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Abstract

In this paper, we explore how ontological knowl-
edge expressed via existential rules can be com-
bined with possibilistic networks (i) to represent
qualitative preferences along with domain knowl-
edge, and (ii) to realize preference-based answering
of conjunctive queries (CQs). We call these com-
binations ontological possibilistic networks (OP-
nets). We define skyline and k-rank answers to
CQs under preferences and provide complexity (in-
cluding data tractability) results for deciding con-
sistency and CQ skyline membership for OP-nets.
We show that our formalism has a lower complex-
ity than a similar existing formalism.

1

The abundance of information on the Web requires new per-
sonalized information filtering techniques that are able to re-
trieve resources that best fit users’ interests and preferences.
These systems should also manage the rapid change of users’
preferences and have means for coping with trust and uncer-
tainty on the Web. Moreover, the Web is evolving at an in-
creasing pace towards the so-called Social Semantic Web (or
Web 3.0), where classical linked information lives together
with ontological knowledge and social interactions of users.
While the former may allow for more precise and rich results
in search and query answering tasks, the latter can be used to
enrich the user profile, and it paves the way to more sophis-
ticated personalized access to information. This requires new
techniques for ranking search results, fully exploiting onto-
logical and user-centered data, i.e., user preferences.
Conditional preferences are statements of the form “in
the context of ¢, a is preferred over b”, denoted c: a > b
[Ben Amor et al., 2014; Boutilier et al., 2004; Wilson, 2004].
Two preference formalisms that allow for representing such
preferences are possibilistic networks and CP-nets.

Introduction

Example 1 Bob wants to rent a car and (i) he prefers a new
car over an old one, (ii) given he has a new car, he prefers
it to be black over not black, and (iii) if he has an old car,
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he prefers it to be colorful over being black. We have two
variables for car type (new (n) or old (o)) and car color
(black (b) or colorful (¢)), T' and C, respectively, such that
Dom(T)={n, o} and Dom(C)={b, c}. Bob’s preferences
canbeencodedas T:n > o,n: b > c,and o: ¢ = b. In CP-
nets [Boutilier ef al., 2004], we have the following ordering
of outcomes: nb > nc = oc = ob. That is, a new and colorful
car is preferred over an old and colorful one, which is not a re-
alistic representation of the given preferences. A more desir-
able order of outcomes for Bob would be nb > oc > nc = ob,
which can be induced in possibilistic networks with an appro-
priate preference weighting in the possibility distribution. m

In this paper, we propose a novel language for expressing
preferences over the Web 3.0 using possibilistic networks. It
has lower complexity compared to a similar existing formal-
ism called OCP-theories [Di Noia et al., 2015], which are an
integration of Datalog+/— with CP-theories [Wilson, 2004].
This is because deciding dominance in possibilistic networks
can be done in polynomial time, while it is PSPACE-complete
in CP-theories. Furthermore, every possibilistic network en-
codes a unique (numerical) ranking on the outcomes, while
CP-theories encode a set of (qualitative) total orders on the
outcomes. Additionally, our framework allows to specify the
relative importance of preferences [Ben Amor et al., 2014].

We choose existential rules in Datalog+/— as ontology lan-
guage for their intuitive nature, expressive power for rule-
based knowledge bases, and the capability of performing
query answering. Possibilistic networks are also a simple and
natural way of representing conditional preferences and ob-
taining rankings on outcomes, and can be easily learned from
data [Borgelt and Kruse, 2003]. The integration between the
two formalisms is tight, as possibilistic network outcomes are
constrained by the ontology, but they also dictate the ranking
of answers to a query. The main contributions are as follows:

e We introduce a novel formalism, called ontological possi-
bilistic networks (OP-nets), combining Datalog+/— with pos-
sibilistic networks, to encode preferences over atoms.

e We define skyline and k-rank answers for conjunctive
queries (CQs) relative to the preferences encoded in OP-nets,
and describe how to compute such answers.



e We analyze the complexity of deciding consistency and
skyline membership of answers to CQs, for different types
of complexity, and provide results for Datalog+/— languages.
We also obtain several tractability results. Notably, these re-
sults hold for any preference formalism where dominance be-
tween two outcomes can be decided in polynomial time.

Due to space limitations, detailed proofs of all results in
this paper will be given in an extended paper.

2 Preliminaries

We first recall the basics on Datalog+/— [Cali et al., 2012al
and on possibilistic networks.

2.1 Datalog+/—

Databases. Let A be a set of constants, A a set of labeled
nulls, and V a set of (regular) variables. A term t is a con-
stant, null, or variable. An atom has the form p(t4,...,t,),
where p is an n-ary predicate, and t1, ..., t,, are terms. Con-
junctions of atoms are often identified with the sets of their
atoms. An instance I is a (possibly infinite) set of atoms p(t),
where t is a tuple of constants and nulls. A database D is a fi-
nite instance that contains only constants. A homomorphism
is a substitution h: AUANy UV — AU ANy UV that is
the identity on A. We assume that the reader is familiar with
conjunctive queries (CQs). The set of answers to a CQ q over
an instance / is denoted ¢(I). A Boolean CQ (BCQ) ¢ has a
positive answer over I, denoted I = ¢, if ¢(I) # 0.

Dependencies. A tuple-generating dependency (TGD) (or
existential rule) o is a first-order formula VXVY ¢(X,Y) —
3Z p(X,Z), where XUYUZ C V, ¢(X,Y) is a conjunction
of atoms, and p(X,Y) is an atom; ¢(X,Y) is the body of o,
denoted body (o), while p(X,Z) is the head of o, denoted
head(o). For clarity, we consider single-atom-head TGDs;
however, our results can be extended to TGDs with a conjunc-
tion of atoms in the head. An instance [ satisfies o, written
I = o, if the following holds: for all homomorphisms / such
that h(p(X,Y)) C I, there exists b’ D h|xyvy, where h|xuy
is the restriction of h to X U'Y, such that »'(p(X,Z)) € I.
A negative constraint (NC) v is a first-order formula of the
form VX p(X) — L, where X C V), ¢(X) is a conjunc-
tion of atoms and is called the body of v, denoted body(v),
and L denotes the truth constant false. An instance I satis-
fies v, written I |= v, if there is no homomorphism A such
that h(¢(X)) C I. Given a set X of TGDs and NCs, I satis-
fies 3, written I |= X, if I satisfies each TGD and NC of X.

Datalog+/— Ontologies. A Datalog+/— ontology O = (D,
3), where X =%1 U Xyc, consists of a finite database D
over A, a finite set X7 of TGDs, and a finite set Xyc of NCs.
The set of models of D and ¥, denoted mods(D, ), con-
tains all instances I with I 2 D and I |= X. The ontology is
consistent if this set is not empty.

Example 2 Consider the database D in Table 1, modeling
the domain of an online car booking system. Moreover,

¥ = {offer(V,P,S) — 3C, F, T specs(S,C, F,T),
offer(V, P, S) — 3R vendor(V, R),
specs(S,C, F, T) — color(C) A type(T),
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Table 1: Database D.

[ id T color | feature | type |

id | name

t1 S1 b f1 (6] tr fl ac
ta || s2 c fo n ts || fo | map
t3 || s3 c fo 0 to || f3 cd
specs feature
[ vendor | price | specs | - .
id | review
ta V1 30 S1 7
ts V1 40 S2 tlo U1 P
t6 V2 50 83 11 V2 n
vendor
offer

specs(S,C, F,T) — 3N feature(F, N),
offer(V, P1,S) A offer(V, P2,S) — P1 = P2 }

says that every offer must have a specification and a vendor.
It also says that there cannot be two equivalent offers from
the same company with different prices (represented via a
special equality-generating dependency (EGD), which can be
encoded as an NC [Cali et al., 2012a]). We denote by t; the
term specs(s1, b, f1,0) and by t; the tuple (s1,b, f1,0). =

Conjunctive Query Answering. Given a Datalog+/— ontol-
ogy O = (D, X), we only consider answers that are true in all
models of O. Formally, the set of answers to a CQ ¢ w.r.t. D
and ¥ is ans(q, D, X) := Nremoas(p,syialacq(l)}. The
answer to a BCQ ¢ is positive, denoted D U ¥ | ¢, if
ans(q, D,%) # (). The problem of CQ answering is the fol-
lowing: given D, ¥, and ¢ as above and a tuple of constants a,
decide whether a € ans(q, D, Y.). Following Vardi’s taxon-
omy (1982), the combined complexity of CQ answering is cal-
culated by considering all the components, i.e., the database,
the set of dependencies, and the query, as part of the in-
put. The bounded-arity combined (ba-combined) complex-
ity is calculated by assuming that the arity of the underlying
schema is bounded by a constant. In description logics (DLs)
[Bienvenu and Ortiz, 20151, the arity is always bounded by 2.
The fixed-program combined (fp-combined) complexity is cal-
culated by considering the set of TGDs and NCs as fixed.
Finally, for data complexity, we take only the size of the
database into account.

2.2 Possibilistic Networks

We now recall possibilistic networks from [Ben Amor et al.,
2014], which are a direct counterpart of Bayesian networks
from probability theory, the main differences being that possi-
bilities maximize (rather than summarize) over disjoint events
(thus, in the normalized case, one often assumes that the max-
imum (rather than the sum) over all disjoint elementary events
is 1), and we measure the degree of potential surprise of an
event, as opposed to the degree of its likelihood.

Syntax. Let X" be a finite set of variables with pairwise dis-
joint, non-empty, finite domains Dom(X), X € X. A possi-
bilistic network I" defines a possibility distribution over X us-
ing a combination of a graphical and a data component. The
former is a directed acyclic graph (DAG) G = (X, &), where
£ is a set of edges encoding conditional (in)dependencies be-
tween variables. The data component associates a normalized



conditional possibility distribution 7(X;|pa(X;)) to each
X; € X, where pa(X;) is the set of parents of X; in G. The
joint distribution over X = { X7, ..., X, } is then given by the
chain rule [Ben Amor et al., 2014; Benferhat et al., 2000]:

7T(‘le s ’Xn) = ®?=17T(Xi| pa(X,»)),

where ® denotes the product (resp., minimum) in a quantita-
tive (resp., qualitative) setting.

Semantics. A value u for a set of variables U C X assigns to
each X € U an element u(X ) € Dom(X), and the set of all
such values u is called the domain of U, denoted Dom(U).
The empty set has a single value, denoted T. Observe that
Dom(X) and Dom({X}) are isomorphic, and hence the no-
tation is consistent. The values o € Dom/(X) are called out-
comes. For two outcomes o, o', we say that o dominates o
(in I), denoted o > o', if w(0) > (o).

Encoding Conditional Preferences. A conditional prefer-
ence [Ben Amor et al., 2014] has the form p=u: z =2/,
where u € Dom(U,) for some U,CX, and , 2’ Dom(X,,)
for some X, € X — U,. The intention is that, given u and
any t € Dom(T,), where T, = X — U, — { X}, we prefer x
over z’. More formally, the outcome obtained from u, ¢, and =
should dominate the one using x’ instead. A conditional pref-
erence theory P is a finite set of conditional preferences.

As long as there are no cyclic dependencies between vari-
ables or cyclic preferences over the same variable X under
the same precondition u, one can encode a conditional pref-
erence theory into a possibilistic network [Ben Amor et al.,
2014]: The conditional preference ¢ from above induces sev-
eral directed edges in the DAG of the possibilistic network,
one from each X €U, to X,. The conditional possibility
measure must then be chosen such that 7(z|u) > 7(z’|u).

Example 3 Consider again the preference theory from Ex-
ample I: P={T:n>o0, n: b>c, o: ¢ > b}, where ¥ =
{T, C}, and the outcomes are denoted by nb, ne, ob, and oc.
One possibilistic network expressing these conditional prefer-
ences is shown in Figure 1, where «, 8, € (0,1). To com-
pare the outcomes, we compute their possibility values (us-
ing the quantitative semantics): 7(nb) = w(bln) - 7(n) = 1,
m(oc) = a, m(nc) = v, and w(ob) = « - B. To obtain the
desired total order nb = oc = nc = ob, it thus suffices to
choose the values such that o > v > o - 3. ]

3 OP-Nets

We now introduce ontological possibilistic networks (OP-
nets), which extend possibilistic networks by ontologies.
W.lLo.g., the set Ay of nulls is the set of all ground terms
constructed from the set A of constants and a set F of func-
tions used to skolemize all existential variables in TGDs. Let
O=(D,Y) be a Datalog+/— ontology, and Xp be a finite
set of variables, where each X € Xp corresponds to a pred-
icate from O, denoted pred(X). Each Dom(X) consists
of at least two ground atoms of the form p(cy,...cx) with
p=pred(X) and ¢1,...,c; € AU Ap. Hence, every out-
come 0 € Dom(Xp) can be seen as a conjunction of ground
atoms. An ontological possibilistic network (OP-net) is of the
form (O, T"), where I is a possibilistic network over Xp.

996

Figure 1: Example 3.  Figure 2: DAG for Example 4.

Table 2: Possibility distribution for Example 4.

[ w(specs(t1)) | w(specs(tz)) [ m(specs(ts)) |

[1 [ 0.5 [ 0.4 ]
[ w(vendor(t10)) | w(vendor(t11)) ]
[1 [ 0.4 ]
[ #(]) [ titio | titin [ totio [ toti1 [ t3tio [ tstas |
Feature(t7) || 1 03 |02 |02 [02 |02
feature(ts) || 0.7 0.5 0.7 1 04 0.3
feature(to) || 0.5 0.3 0.5 0.3 1 0.2

Example 4 Consider the OP-net (O, T") given by the ontol-
ogy O of Example 2, the DAG in Figure 2, and the con-
ditional possibility distribution in Table 2. Here, we have
Xo = {Co, Ro, Fo} with the domains

Dom(Co) = {specs(t1), specs(ta), specs(ts)},
Dom(Fo) = {feature(tr), feature(ts), feature(tg)},
Dom(Ro) = {vendor(t1p), vendor(t11)}.

The possibility distribution could either be learned or derived
from explicit preferences, as shown in Section 3.2 below. The
possibilities of outcomes are then computed as follows:

m(CoRoFo) = m(Fo|CoRo) @ m(Co) ® m(Ro).

For example, the outcome o given by o(Cp) = specs(t1),
o(Ro) =vendor(t1p), and o(Fp) = feature(t7) encodes the
conjunction t; A tyy A t7 and has the possibility 1. n

3.1 Consistency and Dominance

Since outcomes are conjunctions of ground atoms, some out-
comes may be inconsistent, and some may be equivalent.
This means that we need a notion of consistency for OP-nets.

An outcome o of (O, T") is consistent if the ontology O, =
OU{o(X)| X € Xo} is consistent. Two outcomes o and o’
are equivalent, denoted o ~ o', if O, and O,/ have the same
models. The dominance 0 < o’ w.r.t. T is defined as in Sec-
tion 2.2, and can be decided in polynomial time in the size
of I' by comparing the possibility values of o and o'.

An interpretation T for (O,T) is a total preorder over the
consistent outcomes in Dom/(Xp). It satisfies (or is a model
of) (O, T) if, for all consistent outcomes o and o',

e if o < 0, then (0,0") € Z and (0',0) ¢ Z, and
e if o ~ 0/, then (0,0'), (0, 0) € T.

An OP-net is consistent if it has at least one consistent out-
come and it has a model.



Theorem 1 An OP-net (O,T) is consistent iff (i) it has a con-
sistent outcome, and (ii) there are no two equivalent consis-
tent outcomes having different possibility values.

3.2 Encoding Preferences with OP-Nets

In [Di Noia et al., 2015], conditional preferences were gen-
eralized to the Datalog+/— setting as follows. Let Dom™ (X))
be the set of all atoms p(t1, ..., %), where each ¢; is a term
over A, V, and F. An ontological conditional preference o
over X is of the form v : £ > £, where

e v € Dom™(U,) for some U, C X, and

e (&' € Dom™(X,,) for some X, € X — U,.
A ground instance v8 : £0 = £'0 of © is obtained via a substi-
tution 6 such that vd € Dom(U,) and £6,£'0 € Dom(X,,).
Under suitable acyclicity conditions, we can hence find an
OP-net (O,T") that respects all ground instances of some

given ontological conditional preferences in the same way as
described in Section 2.2.

Example 5 Consider the ontological conditional preference
specs(I,C, F,0): vendor(Vy,p) > vendor(Va,n), which
says that for an old car, it is preferable to have a vendor with
positive feedback. One ground instance for this preference
is specs(t1): vendor(tio) > vendor(t11). Thus, we could
choose m(vendor(t1p)|specs(t1)) 1 and w(vendor(ti1)]
specs(t1)) = a < 1. "

Although possibilistic networks are less expressive than CP-
theories [Di Noia et al., 2015], they allow for a compact
encoding of conditional preferences over ground atoms and
yield lower complexity bounds (see Section 5).

4 Query Answering under OP-Nets

Using the notions of consistency and dominance, we can de-
fine the semantics of query answering, as well as skyline and
k-rank answers, in the context of OP-nets. We first formal-
ize query answering for a given consistent OP-net (O,T).
Since the semantics of OP-nets is similar to that of OCP-
theories [Di Noia et al., 2015], the definitions are similar.
Let ¢(X) = 3Y¢(X,Y) be a CQ. To extract answers based
on the outcomes of a possibilistic network, the atoms in the
query must be related to the atoms in conditional preferences.
For this purpose, we assume a bijection [ from a set of atoms
$3(X,Y) C ¢(X,Y) in ¢ to a set of variables of (O,T"),
such that for every atom p(Z) € ¢5(X,Y) there exists some
variable X in (O,T") with pred(X) = p and B(p(Z)) = X.
We collect in Y 5 those quantified variables from Y that occur
in the atoms ¢3(X,Y), and denote by Y the set of all re-
maining variables from Y. When ¢z is empty, i.e., the query
atoms are not related to the preferences, then the answers for
the query are standard CQ answers w.r.t. O.

Definition 1 Let (O,T) with O = (D,X) be a consistent
OP-net, ¢(X) = IY@(X,Y) be a CQ, and o be a consis-
tent outcome of (O,T"). An answer to ¢ w.r.t. (O,T') and o
is a tuple a over A U Ay for which there exists a homo-
morphism h: X UYg — AU Ay with (1) 2(X) = a,
(i) DU E 3Y5h(6(X,Y)), and (iii) h(a) = o(8(a))
forall a € ¢(X,Y). The set of all such answers is denoted
by ans(q,0,T,0).
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We want to point out that 3Y5h(¢(X,Y)) is a BCQ that
uses elements from AUA y UV as arguments in its atoms. In
the following, we call such queries BCQNs. Since the values
of the homomorphism & on Yg are determined by the out-
come o, BCQN answering w.r.t. o has the same complexity as
classical BCQN answering. k-rank answers are obtained by
iteratively computing sets of skyline answers until k answers
have been found. However, a tuple may be an answer under
more than one outcome. To avoid repetition of answers, we
need to keep track of exhausted outcomes and answers.

Definition 2 (Skyline Answer) A skyline answer to q w.r.t.
(O,T) outside a given set Y C Dom/(Xo) of outcomes is any
tuple a € ans(q, O,T, 0) for some consistent outcome o ¢
Y such that there exists no consistent outcome o’ ¢ ) with
o = oand ans(q,0,T,0") # 0. A skyline answer to q w.r.t.
(O, T) is a skyline answer to g w.r.t. (O,T") and 0.

Definition 3 (k-Rank Answer) A k-rank answer to Q w.r.t.
(O,T) outside Y and outside a given set of ground tuples .S
is a sequence (ay, ..., ax) such that either a;,...,ay are k
skyline answers to () w.r.t. (O, I") outside ) that do not be-
long to S; oray,...,a; are all the skyline answers to ) w.r.t.
(O,T") outside Y that do not belong to S and (a;41,...,ax)
is a (k — ¢)-rank answer to @ w.r.t. (O,T") outside Y U {o}
and S U {ay,...,a;}, where o is an undominated outcome
wrt. (O,T). A k-rank answer to Q w.r.t. (O,T) is a k-rank
answer to Q) w.r.t. (O, T") outside () and 0.

Example 6 Consider the consistent OP-net (O,T") of Ex-
ample 4 and the CQ ¢(C, F,T,N)=31specs(I,C,F,T) A
feature(F, N). Then, (b, f1, o, ac) is the skyline answer un-
der the consistent outcome t; A tig A t7. The skyline answer
for ¢'(C,T) = 3N ¢q(C, f2,T, N) is (c, n) with possibility
m(tatiots) = 0.5 - 1- 0.7 = 0.35, while the 2-rank answer is
({c, n), {c, 0)). Hence, if feature f, is mandatory, the offered
new and colorful car is preferred over the old and colorful

one, mainly due to positive feedback about vendor v;. m

5 Computational Complexity

We now analyze the computational complexity of the follow-
ing problems, and delineate some tractable special cases:

Consistency: Is a given OP-net (O, T") consistent?

CQ Skyline Membership: Is a tuple a over AUA y a skyline
answer to a CQ ¢ w.r.t. an OP-net (O, T")?

5.1 Complexity Classes

We assume some familiarity with the complexity classes ACY,
P, NP, co-NP, X8 II5, PSPACE, EXP, and 2EXP. The class
D = NP A co-NP (resp., D5 = 35 A IIf) is the class of all
problems that are the intersection of a problem in NP (resp.,
¥%) and a problem in co-NP (resp., I15). The class Af (resp.,
AF) is the class of all problems that can be computed in poly-
nomial time with an oracle for NP (resp., 35). The above
complexity classes and their inclusion relationships (which
are all currently believed to be strict) are shown below:

Ac? C P C NP,co-NP C DP C A} C 8 115
C D5 C Af C PSPACE C EXP C 2EXP.



5.2 Decidability Paradigms

The main (syntactic) conditions on TGDs that guarantee the
decidability of BCQ answering are guardedness [Cali et al.,
2013], stickiness [Cali et al., 2012b], and acyclicity. Interest-
ingly, each such condition has its “weak” counterpart: weak
guardedness [Cali er al., 2013], weak stickiness [Cali et al.,
2012b], and weak acyclicity [Fagin er al., 2005], respectively.

A TGD o is guarded if an atom a € body(c) exists that
contains (or “guards”) all the body variables of o. Linear
TGDs have only one body atom (which is automatically a
guard). Weakly guarded TGDs require only “harmful” body
variables to appear in the guard. The associated classes are
denoted G, L, and WG, respectively. Notice that L C G C WG.

Stickiness is inherently different from guardedness, and its
central property is as follows: variables that appear more than
once in a body (i.e., join variables) are always propagated (or
“stick”) to the inferred atoms. Weak stickiness is a relaxation
of stickiness where only “harmful” variables are taken into
account. Sets of TGDs that enjoy the above properties are
sticky and weakly sticky, and the corresponding classes are
denoted S and WS, respectively. Observe that S C WS.

A set X of TGDs is acyclic if its predicate graph is acyclic.
In fact, an acyclic set of TGDs can be seen as nonrecursive.
We say X is weakly acyclic if its dependency graph enjoys
a certain acyclicity condition, which actually guarantees the
existence of a finite canonical model. The associated classes
are denoted A and WA, respectively. We have A C WA C WS.

Another key fragment of TGDs are full TGDs, i.e., TGDs
without existentially quantified variables, and the correspond-
ing class is denoted F. If full TGDs enjoy linearity, guarded-
ness, stickiness, or acyclicity, then we obtain the classes LF,
GF, SF, and AF, respectively. Note that F C WA and F C WG.

5.3 Overview of Results

Our complexity results for the consistency and the CQ sky-
line membership problem for OP-nets over the decidable
Datalog+/— languages mentioned above are compactly sum-
marized in Tables 3 and 4, respectively. Observe that com-
pared to OCP-theories [Di Noia et al., 2015], we obtain lower
complexities for L, LF, AF, G, S, F, GF, SF, WS, and WA in
the fp-combined complexity (completeness for D and AS,
respectively, rather than PSPACE), and for L, LF, AF, S, F,
GF, and SF in the ba-complexity (completeness for D and
AZF, respectively, rather than PSPACE). Notice also that the
complexity theorems below are generic results, applying also
to Datalog+/— languages beyond the ones in Tables 3 and 4.
Their proofs even apply to arbitrary preference formalisms,
as long as dominance between two outcomes can be decided
in polynomial time, e.g., rankings computed by information
retrieval methods [Joachims, 2002].

5.4 Combined Complexity

We first show some generic upper bounds for the complexity
of consistency and CQ skyline membership w.r.t. OP-nets.

Theorem 2 Let T be a class of OP-nets (O,T). If checking
non-emptiness of the answer set of a CO w.rt. O is in a
complexity class C, then consistency in T is in NP A co-NPC

and CQ skyline membership in T is in PP, If C =NP and we
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Table 3: Combined, ba-combined, fp-combined, and data
complexity of deciding consistency for OP-nets with differ-
ent classes of TGDs.

[ Class [ Comb. [ ba-comb. [ fp-comb. [ Data |
L, LF, AF [[ pPSPACE D D’ in AC?
G 2EXP EXP Df P
WG 2EXP EXP EXP EXP
S, SF EXP D5 D" in Ac?
F, GF EXP D5 DY P
WS, WA 2EXP 2EXP Df P

Table 4: Combined, ba-combined, fp-combined, and data
complexity of deciding CQ skyline membership for OP-nets
with different classes of TGDs.

[ Class [ Comb. [ ba-comb. [ fp-comb. [ Data |
L, LF, AF || psPacE Al AP in AC?
G 2EXP EXP A% P

WG 2EXP EXP EXP EXP
S, SF EXP A% Ab in Ac?
F, GF EXP Af A} P
WS, WA 2EXP 2EXP AT P

consider the fp-combined complexity, then consistency in T
is in D" and CQ skyline membership in T is in AS.

In particular, for C = PSPACE, we obtain inclusion in PSPACE
for both problems, and the same for any deterministic com-
plexity class above PSPACE. For C =NP, we get the classes
D5 and Af. The lower bounds PSPACE and above follow from
consistency and equivalence of outcomes being as powerful
as checking entailment of arbitrary ground BCQNs.

Theorem 3 Let T be a class of OP-nets (O,1"). If ground
atomic BCQV answering w.r.t. O is C-hard, where C D
PSPACE is a deterministic complexity class, then consistency
and CQ skyline membership in T are C-hard.

The D' (resp., D}) lower bound holds by a reduction
from the validity problem of YY p(Y) A IY(Y) (resp.,
IXVY (X, Y) A VXIYYP(X,Y)), where o(Y) (resp.,
©(X,Y)) is a propositional 3-DNF formula, and #(Y)
(resp., ¥(X,Y)) is a propositional 3-CNF formula.

Theorem 4 For OP-nets whose underlying ontology is de-
fined in a Datalog+/— language T that allows for NCs, decid-
ing consistency is hard for D¥ (resp., DY) in the fp-combined
(resp., ba-combined) complexity.

The A} (resp., Af) lower bound holds by a reduction

from the problem of deciding, given a valid 3X1(X) (resp.,
IXVY ¢(X,Y)), where 1(X) (resp., p(X,Y)) is a propo-
sitional 3-CNF (resp., 3-DNF) formula, whether the lexico-
graphically maximal satisfying truth assignment for X = {1,
..., Ty} maps x, to true [Krentel, 1988; 1992].
Theorem 5 For OP-nets whose underlying ontology is de-
fined in a Datalog+/— language T that allows for NCs, de-
ciding CQ skyline membership is hard for A} (resp., A}) in
the fp-combined (resp., ba-combined) complexity.

From the known complexity results for ontology languages of
the Datalog+/— family (see, e.g., [Di Noia et al., 2015]), we



obtain the complexity results w.r.t. combined, ba-combined,
and fp-combined complexity listed in Tables 3 and 4.

5.5 Data Complexity

‘We now show that tractability in data complexity for deciding
consistency and CQ skyline membership for OP-nets carries
over from classical BCQ” answering. Here, data complexity
means that 3 and the variables and possibility distributions
of I are both fixed, while D is part of the input.

Theorem 6 Let T be a class of OP-nets (O,T") for which
BCQOY answering in O is possible in polynomial time (resp.,
in AC®) in the data complexity. Then, deciding consistency
and CQ skyline membership in T is possible in polynomial
time (resp., in AC) in the data complexity.

As a corollary, we obtain the data tractability results listed
in the last column of Tables 3 and 4. Note that all mem-
berships in P are also P-hard, due to a standard reduction
of propositional logic programming to guarded full TGDs.
These results do not apply to WG, where BCQ” answering
is data complete for EXP, and data hardness holds even for
ground atomic BCQs; however, data completeness for EXP
can be proved similarly to Theorems 2 and 3.

6 Related Work

Preferences have long been studied in many disciplines, pro-
minently in philosophy, databases, and Al. One of the earliest
works on modeling preferences in databases is [Lacroix and
Lavency, 1987], which extends the relational calculus with
preference modeling mechanisms for query answering. Since
then, many approaches go in this direction [Stefanidis et al.,
2011]. In AL preference modeling is more concerned with
compact representation and computational issues. In this re-
gard, [Bienvenu er al., 2010] bridges the gaps between the
two streams of preference modeling and suggests that most
Al formalisms are fragments of a prototypical preference
logic. CP-nets [Boutilier e al., 2004] are one of the most
widely used preference representation languages. Possibilis-
tic logic [Benferhat er al., 2001; Dubois and Prade, 2004]
has recently also been discovered as a useful tool, and a lot
of work has been done in bridging the differences between
possibilistic logic and CP-nets [Dubois et al., 2013]. More
recently, possibilistic networks [Ben Amor et al., 2014] have
been advocated as a natural encoding of preferences. Hav-
ing some computational and expressive benefits over CP-nets,
possibilistic networks look very promising.

The work closest in spirit to this paper is perhaps [Di Noia
et al., 2015], which is based on CP-theories [Wilson, 2004].
CP-theories admit preferences of the type “given c, we pre-
fer a to b, irrespective of the value of W”, which realize a
weakening of the ceteris paribus condition. Although possi-
bilistic networks do not allow for such indifference between
values of some variables IV, they are also based on a weak-
ening of the ceteris paribus condition. This is because possi-
bilistic networks represent total preorders of outcomes, based
on the given conditional preferences and the choice of their
relative importance (via their conditional possibility), which
can only be expressed in possibilistic networks. CP-theories
(and CP-nets), in contrast, can handle to some extent cyclic
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preference dependency graphs, while possibilistic networks
assume that these graphs are acyclic. Possibilistic networks
can also express certain types of preferences that CP-theories
cannot, as we have seen in Example 1. Clearly, all these se-
mantic properties of possibilistic networks, compared to CP-
theories (and CP-nets), are inherited by OP-nets. Moreover,
OP-nets sometimes have lower combined, ba-combined, and
fp-combined complexity than OCP-theories [Di Noia et al.,
2015], since consistency and dominance in CP-theories are
already PSPACE-hard problems [Goldsmith et al., 2008]. In
summary, OP-nets have advantages over OCP-theories, as
they are computationally less expensive, while retaining most
of the expressivity, and even allow representing some prefer-
ences that cannot be represented in OCP-theories.

Other combinations of Semantic Web formalisms with
preference representation and reasoning include the work by
Lukasiewicz and Schellhase [2007], which presents a system
to rank-order ontologically annotated objects, using a ranking
function based on conditional preferences. Lukasiewicz et
al. [2013] focus on preference-based query answering on on-
tological data by extending Datalog+/— with preference man-
agement capabilities, called PrefDatalog+/—. Preferences
in PrefDatalog+/— have the form of general first-order sen-
tences, and so have a higher complexity. Data tractability re-
sults also hold only for disjunctions of atomic queries and not
conjunctive queries. Di Noia et al. [2013] use ontological ax-
ioms to restrict CP-net outcomes. In information retrieval, in
[Boubekeur et al., 20071, Wordnet is used to add semantics to
CP-net variables. Possibilistic networks have also been used
for information retrieval in [Boughanem et al., 20091, where
the possibility and the necessity measure are used to evaluate
(i) the extent to which a given document is relevant to a query,
and (ii) the reasons of eliminating irrelevant documents.

7 Summary and Outlook

We have introduced OP-nets, which are a novel combina-
tion of Datalog+/— ontologies with possibilistic networks. We
have then defined skyline and k-rank answers for this frame-
work. Furthermore, we have provided a host of complexity
(including several data tractability) results for deciding con-
sistency and CQ skyline membership for OP-nets. Due to the
lower (polynomial) complexity of dominance testing in pos-
sibilistic networks, compared to CP-theories, several result-
ing complexities for OP-nets are lower than for OCP-theories.
The complexity results and these lower complexities are ac-
tually independent of possibilistic networks; they hold for all
rankings on outcomes where each rank can be computed in
polynomial time. For example, they are also applicable to
combinations of Datalog+/— with rankings from information
retrieval and machine learning [Joachims, 2002].

Interesting topics of ongoing and future research include
the implementation and experimental evaluation of the pre-
sented approach, as well as a generalization based on possi-
bilistic logic [Benferhat et al., 2002] to gain more expressiv-
ity and some new features towards nonmonotonic reasoning
and belief revision [Ben Amor et al., 2014]; moreover, an
apparent relation between possibilistic logic and quantitative
choice logic [Benferhat et al., 2004] may also be exploited.
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