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Abstract

Timed Failure Propagation Graphs (TFPGs) are
used in the design of safety-critical systems as a
way of modeling failure propagation, and to evalu-
ate and implement diagnostic systems. TFPGs are
mostly produced manually, from a given dynamic
system of greater complexity. In this paper we
present a technique to automate the construction of
TFPGs. It takes as input a set of failure mode and
discrepancy nodes and builds the graph on top of
them, based on an exhaustive analysis of all system
behaviors. The result is a TFPG that accurately rep-
resents the sequences of failures and their effects as
they appear in the system model. The proposed ap-
proach has been implemented on top of state-of-
the-art symbolic model-checking techniques, and
thoroughly evaluated on a number of synthetic and
industrial benchmarks.

1 Introduction

Timed Failure Propagation Graphs [Misra ef al., 1992; Of-
sthun and Abdelwahed, 2007; Abdelwahed et al., 2009;
Bozzano et al., 2015b] have been studied and used in prac-
tice in the design of safety-critical systems since the early
1990s, as a way to describe the occurrence of failures and
of their direct and indirect effects, and to assess the corre-
sponding consequences over time. TFPGs are a very rich for-
malism: they allow to model Boolean combinations of basic
faults, intermediate events, and transitions across them, pos-
sibly dependent on the operational modes of the system, and
to express constraints over the delays. TFPGs have been pri-
marily used as a way to deploy diagnosis systems [Abdel-
wahed et al., 2009]. Their importance is now increasingly
recognized in the design of autonomous systems, in partic-
ular for the definition of Fault Detection, Isolation and Re-
covery (FDIR) procedures [Bittner et al., 2014]. TFPGs have
been the object of recent invitations to tender by the Euro-
pean Space Agency (ESA) [European Space Agency, 2011;
2012]. In fact, compared to other techniques such as Fault
Tree Analysis (FTA) [Vesely er al., 1981] and Failure Modes
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and Effects Analysis (FMEA) [McDermott et al., 1996], fail-
ure propagation analysis has substantial advantages. While
Fault Tree Analysis only explores subsets of propagation
paths in response to specific feared events, failure propaga-
tion presents a more comprehensive and integrated picture.
Moreover, it gathers more fine-grained and precise informa-
tion that other techniques such as FMEA do not handle, such
as timing information and the AND/OR correlation between
propagation causes and effects. For these reasons, TFPGs are
a natural candidate to address one of the key difficulties in
the implementation of FDIR, i.e. the fact that the design is
based on scattered and informal analyses, which lack a co-
herent view on failure propagation dynamics.

In this setting, TFPGs are often manually derived from a
given dynamic system of greater complexity, as an abstract
representation of its behavior under specific faulty conditions.
In [Bittner et al., 2016b] a comprehensive approach was in-
troduced to validate manually built TFPGs against the behav-
iors of the corresponding system. While this gives assurance
on the quality of the TFPG, it requires the laborious process
of manually building the underlying graph based on system
documentation. In this paper we propose a framework to au-
tomatically synthesize the TFPG, given a behavioral model of
the system and a set of nodes. The resulting TFPG satisfies by
construction a number of important properties as an abstrac-
tion of the system’s behavior after the occurrence of faults.
The approach has been fully implemented using state-of-
the-art symbolic model-checking techniques for infinite-state
transition systems [Bozzano ef al., 2015c], and thoroughly
evaluated on a number of synthetic and industrial benchmarks
derived in the context of collaborations with ESA and The
Boeing Company. To our knowledge, this is the first fully
general method that covers TFPG synthesis for infinite-state
dynamic systems. The experimental evaluation demonstrates
the practicality of the approach. Positive feedback is reported
from its application in an industrial setting.

Related Work [Priesterjahn ef al., 2013] propose a TFPG
synthesis algorithm for timed automata. Following a com-
ponent topology it traverses the zone graph of the automata
to discover discrepancies in output signals based on failures
in input signals. No formal characterization of the synthe-
sis result and no experimental evaluation of the approach are
given. The present approach instead supports generic finite-



and infinite-state transition systems, defines failure modes
and discrepancies as generic properties of the system state
and doesn’t limit them to component signals, and produces
TFPGs with well-defined formal characteristics. The back-
end of our implementation is based on off-the-shelf technol-
ogy and doesn’t use custom procedures for state-space traver-
sal. [Dubey er al., 2013] also propose a TFPG synthesis ap-
proach based on structural models, but don’t consider system
dynamics. [Strasser and Sheppard, 2011] use historical main-
tenance data to improve the accuracy of a TFPG that is given.
In the present work instead the goal is to build, at design-
time, a TFPG from only the nodes of the graph, based on an
exhaustive analysis of all system behaviors.

2 Background

Symbolic Transition Systems are, following model-
checking (e.g. [Cimatti and Griggio, 2012]), tuples S
(X,1,T), where X is a finite non-empty set of state vari-
ables, I(X) and T'(X, X') are quantifier-free first-order for-
mulae representing the initial states and the transition rela-
tion, X’ being the next-state version of X. A state s of S is
an assignment to the variables of X. We denote with s’ the
corresponding assignment to the variables in X’. The domain
of x € X is written A(z). The set of all possible states (state
space) of S, denoted SP(S), may be either finite or infinite
(if any € X has an infinite domain). We write © = ¢ to
indicate that the variable assignment p satisfies the formula
¢, i.e. that ¢ evaluates to true if its variables are assigned the
values specified by p. A trace of S is an infinite sequence
= S, 81, ... of states such that sy = I(X) and for all in-
tegers k > 0 we have (s, sg+1) = T(X, X'). 7[k] denotes
the state sy, of trace 7, and sy, is short for 7[k] if the trace is
clear from the context. A state s is reachable in S iff there ex-
ists a trace 7 such that s = «[k] for some & € N. We assume
a variable 7 € X exists with A(7) = R, associating each
state with a time stamp, and that time advances monotonically
(for any state s; of any trace 7, 7(s;) < 7(8;+1))-

Metric Temporal Logic (MTL) is an extension of linear
time logic (LTL), where the temporal operators are aug-
mented with timing constraints (for an overview see [Ouak-
nine and Worrell, 2008]). It is interpreted over timed state
sequences. Given a set of atomic propositions AP, includ-
ing the symbols T (true) and L (false), MTL formulae
are defined as follows, with p € AP: ¢ == p|-d|d1 A
b2]d1UL 2| 1S ¢o. The intervals I can be (partially) open
or closed, [a, ], (a,b), (a,b], [a,b), with a,b € {R>qU+o00}
and a < b. I is omitted if I = [0, +00), and the resulting
simplified operators correspond to their standard LTL ver-
sions. Other operators can be defined as syntactic sugar: G,
O. Given a transition system S with timed traces, a labeling
function L : SP(S) ~ 247, a trace 7 of S and a trace index
k, we say that an MTL formula ¢ is satisfied at 7 [k], written
w[k] = ¢, if the following holds: w[k] = p iff p € L(w[k]);
k] E —¢ iff not w[k] = ¢; w[k] = ¢1 A ¢o iff w[k] E &1
and (k| = ¢o; (k] = 91Ul o iff 3 > k-7 — 71, € I and
7li] | ¢oand Vi < j < i-7lj] | i wlk] E ¢157¢0
iff 3 < k-7,—7 € Tand w[i] = ¢ and Vi < j <
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Figure 1: TFPG for the ForgeRobot example. Dotted boxes
are failure mode nodes, solid boxes AND nodes, and circles
OR nodes.

k-mljl = éu k] = G iff w[k] = —~(TU=¢); 7[k] = O¢
iff w[k] = TS¢. We write m = ¢ for 7[0] = ¢, and S | ¢

to indicate that for all traces m of S we have 7 |= ¢.

Timed Failure Propagation Graphs are directed graph
models where nodes represent failure modes and discrepan-
cies (failure effects). Edges model the temporal dependency
between the nodes. They are labeled with lower and upper
bounds on the propagation delay, and with labels indicating
in what system modes the propagations are possible. TFPGs
are defined as follows, based on [Abdelwahed et al., 2009].

Definition 1 (TFPG). A TFPG is a structure G
(F,D,E,M,ET, EM,DC), where: F is a non-empty set
of failure modes; D is a non-empty set of discrepancies;
E CV xV isanon-empty set of edges connecting the set of
nodes V.= FUD; M is a non-empty set of system modes (we
assume that at each time instant the system is in precisely one
mode); E'T : E — I is a map that associates every edge in
E with a time interval [tin, tmaz] € I indicating the mini-
mum and maximum propagation time on the edge (where I €
R>o x (RsgU{+00}) and tpmin < tmaz); EM : E — 2M js
a map that associates to every e € I/ a set of modes in M (we
assume EM (e) # 0); DC : D — {AND, OR} is a map defin-
ing the discrepancy type. Failure modes never have incoming
edges. All discrepancies must have at least one incoming edge
and be reachable from a failure mode node. Circular paths
(but not self-loops) are possible. We use OR(G) and AND(G) to
indicate the set of OR nodes and AND nodes of a TFPG G,
respectively, D(G) to indicate all discrepancies, and F(QG)
to indicate all failure modes.

The running example ForgeRobot describes a robot work-
ing in a hypothetical industrial forge. The robot is either in
standby in a safe area, or performs work in a critical area
that has high heat levels. It moves around using its locomo-
tion facilities. To prevent overheating in the critical area, a
cooling system is used. The TFPG in Figure 1 shows possible
failures of the robot and their effects over time. The locomo-
tion drive of the robot can fail (f},.), causing the robot to be
stuck (dstycr)- The cooling system can fail (f,0;), decreasing
the performance of heat protection. f.,,; and dgsycr can both
independently cause a non-critical overheating of the robot
(dnonerit) in mode C. In case both happen, they cause a crit-
ical overheating (d.,;+). Two modes are used to differentiate



the operational context: S for safe area, and C' for critical
area. The time ranges on the propagation edges represent the
different propagation speeds influenced by variable amount
of workload and of heat in the critical area.

A TFPG node is activated when a failure propagation has
reached it. An edge e = (v,d) is active iff v is active and
m € EM(e), where m is the current system mode. A failure
propagates through e = (v,d) only if e is active through-
out the propagation, that is, up to the time d activates. For
an OR node d and an edge e = (v,d), once e becomes ac-
tive at time ¢, the propagation will activate d at time ¢’, where
tmin(e) < t' —t < tmax(e). Activation of an AND node d
will occur at time ¢’ if every edge e = (v, d) has been acti-
vated at some time ¢, with tmin(e) < ¢’ — ¢, and for at least
one such edge e we also have ¢’ — t < tmaz(e). If an edge
is deactivated any time during the propagation, due to mode
switching, the propagation stops. Links are assumed memory-
less, thus failure propagations are independent of any (incom-
plete) previous propagation. A maximum propagation time of
tmaz = 00 indicates that a propagation can be delayed in-
definitely, i.e. it can occur but not necessarily will.

Behavioral Validation of TFPGs In [Bittner ef al., 2016b]
the notion of TFPG completeness is defined. Informally, it
asks whether some failure propagation pattern exists on some
system trace that is not captured by the TFPG. In the run-
ning example such a trace would be, e.g., one where first fi,.
happens and then d,, oncrit, Without any other node activating,
which violates the TFPG constraints. In a certain sense com-
pleteness asks whether the behaviors allowed by the TFPG
are an over-approximation of the failure propagation behav-
iors that are possible in the system model.

The definition of completeness and its validation are based
on TFPG association maps I', which w.l.o.g. are injective
functions associating all elements of F', D, and M of a TFPG
G to Boolean expressions «y over the state vector X of a sys-
tem model S. For a node v € F'U D we write 7, to indicate
the corresponding expression in I'. Given an edge e € E, the
short form () is used instead of \/,,,c pr7(¢) Y-

These maps are specified by the user and are used to map
system traces to traces of TFPG transition systems, which are
defined as follows: X = FUDUMUT, with A(z) = {T, L}
forz € FUDUM and A(7) = R>0; I(X) = dmodes(M) A
T=0,T(X,X") = dmodes(M') A /\wE{FUD}(x = ')A
(1 < 7) AN (Viegrupomy (@ # @) = (7 = 7')), where
(bmodes(M) = /\mEN[(m And /\nE{M\m} _‘n). TS(G) is
used to indicate the TFPG transition system derived from the
nodes /' U D and modes M of the TFPG G. The traces of
TS(@) that satisfy the TFPG constraints are represented by
II(G). A trace m € T'S(G) satisfies the Boolean constraints
as encoded by the graph iff Vk € N - 7[k] = ¢poot (G), where
Pbool(G) = /\dGDR(G)(d - \/(u,d)eE v) A /\dEAND(G) (d —
N(v,aye V) (bold-face letters are Boolean activation-state
variables of the corresponding TFPG nodes).

Given a system model S, an association map I relating .S
to a given TFPG G, the verification of TFPG completeness
is expressed as a set of model-checking problems on S, fol-
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lowing the semantics of TFPGs. For OR nodes, the following
proof obligations are formulated:

o Vora(d,T) G((0v) —  O((Ov) A
Veeoaye s ((07) A (e SZ ™™ (070) Avu(ey))

hd ¢UR'B(daF) Gﬁ(\/e:(v,d)eE((O%) A Yule) A
ﬁ(o,yd)s>tma:r(e)((ofyv) A Yu(e) A _'(O’Yd)))

Intuitively, tgg.4(d,T) requires at least one edge e
(v, d) to be active for at least ¢trmin(e) time units at the point
where d activates, and ¥gr. 5 (d, I') requires that a propagation
along some edge e = (v, d) cannot be delayed for more than
tmazx(e) time units. The corresponding proof obligations for
AND nodes (¢anp.4(d,I") and ¥awp.5(d, ")) are symmetri-
cal, having A\, instead of \/__ ;. The proof obligation for
TFPG completeness is U(G,T') := A;cpp(q) (Yor-a(d,I') A

Yor-B(d, 1)) A N genmn(e) (V- a(d, I') Ahanp. 5(d, T')). Then,
G is complete w.r.t. S iff S = ¥(G,T).

3 Problem Description

This section describes in detail the problem the present work
addresses. Specifically, we are interested in synthesizing the
graph of a TFPG. The idea is to provide the synthesis proce-
dure a system model, a list of nodes, and an association map
defining them. The procedure then should return a TFPG that
includes all input nodes, that is complete and whose graph
accurately represents the precedence constraints among node
activations in correspondence to the system behaviors. Syn-
thesis of edge constraints is covered in [Bittner et al., 2016b]
and not included here.

Informally, given a discrepancy d, the precedence con-
straints of d describe which other nodes must activate before
d itself can become active. In the running example, for in-
stance, it means that d,oncrit 1S always preceded by either
feool OF, alternatively, by fi,. and dgtycr. The formal defi-
nition of precedence constraints proposed here is based on
the notion of cut-sets from Fault Tree Analysis [Vesely et
al., 1981], a classical technique for safety analysis. We re-
port here the definition from [Bozzano et al., 2015c], adapted
to our setting.

Definition 2 (Cut-Set). Given are a transition system S and a
set of events EV = (ej ... e,), where each event e; € EV is
defined by a Boolean formula interpreted over the state vector
of S. Given an event e € EV, a set cs C EV \ e is a cut-set
of e iff there exists a trace w of S for which 3k € N such that
k] EeandVe' € EV\e-e €cs < i<k -mlil=e. A
cut-set cs of e is minimal iff no proper subset of cs is a cut-set
of e. We use MCS(e, EV, S) as a short form to indicate the
set of all minimal cut-sets of event e in S w.r.t. EV.

In a TFPG transition system the events are the node acti-
vations. In a system model they are the Boolean events as-
sociated to the nodes by the association map. In the TFPG
G of the running example, { fioc, dstuck } is @ minimal cut-
set of dyonerit, considering the traces in II(G). This means
that, after the activations of f;,. and dgyck, the node d, onerit
can become active before any other node does, e.g., feool
doesn’t have to occur before d,,,,-iz. Note that satisfaction



of these conditions does not imply that a propagation always
will reach a certain target discrepancy, as completion of a
propagation can depend on dynamics within the model that
are invisible from the point of view of the TFPG.

Based on the notion of minimal cut-sets, precedence con-
straints are defined as follows.

Definition 3 (Precedence Constraints). Given are a transition
system S, a set of events EV, and some e € EV. The prece-
dence constraints of e are the set of all of its minimal cut-sets
w.r.t. EV and S. The precedence constraints of e are satisfied
on some trace and state w|[k] iff all events of one of e’s mini-
mal cut-sets have occurred at some state j, with 0 < j < k.

The precedence constraints of e describe which events of
E'V must happen on the traces of S before e itself will occur.
We now define the property of graph correctness which the
synthesized TFPG must have. We rely on I' to map sets of
elements to the respective domain, i.e., to map sets of nodes
¢s C FUD to the equivalent set {7, |z € ¢s}, and vice-versa.

Definition 4 (Graph Correctness). Given are a system model
S, a TFPG G, and an association map T'. Also, let EV C
D(G) U F(G) and let ©(G) be the set of traces of TS(G)
that satisfy the Boolean constraints of the graph. We say that
the graph of G is correct w.rt. S, T and EV iff, for every dis-
crepancy d € D(G) N EV, the precedence constraints of d
w.rt. EV and 3X(G) are equivalent, based on the mapping de-
fined by T, to the precedence constraints of the corresponding
expression yg w.r.t. {y,|v € EV} and S.

This property guarantees an accurate graphical representa-
tion of the event orders of failure propagations possible in the
system. In the running example, ignoring d,.;;, we could ob-
tain a complete TFPG by simply connecting fo¢ to dstycr and
dnonc’rit’ and f(:ool to dnonc’r'it‘ The graph however would not
be correct, since in S, assuming the absence of feoo1, Anoncrit
is always preceded by both f;,. and ds¢yck, Which is not re-
quired by that graph. This piece of information can be crucial
for instance in diagnosis applications. Assume both f.,,; and
dnonerit are observable, that f.,o is not activated and that
dnonerit 18 activated. From this, based on the correct graph,
we can deduce the occurrence of dg4ycx, Which is not possi-
ble in the other TFPG.

We now formally define the TFPG synthesis problem.

Problem 1 (Graph Synthesis). Given are a system model S,
a set of failure mode nodes F', a set of discrepancy nodes
D, a set of modes M, and an association map 1" defining
the nodes x € F U D w.rt. S. Graph Synthesis consists in
finding a TFPG G that satisfies the following properties: 1.
F =F(G) 2. D C D(G) 3. Gis complete w.rt. S andT" 4.
the graph of G is correct w.r.t. S, I, and EV = F U D.

Property 2 does not require D to be identical to D(G), as
it might be necessary to introduce additional nodes to model
the precedence constraints, as described in Section 4.

4 TFPG Synthesis

A methodology to automatically synthesize and refine TFPGs
is now introduced. First a TFPG is built according to Prob-
lem 1. The resulting TFPG is then simplified in a second step
to make it more amenable to manual inspection.
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Figure 2: TFPG as produced by Algorithm 1 for running ex-
ample, including user-defined and virtual nodes.

Graph Synthesis The synthesis algorithm makes use of
virtual discrepancies, which are auxiliary TFPG nodes used
to express the temporal relationships among the user-defined
nodes when instantiating the graph.

Definition 5 (Virtual Discrepancy). Given a TFPG G, a sys-
tem model S, and an association map T that is total w.r.t.
F(G) but partial w.r.t. D(G), a virtual discrepancy is a node
d € D(Q) that is not in the domain of T. Instead of being
associated, w.r.t. S, to a Boolean expression 4, such discrep-
ancies are associated to temporal expressions over the traces
of S, following the structure of G. For OR nodes the associ-
ated expression is vq = \/(1)7 d)eE O~y, and for AND nodes
itis Ya = Nayep OVo- 1t is assumed that no v € D(G),
where (v,d) € E, is itself a virtual discrepancy.

Intuitively, w.r.t. system traces, a virtual discrepancy acti-
vates at the same instant as one or all of its predecessors in
the graph, depending on the node type. Note that the proof
obligations for TFPG completeness do not change, only the
specific expressions associated to virtual discrepancies do.

Algorithm 1 TFPG-by-FTA

Inputs: system model S; set of failure modes F’; set of dis-
crepancies D; set of modes M ; association map I'.
Steps

1: instantiate each discrepancy d € D as an OR node;

2: instantiate each failure mode f € F' as an FM node;

3: foralld € D do

4 for all mcs € MCS(va, {va|d € FUD},S)do
5: instantiate a fresh virtual AND node v
6: create unconstrained edge (v, d)
7 for all v, € mcs do
8: create unconstrained edge (v’, v)
9: end for
10: end for
11: end for

The procedure to create a TFPG according to Problem Def-
inition 1 is defined in Algorithm 1. It computes the mini-
mal cut-sets of all discrepancies in terms of all other TFPG
nodes and merges the results in a single graph!. Virtual AND

'Tt is assumed that no discrepancy can have a minimal cut-set
that doesn’t contain a failure mode event, i.e. that discrepancies can
occur independently of failure mode events.



nodes are introduced (line 5) to represent the activation of all
nodes of a minimal cut-set, which then enable the activation
of the given target node. The edges are unconstrained in the
sense that they are labeled with maximally permissive con-
straints, i.e. with tmin(e) set to 0, tmax(e) set to +oo, and
EM (e) setto M. This labeling ensures TFPG completeness.
The graph produced for the running example can be seen in
Figure 2.

The synthesized TFPG is complete w.r.t. S and I, as shown
in the following theorem.

Theorem 1. A TFPG G built using the TFPG-by-FTA proce-
dure, based on a system model S and an association map T,
is complete w.rt. S and T

Proof. In a TFPG where Ve € E we have tmin(e) =
0, tmax(e) +oo, and EM/(e) M, the proof
obligations can be simplified. ¥gr.p and Yuyp.p trivially
hold for all discrepancies since no delay value can be
greater than +o00. Ygp.4 can be simplified to G(Oyqy —
0(0v4 A V(ya)er(01))), and further to G(Ova —
(074 AV (4,0)e5(070))). The Ovq in the consequence can
be dropped: G(Ova — V(, 4)ep(O7v)). Finally, since
every AND node v is a virtual discrepancy, we obtain
G(0va = V(v,ayer A ,)er(070)), which is ensured by
construction of the graph from the minimal cut-sets of 4.
Yap-4(d,T') can symmetrically be reduced to G(Oyy —
Neo,aye(010)) and rewritten as G(A\(, ep(Ow) —
No,aye 5(Ov)), which trivially holds. O

In addition to completeness, the graph of the synthesized
TFPG also satisfies the correctness property.

Theorem 2. Given are a system model S, an association map
T, and a TFPG G as produced by Algorithm 1 for failure
mode nodes F and discrepancies D. As per Definition 4, the
graph of G is correct w.r.t. S, T, and EV = F U D.

Proof. For every discrepancy d € D the following holds. The
set of all sets of nodes cs C EV connected to d via some
respective virtual AND node v (i.e., where (v,d) € E, and
v' € esiff (v',v) € E) represents by construction, when
mapped to S, the set of all minimal cut-sets of 4. It also
represents all minimal cut-sets of d w.r.t. 3(G). Otherwise,
one such set of nodes cs would exist that is not a minimal cut-
set for d in X(G). If ¢s is a cut-set, it is automatically minimal
by the semantics of the nodes. If it is not a cut-set, then for at
least one d’ € D N (cs U d) there are not sufficient nodes in
(cs U d) such that one virtual AND node v, with (v,d') € E,
can be activated. This however is not possible, since from the
FTA step we know that {7, |v € ¢s U d} contains a minimal
cut-set for every 4, with d’ € D N (esU d). O

Graph Simplification Even though a TFPG synthesized by
the procedure above satisfies certain relevant properties, its
graph structure might be too verbose for some applications.
For instance, manual inspection by a safety engineer is of-
ten impractical with the full graph and requires a simpler ver-
sion that still maintains completeness and correctness. In Fig-
ure 2, for instance, the edge (fioc, v2) is redundant, and all
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virtual AND nodes except v4 are also not essential to encode
the precedence constraints among the user-defined nodes.

For the purpose of TFPG simplification we introduce the
following theorem, based on which a procedure to remove
edges while preserving completeness and correctness can
be derived. It uses the formula ¢pcc(G) = Ayjep(d —
Vw.aer@) N wep) V'), which encodes the Boolean
constraints of G, similarly to ¢, (G), but factors out the
virtual AND nodes, as the correctness property only regards
the user-defined nodes. We write ¢s for the valuations of
Gprec(G) and ¢po0i (G) that assign T to any v € ¢s, and L to
all other variables.

Theorem 3. Given is a TFPG G as produced by Algorithm 1
for failure mode nodes F and discrepancies D, map T' and
system model S. Also, given is a second TFPG G' that has
the same nodes as G, the same edges towards OR nodes, but
a subset of the edges towards the AND nodes. Then, G’ is
complete w.r.t. T and S; also, if dprec(G) = Gprec(G’), the
graph of G’ is correct wr.t. T, S, and EV = F U D.

Proof. Due to maximally permissive edge constraints and the
expressions associated to virtual discrepancies, we can ignore
the proof obligations ¥gg. 5, ¥anp- 4, and Ypyp. 5, as shown in
the proof of Theorem 1. Removing edges towards virtual AND
nodes effectively weakens the proof obligations gg. 4, thus
completeness is preserved.

Then, for both G and G’ we have that c¢s C F'U D is a cut-
setof d € Din X(Q) iff cs Ud = dprec(G). (=) Assume cs
is a cut-set of d in 3(G); then there exists V' C AND(G) such
that V' U ¢s U d is reachable on some m € 3(G), and hence
csUd E Pprec(Q), since dpooi(G) — dprec(G). (<) As-
sume cs U d = ¢prec(G), then V U cs U d = Gpoot (G), with
V C AND(G) and v € Viiff csUd = A, p)epe) V' of
which there is at least one for every d’ € DN (csUd) as guar-
anteed by ¢prec(G), from which it follows that V U cs U d is
reachable on some 7 € 3(G) at w[0], as it is a state of T'S(G)
that satisfies @poor(G), thus qualifying as an initial state of a
trace m € X(G), and hence cs is a cut-set of d in 3X(G).

Finally, from ¢p,ec(G) = ¢prec(G’) it follows that every
d € D has the same cut-sets in ¥(G) and X(G’) w.rt. EV,
and thus also the same minimal cut-sets. O

After removing edges of G, guided by ¢pre.(G), it might
also be possible to eliminate some virtual AND nodes with-
out affecting the completeness of G and the correctness of
its graph. A virtual AND node v with a single incoming edge
(v',v) and a single outgoing edge (v, d), e.g. v1 in Figure 2,
can be removed by replacing the two edges involving v with
a new edge (v', d). If two AND nodes exist that have identi-
cal incoming and outgoing edges, one of them can be simply
dropped. An OR node d with a single incoming edge from a
virtual AND node v can be redeclared as an AND node; then
for every edge (v',v) anew edge (v', d) is introduced and v is
dropped from G in Figure 2 this applies to d.,;;. By applying
all simplification strategies to the TFPG in Figure 2 we obtain
the one in Figure 1.



Edge Constraint Tightening The procedures of [Bittner
et al., 2016b] may be used to tighten the time bounds and
mode constraints of the edges, in order to identify more pre-
cise constraints on propagation delays and contexts. Note that
edge tightening can be performed only after simplification, as
the latter ignores propagation delays and assumes maximally
permissive edges. In future work we will investigate a closer
integration between graph simplification and tightening, for
applications that need a more fine-grained modeling of prop-
agation delays.

5 Experimental Evaluation

This section describes the experimental evaluation of our im-
plementation of the proposed algorithms. For the FTA part we
use the techniques of [Bozzano et al., 2015c] off-the-shelf, as
implemented in the safety analysis toolkit xSAP [Bittner et
al., 2016a)], which itself is based on nuXmv [Cavada et al.,
2014], a symbolic model checker for infinite-state transition
systems. The FTA implementation is based on reachability
analysis, which for infinite-state systems is in principle un-
decidable; termination thus depends on the engine and the
dynamics of the system model. The simplification step was
implemented based on the SMT solver MathSAT5 [Cimatti
et al., 2013]. It uses two copies of @pre.(G), one parameter-
ized on all edges towards AND nodes, and the other one not.
The lattice of edges that could be dropped is then searched
guided by SAT calls and accelerated with UNSAT cores, un-
til no more edges can be removed.

For the evaluation we use the following use cases. BAT-
TERY SENSOR describes a timed generator-battery system
that powers a hypothetical device. CASSINI are variants of
the spacecraft propulsion system described in [Williams and
Nayak, 1996], enriched with timed aspects. GUIDANCE is a
model of the Space Shuttle engines contingency guidance re-
quirements. FORGEROBOT are variations of the running ex-
ample. POWERDIST describes the fault protection logic of
a power distribution application. ACEX and AUTOGEN are
hand-crafted models based on a state space derived from par-
tially random graphs. We also ran our implementation on two
industrial models of realistic complexity, WBS [Bozzano et
al., 2015a] describing an aircraft wheel-braking system, and
X34 [Bajwa and Sweet, 2003] describing the propulsion sys-
tem of an experimental spacecraft. In total we used 14 system
models and 82 problem instances, with varying amounts of
failure mode and discrepancy nodes?.

All tests were run on a dedicated 64bit Linux computer
with a 12 core CPU at 2.67 GHz and 100GB of RAM. Four
cores were reserved for each test run to limit potential time
skew. Each test was executed on a single core with a time
limit of 900 seconds and a memory limit of 4GB. For ev-
ery instance we ran graph synthesis and simplification. All
benchmarks terminated well within the timeout. From Fig-
ure 4 an exponential behavior can be recognized, which is
more or less pronounced depending on the use case. Interest-
ingly, X34 turned out to have a maximum run-time of 9s, and
WBS of 355s. The time needed for the simplification step is

2Benchmark files can be downloaded at
es.fbk.eu/people/bittner/ijcail6.tar.gz
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use case “ max. bool [ max. real [ instances [ max. FM [ max. D ]

acex 35 0 24 2 25
autogen 99 0 11 8 20
battery 43 5 4 4 9
cassini 301 10 18 16 16
forgerobot 25 7 7 6 9
guidance 98 0 4 6 7
pdist 84 0 2 7 4
wbs 1179 0 6 12 11
x34 553 0 6 9 14

Figure 3: Use-case statistics with maximum number of
Boolean and real variables among all use-case models, num-
ber of instances, maximum number of failure modes and dis-
crepancies among all instances of each use case.
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Figure 4: Number of nodes vs. synthesis time (in seconds).

negligible w.r.t. the FTA step. Simplification removed on av-
erage 88% of the generated AND nodes and 67% of the edges.

These results show the feasibility of the approach, since, on
models with a complexity comparable to industrial unit-to-
subsystem-level problems, it terminates in reasonable time.
For models with higher complexity we plan to investigate hi-
erarchical/compositional synthesis approaches.

6 Conclusion

An approach to the automated synthesis of timed failure prop-
agation graphs was introduced, based on symbolic model-
checking. Given a system model and a set of nodes, the algo-
rithm exhaustively analyzes the system behaviors and builds a
TFPG that satisfies completeness and correctness properties.
Evaluation on realistic models shows the feasibility of the ap-
proach. In future work we plan to extend the algorithm to fil-
ter out propagation links representing purely temporal corre-
lations as opposed to causal ones, to investigate synthesis that
explicitly considers diagnosability under the resulting TFPG,
to use hierarchical approaches to deal with more complex in-
stances, and to generalize the approach for synthesizing and
representing sets of counterexamples for model-checking.
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