a homomorphism
R’ that extends h such that /(¢ (Z,z)) C I. I satisfies a set
Y of tgds, denoted I |= X, if I satisfies every tgd in . Let
TGD be the class of all (finite) sets of tgds.

Ontology-Mediated Queries. An onfology-mediated query
over S is a triple (S, X, ¢), where ¥ € TGD, ¢ € CQ, and ¢
is over S U sch(X). We call S the data schema. In general,
ontology-mediated queries are defined for arbitrary ontology
languages (not only TGD), and arbitrary query languages (not
only CQ). In this work, we focus on tgd-based ontology lan-
guages and queries definable via CQs. S is explicitly men-
tioned in the specification of the ontology-mediated query to
highlight that it is interpreted as a query over S. The seman-
tics of an ontology-mediated query is given in terms of cer-
tain answers. Let (S, X, q) be an ontology-mediated query,
where n is the arity of q. The certain answers to ¢ w.r.t. a

database D over S and ¥ is the set of tuples cert, »(D) =
{¢ € adom(D)" | ¢ e q(I),¥Ist. 12D DandI |= X}. Re-
call that cert, »(D) coincides with the evaluation of ¢ over
the canonical instance of D and X that can be constructed
by the chase; see e.g., [Cali et al., 2012b]. The chase adds
new atoms to D as dictated by X until the final result, written
chase(D,¥), satisfies ¥. When an existentially quantified
variable must be satisfied the chase invents a new null.

Ontology-Mediated Query Languages. Every query () =
(S, X, g) can be semantically interpreted as a query gg over
S by setting g (D) = cert, »(D), for every S-database D.?
Thus, we obtain a new query language, denoted (TGD, CQ),
defined as the class of queries gg, where () is an ontology-
mediated query. However, (TGD, CQ) is undecidable since,
given a database D over S, . € TGD, an n-ary query ¢ € CQ
over SUsch(X), and a tuple ¢ € C™, the problem of deciding
if ¢ € certy »(D) is undecidable [Beeri and Vardi, 1981].
This has led to a flurry of activity for identifying decidable
syntactic restrictions. Such a restriction defines a subclass
C of tgds, i.e., C C TGD, which in turn gives rise to the
decidable query language (C,CQ). The two main paradigms
for ontological reasoning are guardedness and stickiness:

Guardedness: A tgd is guarded if its body contains an atom,
called guard, that contains all the body-variables [Cali ef al.,
2013]. Let G be the class of sets of guarded tgds. A key
subclass of guarded tgds is the class of linear tgds, that is,
tgds whose body consists of a single atom [Cali et al., 2012a].
Let L be the class of sets of linear tgds.

Stickiness: The goal of stickiness is to express joins that are
not expressible via guarded tgds. The key property underly-
ing this condition is as follows: During the chase, terms that
are associated with variables that appear more than once in
the body of a tgd (i.e., join variables) are always propagated
(or “stick”) to the inferred atoms. Due to lack of space we
omit the definition that can be found in [Cali et al., 2012b].
Let S be the class of sticky sets of tgds.

Weak Versions: Both G and S have a weak version: Weakly-
guarded [Cali et al., 2013] and weakly-sticky [Cali et al.,
2012b], respectively. These are highly expressive classes ob-
tained by relaxing guardedness and stickiness so that only
those positions that receive nulls during the chase are taken
into account. We write WG and WS for the class of weakly-
guarded and weakly-sticky sets of tgds, respectively.

We refer to the query languages defined above as ontology-
mediated query languages.

3 Distribution of Queries and Connectedness

Our goal is to syntactically characterize the expressive power
of the fragment of the query languages in question that guar-
antees distribution over components. Let us recall the notion
of distribution over components [Ameloot et al., 2014]. A
set of atoms A is connected if for all a,b € adom(A), there
exists a sequence asq,...,a, of atoms in A such that a €
adom(a1), b € adom(ay,), and adom(a;) N adom(ovy1) #
@, foreach i € [n —1].> We call B C A a component of A if

?For brevity, we use @Q both for (S, ¥, ¢) and the mapping ¢q.
*Henceforth, we write [k] for {1,...,k}.

945

(i) B is connected, and (ii) for every « € A\ B, BU {a} is
not connected.* Let co(A) be the set of components of A.

Definition 1 A guery q over S distributes over components if
4(D) = Upreco(py 4(D'). for every database D over S.

Roughly, the centralized answer to ¢ w.r.t. D is precisely ob-
tained when we parallelize ¢ over the components of D. Let
DIST be the class of queries that distribute over components.
We proceed to characterize the expressive power of the frag-
ment of (C,CQ), where C is one of the classes of tgds in-
troduced above. This is done via connectedness. A tgd is
connected if the set of atoms occurring in its body is con-
nected, while a set X of tgds is called connected if every tgd
in ¥ is connected. Given a class C of tgds, we write conC for
the class of all (finite) sets of tgds that are connected and fall
in C. Similarly, we write conCQ for the class of all queries
definable by some CQ that is connected.

The main result of this section states that every query that is
expressible by one of the ontology-mediated query languages
Q in question and distributes over components is equivalent
to a connected query that falls in O, and vice versa. Formally:

Theorem 2 For C € {TGD,WG,G,L,WS,S}, (C,CQ) N
DIST = (conC,conCQ).

Notice that guarded and linear tgds are, by definition, con-
nected. This implies that, for C € {G, L}, the above theorem
can be equivalently stated as (C, CQ)NDIST = (C, conCQ).
We present Theorem 2 in this way for the sake of uniformity.
Let us now discuss the key ideas underlying Theorem 2.

For the (>) direction we show, no matter which ontology-
mediated query language we consider, that connectedness en-
sures distribution over components. This is a consequence of
the fact that, given a query Q@ = (S, X, ¢) € (conC,conCQ),
for every database D over S with co(D) = {D1,...,Dn},
chase(D,) can be partitioned into {I1, ..., I,,} such that,
for each i € [m], the atoms of I; depend only on D;. Thus:

Proposition 3 For each C C TGD, (conC,conCQ)
(C,CQ) N DIST.

We proceed with the (<) direction. It turned out that there
is no single reduction (at least no obvious one) from queries
that distribute over components to connected queries that is
generic enough to deal with all the query languages in ques-
tion. Nevertheless, our languages can be classified into three
groups according to certain properties that are useful for our
purposes, and then treat each group separately. These groups
and the underlying properties are as follows:

(A) (TGD,CQ), (WG, CQ) and (WS, CQ); these languages
are powerful enough to express (a limited form of) tran-
sitivity and cartesian products.

B) (G,CQ), (L,CQ); guarded and linear tgds are, by defi-
nition, connected.

(©) (5,CQ); UCQ is at least as expressive as (S, CQ), and
(conS, conCQ) is at least as expressive as conUCQ.’

=

“For technical clarity, the notion of component is defined only
for sets of atoms that do not contain nullary atoms.

SWe write conUCQ for the class of all queries definable by a
union of connected CQs.

We consider each one of the above groups, and show that dis-
tribution over components implies (semantic) connectedness.

Group A of Query Languages

Our main technical tool is the so-called connecting operator,
based on a construction given in [Ameloot et al., 2015] for
showing that distribution over components implies connect-
edness when we focus on Datalog queries. By applying the
connecting operator to a query @ = (S, X, ¢) € (TGD, CQ),
we obtain the query Q° = (S, c(X), c(q)) defined as follows.
The set c(X) consists of the tgds:

R(‘Tl, ..

for each R/n € S and i,j € [n], where con is a new binary
predicate not in X, and

S Zn) — con(z;,),

%
—

con(y, x)
con(z, z),

con(z,y)
con(z,y), con(y, z)

stating that con is symmetric and transitive; con(a, b) states
that the constants a and b belong to the same component of
the input database. In addition, we have the tgd

con(zy,v), R(x1,...,2n) = R(v,21,...,2,),

where v & {x1,...,x,,}, that annotates every atom of a cer-
tain component of the input database with all the constants
in this component. Finally, for each o € X, we add to c(X)
the connected version of o obtained by replacing each atom
R(Z) in o with R*(v,, T), where v, is a new variable. Anal-
ogously, c(g) is defined as the connected version of ¢. It can
be shown that) € DIST implies Q = Q°. Then:

Proposition 4 For each C C TGD that is closed under con-
necting,® (C,CQ) NDIST = (conC, conCQ).

Interestingly, TGD, WG, and WS are closed under connect-
ing. Hence, Proposition 4 implies that distribution over com-
ponents implies connectedness for the languages of Group A.

Group B of Query Languages

It is clear that G and L are not closed under connecting, and
therefore we need to follow a different approach. To this end,
we exploit the fact that guarded and linear tgds are, by defi-
nition, connected. In particular, we establish a general result
for subclasses of conTGD:

Proposition 5 For each C C conTGD, (C,CQ) N DIST =
(C, conCQ).

It is clear that the above result immediately shows that dis-
tribution over components implies connectedness for the lan-
guages of Group B. We proceed to explain the key ideas un-
derlying Proposition 5. Fix an arbitrary class C C conTGD,
and a query @ = (S,X,q) € (C,CQ) N DIST, where ¢/n is
defined by the CQ 37 ¢(Z, 7). Observe that if @ is unsatisfi-
able, i.e., there is no database D over S such that Q(D) # @,
then the claim holds trivially; simply choose an arbitrary un-
satisfiable query from (C,conTGD). The interesting case is
when @ is satisfiable. Let {¢1,..., ¢} be the components
of q. We assume that & > 2 since for £ = 1 the claim holds
trivially. Our goal is to show that there exists ¢ € [k] such

SThis means that, for each set © € C, c(X) € C.

946

that Q; = (S, X, ¢;), where ¢; is the CQ obtained from ¢ by
keeping only the component ¢;, is equivalent to (). Since
Q; € (C,conCQ) the claim follows. We proceed by distin-
guishing the two cases where ¢ is either non-Boolean (i.e.,
n > 0) or Boolean (i.e., n = 0).

Case I - Non-Boolean: Interestingly, we can show that all the
answer variables of ¢ occur in a single component. In fact, if
an answer variable occurs in more than one component of ¢,
then @ is unsatisfiable, which contradicts the fact that () is
satisfiable; this exploits the fact that 3 is connected. There-
fore, we can refer to the component gz of ¢ that contains the
answer variables of g. Notably, the query obtained from @) by
replacing ¢ with ¢z is equivalent to):

Lemma 6 Q = Qz, where Qz = (S, %, gz).

It is clear that Qz € (C, conCQ), and the claim when ¢ is
non-Boolean follows by Lemma 6.

Case 2 - Boolean: Let us now consider the Boolean case. Al-
though we cannot refer to the component ¢z of ¢, we can show
that there exists a component that gives rise to a query equiv-
alent to Q). Given a query Q = (S, 3, §) € (C,CQ) N DIST,
where ¢ is Boolean and 1, ..., ,, are its components, let
Q,- be the query obtained from Q by keeping only the compo-
nent v); of ¢, and QZ_ the query obtained from Q by remov-
ing the component ;. We can show that, for each i € [m)],
Qi - Q; or Q; C Qﬂ Thus, starting from (), and repeat-
edly applying this result, we will find an integer ¢ € [k] such
that ; C Q; . It is not difficult to show that Q) = Q);. Thus:

Lemma 7 There exists i € [k] such that Q@ = Q;, where

It is clear that the query @; provided by Lemma 7 belongs
to (C,conCQ), and the claim when g is Boolean follows.

Description Logics. Before we proceed to the third group of
query languages, we would like to briefly discuss an interest-
ing consequence of Proposition 5 to ontology-mediated query
languages based on Description Logics (DLs). As for classes
of tgds, a DL L gives rise to the query language (£, CQ). One
of the most prominent and well-studied DLs is ££ [Baader,
2003]. It is known that an £L-TBox can be rewritten as a set
of guarded tgds [Cali er al., 2012a]. This fact, together with
Propositions 3 and 5, allow us to show that:

Corollary 8 (££,CQ)NDIST = (€L, conCQ).

Group C of Query Languages

S is not closed under connecting, and S conTGD. Thus, we
need to apply different techniques for establishing the desired
result. Our main technical tool is as follows:

Proposition 9 For each C C TGD such that

1. (C,CQ) =2 UCQ,
2. conUCQ = (conC, conCQ),

it holds that (C,CQ) N DIST =< (conC, conCQ).

"As usual, Q1 C Q2 means that for every source database D,

Q1(D) € Q2(D).

To establish Proposition 9, it suffices to show the following
lemma, which can be done by exploiting similar ideas as the
ones developed above for proving Proposition 5:

Lemma 10 UCQ N DIST < conUCQ.

Having the above proposition in place, to establish the de-
sired result for (S, CQ) it remains to show that (S,CQ) =<
UCQ and conUCQ = (conS, conCQ). The former is implicit
in [Gottlob et al., 2014], where it is shown that evaluation
for (S,CQ) is UCQ-rewritable. The latter is shown by ex-
ploiting the fact that every CQ of the form 3y ¢(Z, §) can be
converted into the sticky tgd ¢(Z, §) — ans(Z,7); this tgd is
sticky since all the body-variables are propagated to the head.
Database Query Languages. We conclude this section by
discussing some interesting consequences to central database
query languages, in particular CQ, UCQ), and NRDat.? First,
notice that Proposition 3 can be established for CQ and UCQ.
This fact, together with Lemma 10, which holds also for CQ,
implies that CQ N DIST (UCQ N DIST) has the same expres-
sive power as conCQ (conUCQ). Regarding NRDat, we can
show that the class of tgds that corresponds to non-recursive
Datalog programs enjoys the two properties stated in Propo-
sition 9. Hence, Propositions 3 and 9 imply that:

Corollary 11 For each language Q € {CQ, UCQ, NRDat},
O NDIST = conQ.

4 Deciding Distribution Over Components

The question that comes up is whether distribution over com-
ponents for the query languages considered so far can be de-
cided. This problem, dubbed Dist(Q) with Q being a query
language, accepts as input a query @ € Q, and asks whether
@ € DIST. Notice that Theorem 2 only says that Dist(Q) is
equivalent to the problem of checking whether a query is se-
mantically (not syntactically) connected, and thus it does not
provide a decision procedure for our problem.

We start our analysis be recalling a recent negative result:
Dist(Dat) is undecidable [Ameloot et al., 2015], where Dat
is the class of all queries definable by some Datalog query.
Thus, for every C C TGD that captures Datalog programs, we
immediately obtain that Dist(C, CQ) is undecidable.® TGD,
WG and WS are such classes, and hence:

Theorem 12 For Q € {(TGD, CQ), (WG, CQ), (WS, CQ)},
Dist(Q) is undecidable.

This negative result rules out weakly-guarded and weakly-
sticky sets of tgds. What about their non-weak versions? Do
they ensure the decidability of Dist? This will be the subject
of the remainder of this section.

Distribution and Guardedness

We show that our problem is decidable if we focus on the
answer-guarded fragment of (G,CQ). A CQ ¢ is answer-
guarded if it includes an atom that contains all the answer
variables [Bérdny er al., 2013]. Let AGCQ be the class of all
queries definable by some answer-guarded CQ. Notice that
AGCQ is a broad class of queries, which includes all Boolean

8 All queries definable by some non-recursive Datalog query.
°For brevity, we write Dist(C, CQ) instead of Dist((C, CQ)).

947

CQs. Our goal is to show that Dist(G, AGCQ) is decidable.
Fix a query Q = (S, X, q) € (G,AGCQ), where {q1,...,qx}
are the components of ¢g. Recall that (); is the query obtained
from () by keeping only the component g; of q. By exploiting
Proposition 3, and Lemmas 6 and 7, we can show that:

Lemma 13 @ € DIST iff one of the following holds:

1. Q is unsatisfiable;
2. There exists i € [k] such that Q; € (G,AGCQ) and

Q; C Q.

Checking whether () is unsatisfiable can be reduced to the
containment problem for (G, AGCQ). Thus, Lemma 13 pro-
vides an algorithm for Dist(G, AGCQ) under the assumption
that Cont(G, AGCQ) is decidable.!® It remains to show that:

Proposition 14 Cont(G, AGCQ) is decidable.

The above result is shown by a reduction to Cont(GDat),
where GDat is the class of queries definable by some guarded
Datalog query [Barény et al., 2012]. Guarded Datalog re-
quires an atom with an extensional predicate to contain all the
variables in the head. Cont(GDat) is in 2EXPTIME as it can
be reduced to the satisfiability problem for guarded negation
fixed point logic [Bérdny et al., 2015]. Our reduction exploits
a construction given in [Bérany et al., 2013] for rewriting a
query of Q = (S, %, q) € (G, AGCQ) into an equivalent Dat-
alog query Qpat = (II, Ans), where each rule of II has a
guard atom (possibly with an intensional predicate) that con-
tains all the head-variables. This construction assumes that ¢
is answer-guarded; this is the reason why we focus on answer-
guarded queries. From the above discussion, we get that:

Theorem 15 Dist(G, AGCQ) is decidable.

The decision procedure underlying Theorem 15 shows that
Dist(G, AGCQ) is elementary. However, its exact complexity
is unknown. Moreover, the decidability of Dist(G, CQ), i.e.,
when the CQ is not answer-guarded, is still open.

Distribution and Linearity

Itis easy to verify that the proof of Theorem 15 applies even if
we focus on linear tgds; thus, Dist(L, AGCQ) is decidable. In-
terestingly, by exploiting the fact that evaluation for (L, CQ)
is UCQ-rewritable [Gottlob et al., 2014], we can significantly
strengthen the above result. We can show that:

Theorem 16 Dist(L, CQ) is PSPACE-complete, and 1% -
complete if the arity of the schema is fixed.

Fix a query Q = (S, %, q) € (L,CQ). By applying query
rewriting techniques, we can construct (), € UCQ such that
Q = Q. [Gottlob et al., 2014]. Clearly, Q € DIST iff
@, € DIST. Hence, it would be quite beneficial to first un-
derstand the problem Dist(UCQ). One may be tempted to
think that a UCQ distributes over components iff each of its
disjuncts does. It is easy to show that this is not the case;
consider, e.g., the UCQ 323y (R(z) A S(y)) V Iz R(z). The
reason for this is the fact that some disjuncts that do not dis-
tribute over components maybe subsumed by other ones that
distribute over components. To formalize this we need an

"%For a query language Q, Cont(Q) accepts as input two queries
Q1,Q2 € Q of the same arity, and asks whether Q1 C Q2.

auxiliary notation. For a CQ ¢(z) = 3y (A, Ri(Z, 7)),
let D]q] the database { R;(c(Z), c(9)) }ie[n) obtained after re-
placing each variable v in g with a fresh constant ¢(v). Then:

Lemma 17 For Q(z) € UCQ, Q € DIST iff for each q € Q,
there exists D' € co(D|q]) such that c¢(Z) € Q(D").

Let @ = (S,%,¢(7)) € (L,CQ), and let Q,(Z) € UCQ
be the rewriting obtained by applying the rewriting algorithm
in [Gottlob et al., 2014]; recall that Q = Q,.. This algo-
rithm constructs @), starting from ¢ and exhaustively apply-
ing two steps: rewriting and minimization. The rewriting step
resolves an atom in the disjunct ¢’ under consideration using a
linear tgd of 3, while the minimization step is responsible for
unifying some atoms of ¢’. Lemma 17 implies that Q ¢ DIST
iff there exists ¢’ € @, such that, for every D’ € co(D]q']),
c(z) € Q(D’). This suggests the following decision proce-
dure for the complement of Dist(L, CQ):

1. Construct a CQ ¢'(Z) € @, by nondeterministically ap-
plying rewriting and minimization steps;

2. Foreach D’ € co(D), if ¢(Z) € Q(D'), then Reject;

3. Accept.

Each step of the above procedure uses polynomial space. This
is shown by exploiting the fact that each ¢’ € Q- cannot have
more atoms than the original CQ ¢ due to the linearity of tgds,
and also the fact that evaluation for (L, CQ) is in PSPACE; the
latter is implicit in [Johnson and Klug, 1984]. In case the ar-
ity of the schema is fixed, ¢’ can be nondeterministically con-
structed in polynomial time, while evaluation for (L, CQ) is
in NP; implicit in [Johnson and Klug, 1984]. Thus, the above
procedure gives a 2" upper bound. Hence, Dist(L, CQ) is in
PSPACE, and in H§ if the arity of the schema is fixed.

The lower bounds are established by a reduction from a re-
stricted version of Cont(L, CQ). We define RestCont(C, CQ)
to be the problem of checking Q1 C 2, where @
(SU{P},%,q1)and Q2 = (SU{P}, %, q2) with P & S be-
ing a unary predicate not in ¥, ¢, g2, given: (i) aset 3 € C of
connected tgds, (ii) a Boolean connected CQ ¢; with at least
one variable v,, that occurs only in atoms with a predicate of
S, and (iii) a Boolean CQ ¢ that uses only predicates of S. It
holds that 1 C Q2 iff (SU{P}, X, g1 AP (vg,)Ag2) € DIST,
which in turn implies that we have a logspace reduction from
RestCont(L, CQ) to Dist(L, CQ). Therefore, to obtain the de-
sired lower bounds for Dist(L, CQ), it remains to show that
RestCont(L, CQ) is PSPACE-hard, and H§ -hard for fixed ar-
ity. The former can be shown by a reduction from query an-
swering under linear tgds, while the latter is implicit in [Bi-
envenu ef al., 2012] (see the proof of Theorem 9). In fact, the
I15-hardness holds even for tgds of the form P(x) — R(z).

Distribution and Stickiness
We proceed to show that Dist(S, CQ) is decidable, and pin-
point the complexity of the problem:

Theorem 18 Dist(S, CQ) is coNEXPTIME-complete,'! and
1L -complete if the arity of the schema is fixed.

Evaluation for (S, CQ) is UCQ-rewritable [Gottlob er al.,
2014]. This allows us to exploit the algorithm devised above

"'The lower bound assumes databases with at least two constants.

948

for solving the complement of Dist(L, CQ). However, since
sticky tgds may have more than one atom in their body, the
space we need during the execution of the algorithm is not
polynomial anymore; actually, we need exponential space.
Nevertheless, it can be shown that for (S, CQ) this algorithm
terminates after exponentially many steps, which implies a
NEXPTIME upper bound for the complement of our prob-
lem. This exploits the fact that query evaluation for (S, CQ)
is in EXPTIME [Cali et al., 2012b]. In case the arity of the
schema is fixed, the same analysis as for (L, CQ) applies, and
thus we obtain a ¥3” upper bound for the complement of our
problem. The fact that evaluation for (S, CQ) in case of fixed
arity is in NP has been shown in [Lukasiewicz et al., 2015].

To show coNEXPTIME-hardness for Dist(S, CQ), we first
establish the same for Cont(conS, conCQ) by giving a reduc-
tion from the so-called Exponential Tiling Problem [Johnson,
1990]; for technical reasons, we assume databases with at
least two constants. The desired coNEXPTIME-hardness is
obtained by reducing Cont(conS, conCQ) to Dist(S, conCQ).
The I15 -hardness in case the arity of the schema is fixed is
obtained in the same way as for (L, CQ).

Description Logics and Database Query Languages
Interestingly, by exploiting the ideas developed above for un-
derstanding the complexity of Dist, we can show that:

Theorem 19 Dist(£L, CQ) is EXPTIME-complete.

For the upper bound, we relax Lemma 13 in order to deal
with arbitrary (beyond answer-guarded) CQs, and then use
the fact that Cont(£L£, CQ) is in EXPTIME [Bienvenu et al.,
2012]. The lower bound exploits the problem RestCont™ ob-
tained from RestCont dy dropping the third condition in the
definition of an instance of RestCont. RestCont*(£L,CQ)
is known to be EXPTIME-hard [Bienvenu et al., 2012], which
is not the case for RestCont(£L, CQ).

We conclude with the complexity of Dist when we focus
on central database query languages. We show that:

Theorem 20 Dist(CQ) and Dist(UCQ) are NP-complete,
even if the arity of the schema is fixed.

By exploiting Lemma 17, we can design a guess-and-check
algorithm for Dist(UCQ) that runs in polynomial time; the
NP-hardness is shown by reduction from Cont(CQ). Finally,
by giving a proof similar to the one for Theorem 18, we show:

Theorem 21 Dist(NRDat) is coNEXPTIME-complete, even
if the arity of the schema is fixed."!

5 Conclusions

Here are some interesting open problems that we are plan-
ning to tackle: (i) The complexity of deciding distribution
over components for guarded-based queries is still open, (ii)
distribution over components in the presence of equality and
denial constraints is not well understood, and (iii) we do not
know how distribution over components behaves in the case
of non-monotonic queries.

Acknowledgements. Austrian Science Fund (FWF), projects
P25207-N23, Y698 and W1255-N23, and Vienna Science
and Technology Fund (WWTF), project ICT12-015.

References

[Alvaro er al., 2014] Peter Alvaro, Neil Conway, Joseph M.
Hellerstein, and David Maier. Blazes: Coordination analy-
sis for distributed programs. In ICDE, pages 52-63, 2014.

[Ameloot et al., 2013] Tom J. Ameloot, Frank Neven, and
Jan Van den Bussche. Relational transducers for declar-
ative networking. J. ACM, 60(2):15, 2013.

[Ameloot et al., 2014] Tom J. Ameloot, Bas Ketsman, Frank
Neven, and Daniel Zinn. Weaker forms of monotonicity
for declarative networking: A more fine-grained answer to
the CALM-conjecture. In PODS, pages 64-75, 2014.

[Ameloot et al., 2015] Tom J. Ameloot, Bas Ketsman, Frank
Neven, and Daniel Zinn. Datalog queries distributing over
components. In ICDT, pages 308-323, 2015.

[Baader, 2003] Franz Baader. Least common subsumers and
most specific concepts in a description logic with existen-
tial restrictions and terminological cycles. In IJCAI, pages
319-324, 2003.

[Baget et al., 2011] Jean-Francois Baget, Michel Leclere,
Marie-Laure Mugnier, and Eric Salvat. On rules with ex-
istential variables: Walking the decidability line. Artif. In-
tell., 175(9-10):1620-1654, 2011.

[Barany er al., 2012] Vince Barany, Balder ten Cate, and
Martin Otto. Queries with guarded negation. PVLDB,
5(11):1328-1339, 2012.

[Bérény et al., 2013] Vince Bardny, Michael Benedikt, and
Balder ten Cate. Rewriting guarded negation queries. In
MFCS, pages 98-110, 2013.

[Bérany ef al., 2015] Vince Barany, Balder ten Cate, and Luc
Segoufin. Guarded negation. J. ACM, 62(3):22, 2015.

[Beeri and Vardi, 1981] Catriel Beeri and Moshe Y. Vardi.
The implication problem for data dependencies. In ICALP,
pages 73-85, 1981.

[Bienvenu et al., 2012] Meghyn Bienvenu, Carsten Lutz,
and Frank Wolter. Query containment in description logics
reconsidered. In KR, 2012.

[Bienvenu et al., 2014] Meghyn Bienvenu, Balder ten Cate,
Carsten Lutz, and Frank Wolter. Ontology-based data ac-
cess: A study through disjunctive datalog, csp, and MM-
SNP. ACM Trans. Database Syst., 39(4):33:1-33:44, 2014.

[Cali et al., 2012a] Andrea Cali, Georg Gottlob, and Thomas
Lukasiewicz. A general Datalog-based framework for
tractable query answering over ontologies. J. Web Sem.,
14:57-83, 2012.

[Cali er al., 2012b] Andrea Cali, Georg Gottlob, and An-
dreas Pieris. Towards more expressive ontology lan-
guages: The query answering problem. Artif. Intell.,
193:87-128, 2012.

[Cali et al., 2013] Andrea Cali, Georg Gottlob, and Michael
Kifer. Taming the infinite chase: Query answering un-
der expressive relational constraints. J. Artif. Intell. Res.,
48:115-174, 2013.

949

[Gottlob et al., 2014] Georg Gottlob, Giorgio Orsi, and An-
dreas Pieris. Query rewriting and optimization for ontolog-
ical databases. ACM Trans. Database Syst., 39(3):25:1—
25:46, 2014.

[Johnson and Klug, 1984] David S. Johnson and Anthony C.
Klug. Testing containment of conjunctive queries under
functional and inclusion dependencies. J. Comput. Syst.
Sci., 28(1):167-189, 1984.

[Johnson, 1990] David S. Johnson. A catalog of complexity
classes. In Handbook of Theoretical Computer Science,
pages 67-161. 1990.

[Leone et al., 2012] Nicola Leone, Marco Manna, Giorgio
Terracina, and Pierfrancesco Veltri. Efficiently com-
putable Datalog programs. In KR, 2012.

[Loo et al., 2009] Boon Thau Loo, Tyson Condie, Minos N.
Garofalakis, David E. Gay, Joseph M. Hellerstein, Pet-
ros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and
Ion Stoica. Declarative networking. Commun. ACM,
52(11):87-95, 2009.

[Lukasiewicz et al., 2015] Thomas Lukasiewicz, Maria Van-
ina Martinez, Andreas Pieris, and Gerardo I. Simari. From
classical to consistent query answering under existential
rules. In AAAI, pages 1546-1552, 2015.

[Thomazo et al., 2012] Michaél Thomazo, Jean-Francois
Baget, Marie-Laure Mugnier, and Sebastian Rudolph. A
generic querying algorithm for greedy sets of existential
rules. In KR, 2012.

[Zinn et al., 2012] Daniel Zinn, Todd J. Green, and Bertram
Ludischer. Win-move is coordination-free (sometimes).
In ICDT, pages 99-113, 2012.

