
Knowledge Compilation Meets Communication Complexity

Simone Bova

TU Wien
Austria

Florent Capelli

Paris 7, IMJ-PRG
France

Stefan Mengel

CNRS, CRIL UMR 8188
France

Friedrich Slivovsky

TU Wien
Austria

Abstract

Choosing a language for knowledge representation
and reasoning involves a trade-off between two com-
peting desiderata: succinctness (the encoding should
be small) and tractability (the language should sup-
port efficient reasoning algorithms). The area of
knowledge compilation is devoted to the system-
atic study of representation languages along these
two dimensions—in particular, it aims to determine
the relative succinctness of languages. Showing that
one language is more succinct than another typically
involves proving a nontrivial lower bound on the en-
coding size of a carefully chosen function, and the
corresponding arguments increase in difficulty with
the succinctness of the target language. In this pa-
per, we introduce a general technique for obtaining
lower bounds on Decomposable Negation Normal
Form (DNNFs), one of the most widely studied
and succinct representation languages, by relating
the size of DNNFs to multi-partition communica-
tion complexity. This allows us to directly translate
lower bounds from the communication complexity
literature into lower bounds on the size of DNNF
representations. We use this approach to prove ex-
ponential separations of DNNFs from deterministic
DNNFs and of CNF formulas from DNNFs.

1 Introduction

Finding suitable representation languages to encode informa-
tion for reasoning is a basic issue of knowledge representation;
the task typically involves striking a balance between com-
peting requirements, for instance expressivity and tractability
[Brachman and Levesque, 1984; Levesque and Brachman,
1987]. Since the complexity of reasoning algorithms is mea-
sured in terms of the size of the representation, a crucial aspect
of this enterprise, and a central research topic in the area of
knowledge compilation [Marquis, 2015], is the relative suc-
cinctness of representation languages [Gogic et al., 1995]. For
instance, satisfiability of a Boolean function can be checked
in linear time given its truth table, but we typically prefer
encodings in terms of propositional formulas in spite of the in-
crease in the complexity of satisfiability testing because these
representations are exponentially more succinct.

In the propositional case, a systematic comparison of fully
expressive, tractable representation languages was carried out
by Darwiche and Marquis [2002]. One of the main aims of
their work was to determine the relative succinctness of lan-
guages and decide whether representations in one language
can be translated into another language at the cost of increas-
ing the representation size at most polynomially. Showing
unconditionally that such a transformation does not exist typi-
cally involves two parts: first, giving an upper bound on the
representation size of a carefully chosen function f in the first
language; and second, proving a non-trivial lower bound on
the representation size of f in the second language. The latter
part tends to become increasingly difficult with the succinct-
ness of the representation language.

Many of the languages considered in knowledge compila-
tion are sub-classes of the class of circuits in decomposable
negation normal form, or DNNFs [Darwiche, 2001]. The
limitations of DNNFs are generally not well understood, as
witnessed by the lack of general techniques for proving strong
lower bounds on the size of DNNF representations.

Indeed, lower bounds on the size of DNNF representations
can be proved by lifting lower bounds on nondeterministic
read-once branching programs using a quasipolynomial sim-
ulation of DNNFs by nondeterministic read-once branching
programs [Razgon, 2015; Beame and Liew, 2015], or by lever-
aging lower bounds from monotone circuit complexity [Bova
et al., 2014], but these approaches only lead to “weakly ex-
ponential” lower bounds of the form exp(n⌦(1)

) and do not
provide a fine-grained understanding of the complexity of
DNNFs. “Strongly exponential” lower bounds of the form
exp(⌦(n)) have been obtained using a more direct approach,
but at the cost of fairly involved combinatorial arguments that
are particular to the class of functions against which lower
bounds are shown [Ponnuswami and Venkateswaran, 2004;
Bova et al., 2014].

In this paper, we introduce a general approach to proving
lower bounds for DNNFs by establishing a connection be-
tween the DNNF size and the multi-partition communication
complexity of Boolean functions [Duris et al., 2004]. This
connection allows us to translate lower bounds on the com-
munication complexity into lower bounds on the DNNF and
deterministic DNNF (d-DNNF) size [Darwiche, 2001b]. Us-
ing this technique, we gain new insights into the limits of
DNNFs and d-DNNFs. In particular, we prove exponential

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

1008

separations of DNNFs from d-DNNFs and of CNF formulas
(even in prime implicates normal form) from DNNFs.

In a nutshell, the communication complexity of a function
f : X ⇥Y ! Z is the number of bits two individuals (usually
named Alice and Bob) have to exchange to compute f(x, y) if
one only knows x and the other only knows y.1 To obtain lower
bounds on this measure, communication complexity abstracts
from the specifics of the communication process and takes a
purely combinatorial view, the fundamental notion of which
is that of a (combinatorial) rectangle. Formally, a rectangle
in X ⇥ Y is a subset R ✓ X ⇥ Y such that R = A⇥ B for
some A ✓ X and B ✓ Y . The communication complexity of
a function f yields an upper bound on the size of a partition
of the input space into rectangles on which f assumes the
same value. Accordingly, lower bounds on the number of
rectangles in such a partition provide lower bounds on the
communication complexity, and researchers have developed
powerful tools to prove such bounds.

In turn, lower bounds on the communication complexity (or
related measures) of a function can be used to derive lower
bounds on the space required to compute this function in
various models of computation: one argues that the commu-
nication complexity of a function f : D ! Z is high with
respect to any (balanced) partition of D into X and Y , and
then shows how an encoding of f in a particular representation
language induces such a partition.

This is a standard technique for obtaining lower bounds
on the representation size of (Boolean) functions as OBDDs
(ordered binary decision diagrams) [Wegener, 2000]. Pipatsri-
sawat and Darwiche [2010] used a similar approach to prove
lower bounds on the size of structured (deterministic) DNNFs,
though without making the connection to communication com-
plexity. Recently, Beame and Liew [2015] showed that the
best-partition communication complexity of a function can
be related to its sentential decision diagram (SDD) size, a
subclass of DNNFs introduced by Darwiche [2011].

The model of communication complexity used in the above
cases only considers a single partition of the input space into
X and Y . To obtain lower bounds for DNNFs, we turn to a
more flexible model that allows for multiple partitions [Duris
et al., 2004]. We first prove that one needs at most one rectan-
gle for each gate of a DNNF to cover its satisfying assignments.
Here, it is useful to think of a DNNF in terms of its certificates.
A certificate for a satisfying assignment is simply a minimal
satisfied sub-DNNF that contains the output gate. Decompos-
ability ensures that the certificates of a DNNF are trees, and
certificates sharing a gate can be split and recombined into
trees that are again certificates. It follows that the set of satisfy-
ing assignments with certificates that contain a particular gate
is a rectangle (Theorem 1), and the union of these rectangles
covers the satisfying assignments of the DNNF. In a d-DNNF,
each satisfying assignment has exactly one certificate and the
resulting rectangle cover is even disjoint.

In order to be able to transfer lower bounds from multi-
partition communication complexity, we have to refine the
above construction and show that the set of satisfying as-

1For standard textbooks on the subject of communication com-
plexity, see [Kushilevitz and Nisan, 1997; Hromkovic, 1997].

x

y z

w_

_

x

zy

w

^^

Figure 1: A DNNF (left) and a vtree (right). The DNNF is
structured (it respects the vtree), but not deterministic.

signments of a DNNF can be covered by a small number of
rectangles with respect to balanced partitions, that is, parti-
tions where each part contains a constant fraction of the input
variables (Theorem 6).

With this connection in place, we can translate lower bounds
for the multi-partition communication complexity of a func-
tion into lower bounds for its DNNF size. Leveraging a result
by Sauerhoff [2003], we get a lower bound of exp(⌦(n)) on
the d-DNNF size of functions Sn (Theorem 8) whose DNNF
size is polynomial in n (Proposition 7), thus separating DNNFs
from d-DNNFs. Similarly, using a lower bound by Jukna and
Schnitger [2002], we obtain a lower bound of exp(⌦(n2

)) on
the DNNF size of functions JSn (Theorem 12) that can be
represented by CNF formulas of size O(n2

) (Proposition 11).
This allows us to prove a separation of CNF formulas—in fact,
even formulas in prime implicates normal form (PI)—from
DNNFs, a result recently established in [Bova et al., 2014].

2 Preliminaries

In this section, we introduce the notions of decomposable
circuits (from knowledge compilation) and rectangle covers
(from communication complexity).

Decomposable NNFs (DNNFs). We consider circuits in nega-
tion normal form, in short NNFs, which are (Boolean) circuits
over fanin 2 conjunction and disjunction gates, labelled with
^ and _, whose inputs are labeled by literals.2 The size of an
NNF C, denoted by |C|, is the number of its gates.3

Let X be a finite set of variables. An NNF C over X is an
NNF whose input gates are labelled with literals over variables
in X . The (Boolean) function fC : {0, 1}X ! {0, 1} com-
puted by an NNF C over X is defined in the usual way. We
let sat(C) = sat(fC) = f�1

C (1) denote the set of satisfying
assignments of C and fC . Two NNFs C and C 0 over X are
equivalent if sat(C) = sat(C 0

); if C and C 0 are equivalent,
we write C ⌘ C 0. We also write C ⌘ f if fC = f .

For a gate g in an NNF C over X , we let Cg denote the
subcircuit of C rooted at g. In particular, Cg = C if g is the
output gate of C. For an NNF C over variables X and a gate
g 2 C, we let var(Cg) ✓ X denote the variables appearing at
input gates of Cg .

2For technical convenience we admit circuits formed by a single
gate labelled with 0 or 1, but assume that circuits with at least two
gates do not contain constants.

3|C| > 0, as C contains at least the output gate. Circuits over
unbounded fanin conjunctions and disjunctions can be quadratically
simulated by fanin 2 circuits.

1009

Let g be an ^-gate in an NNF C, and let h and h0 be two
distinct gates wiring g in C. Then g is called decomposable
if var(Ch) \ var(Ch0

) = ;. An NNF whose ^-gates are
decomposable is called a decomposable NNF (short, DNNF).

Let g be an _-gate in an NNF C, and let h and h0 be two
distinct gates wiring g in C. Then g is called deterministic if
sat(Ch) \ sat(Ch0

) = ;, viewing each circuit involved in the
equation as an NNF over var(C). An NNF whose _-gates are
all deterministic is called a deterministic NNF.

Let Y be a finite nonempty set of variables. A variable
tree (in short, a vtree) for the variable set Y is a rooted, full,
ordered, binary tree T whose leaves correspond bijectively to
Y ; for simplicity, we identify each leaf in T with the variable
in Y it corresponds to.

For every internal node v of the vtree T , we let vl and vr
denote respectively the left and right child of v. Moreover, we
denote by Tv the subtree of T rooted at v. We also let Yv ✓ Y
denote (the variables corresponding to) the leaves of Tv .

Let C be a DNNF over variables X , and let T be a vtree
for the variable set Y . Let g be an ^-gate in C having wires
from gates h and h0. We say that g respects the node v of T if
var(Ch) ✓ Yvl and var(Ch0

) ✓ Yvr . We say that C respects
the vtree T if each ^-gate in C respects some node in T . A
DNNF C is called structured if it respects some vtree.

Rectangles and Covers. Let X be a finite set of vari-
ables. A partition of X is a sequence of pairwise dis-
joint subsets (blocks) of X whose union is X . A par-
tition (X1, X2) of X into two blocks is called balanced
if |X|/3  min(|X1|, |X2|); clearly, this is equivalent to
max(|X1|, |X2|)  2|X|/3.

Let (X1, X2) be a partition of X . For b1 : X1 ! {0, 1}
and b2 : X2 ! {0, 1}, we let b1 [b2 : X1 [X2 ! {0, 1}
denote the assignment whose restriction to Xi equals bi for
i = 1, 2. Also, for B1 ✓ {0, 1}X1 and B2 ✓ {0, 1}X2 , we let
B1 ⇥B2 = {b1 [b2 | b1 2 B1, b2 2 B2}.

A (combinatorial) rectangle over X is a function
r : {0, 1}X ! {0, 1} such that there exist an underlying parti-
tion (X1, X2) of X and functions ri : {0, 1}Xi ! {0, 1} for
i = 1, 2 such that sat(r) = sat(r1)⇥ sat(r2). A rectangle is
called balanced if its underlying partition is balanced.

We also call a subset R of {0, 1}X a rectangle over X ,
with underlying partition (X1, X2), if there exists a rectangle
r : {0, 1}X ! {0, 1}, with underlying partition (X1, X2),
such that R = sat(r).

Let f : {0, 1}X ! {0, 1} be a function. A finite set {ri} of
rectangles over X is called a rectangle cover of f if

sat(f) =
[

i

sat(ri); (1)

the rectangle cover is called disjoint if the union in (1) is
disjoint. A rectangle cover is called balanced if each rectangle
in the cover is balanced.

Note that, if f has a rectangle cover as in (1), thenf ⌘W
i

�
C1

i ^ C2
i

�
, where C1

i (respectively, C2
i) is an NNF over

the first (respectively, second) block of the partition underlying
the ith rectangle in the cover; the outermost _-gate is deter-
ministic if the cover is disjoint, and the ith ^-gate displayed is
decomposable (by the partition of the ith rectangle).

3 Knowledge Compilation Meets

Communication Complexity

In this section we show how to construct, given a (determin-
istic) DNNF C, a (disjoint) rectangle cover of size at most
|C| for fC (Theorem 6), thus establishing a fundamental con-
nection between knowledge compilation and communication
complexity.

The construction is based on basic but crucial combinatorial
properties of (deterministic) DNNFs, notably on the notion of
certificate for a DNNF, and an operation eliminating gates in
DNNFs, which we now define and study.

Let C be a DNNF on variables X . A certificate of C is a
DNNF T on variables X such that: T contains the output gate
of C; if T contains an ^-gate v of C, then T also contains
every gate of C having an output wire to v; if T contains an
_-gate v of C, then T also contains exactly one gate of C
having an output wire to v. The output gate of T coincides
with the output gate of C, and the gates of T inherit their
labels and wires from C.

We let cert(C) denote the set of certificates of C. It is
readily verified that

sat(C) =

[

T2cert(C)

sat(T). (2)

The following fact is an easy consequence of decomposabil-
ity (and constant freeness).

Fact 1. Let C be a DNNF and let T 2 cert(C). The graph
underlying T is a binary tree. Moreover, no two leaves of T
are labeled by the same variable.

For a gate g of a DNNF C, we let cert(C, g) denote the set
of certificates of C containing the gate g and let

sat(C, g) =
[

T2cert(C,g)

sat(T); (3)

in words, sat(C, g) contains those satisfying assignments of
C that satisfy the subcircuit rooted at gate g.

The crucial combinatorial property of DNNFs is that
sat(C, g) is a rectangle separating the variables in the sub-
circuit of C rooted at g. Formally,

Theorem 1. Let C be a DNNF on variables X and let g
be a gate of C. Then sat(C, g) is a rectangle over X with
underlying partition (var(Cg), X \ var(Cg)).

In view of proving Theorem 1, we prepare the following.

Lemma 2. Let g be a gate of a DNNF C and let T 2
cert(C, g). Then

var(T) \ var(Tg) ✓ var(C) \ var(Cg).

Proof of Lemma 2. Otherwise, let x be a variable contained
in both var(T) \ var(Tg) and var(Cg). Then there exists a
certificate T 0 2 cert(C, g) such that x 2 var(T 0

g). By Fact 1,
T and T 0 are trees. By replacing Tg in T by T 0

g, we obtain a
certificate T of C where x occurs twice, contradicting Fact 1.

1010

Proof of Theorem 1. Let Y = var(Cg) and Y 0
= X \ Y . Let

b and b0 be in sat(C, g). It is sufficient to show that b|Y [b0|Y 0

is in sat(C, g), where b|Y , denotes the restriction of b to Y
and b0|Y 0 denotes the restriction of b0 to Y 0.

By (3), there exist certificates T and T 0 in cert(C, g) such
that b 2 sat(T) and b0 2 sat(T 0

). Then b satisfies all literals
in Tg. Since var(Tg) ✓ Y , it follows that b|Y satisfies all
literals in Tg . Similarly, b0 satisfies all literals in T 0 \ T 0

g; and,
by Lemma 2, it holds that var(T 0

) \ var(T 0
g) ✓ Y 0. Hence

b0|Y 0 satisfies all literals in T 0 \ T 0
g .

By Fact 1, T and T 0 are trees. By replacing T 0
g in T 0 by

Tg, we obtain a certificate S of C containing g, that is, S 2
cert(C, g). By the above observations, b|Y [b0|Y 0 satisfies all
literals in S, that is, b|Y [b0|Y 0 is in sat(S). It follows by (3)
that b|Y [b0|Y 0 is in sat(C, g).

As cert(C) =

S
g2C cert(C, g), it trivially follows by (2)

and (3) that
sat(C) =

[

g2C

sat(C, g). (4)

In words, C is covered by the rectangles induced by its gates
(recall Theorem 1). However, in view of reusing known lower
bounds on the size of rectangle covers (see Section 4), we need
to find a subset of gates of C generating a balanced rectangle
cover for C.

To this aim, we first introduce and study an operation on
DNNFs that boils down to relabelling a noninput gate by 0

and propagating the information in the circuit.
Let C be a DNNF on variables X . We define an operation

(0-propagation) that, given a DNNF C with some gates la-
belled with 0, returns either a single gate labelled with a 0 or
a DNNF where no gates are labelled with 0. The operation
iterates the following step until all 0s disappear (or the DNNF
reduces to a single gate labelled 0). Let g be a gate in C
labelled with 0. Then: delete all input wires of g; delete all
output wires of g to _-gates; relabel all ^-gates wired by g
and all fanin 0 _-gates by 0; delete all gates with no directed
paths to the output gate.

Now we define the DNNF on variables X obtained by elim-
inating the noninput gate g in C, denoted by C � g, as the
result of relabelling g by 0 and performing 0-propagation.

The impact of passing from C to C � g is dropping all
certificates containing g in (2), as formalized by the following
proposition (whose proof is omitted for space limitations).

Proposition 3. Let C be a DNNF and let g be a noninput gate
of C. Then

sat(C � g) =
[

T2cert(C)\cert(C,g)

sat(T).

The following lemma states a property of gate elimination
crucial to our construction: in passing from C to C � g we
only forget satisfying assignments in the rectangle sat(C, g).

Lemma 4. Let C be a DNNF and let g be a noninput gate
of C. Then C � g is a DNNF and

sat(C) \ sat(C, g) ✓ sat(C � g) ✓ sat(C).

Proof. Note that gate elimination preserves decomposability.
The inclusions follow directly from Proposition 3, recalling
(2) and (3).

In general, an assignment can satisfy more than one certifi-
cate. In this case, the left inclusion in Lemma 4 is strict. For
instance, let D be a DNNF and let C = D _D. Let g be the
output gate of one copy of D in C. Then sat(C) = sat(D)

and sat(C, g) = sat(D), so that sat(C) \ sat(C, g) = ;, but
sat(C � g) = sat(D).

By contrast, the left inclusion in Lemma 4 becomes an
equality in the deterministic case; in other words, eliminat-
ing a gate g in a deterministic DNNF C removes exactly the
assignments in the rectangle sat(C, g). Formally,
Lemma 5. Let C be a deterministic DNNF and let g be a
noninput gate of C. Then C � g is a deterministic DNNF and

sat(C) \ sat(C, g) = sat(C � g).

Proof. We show that gate elimination preserves determinism.
Assume that C � g contains a nondeterministic _-gate h,
wired by gates k and k0 such that b 2 sat((C � g)k) and
b 2 sat((C � g)k0

). It follows by Proposition 3 that there
exist certificates T and T 0 in cert(C) \ cert(C, g) such that
b 2 sat(Tk) and b 2 sat(T 0

k). Then b 2 sat(Ck) and b 2
sat(Ck0

), that is, h is nondeterministic in C, a contradiction.
For the equality, by Lemma 4 it suffices to prove that

sat(C � g) is contained in sat(C) \ sat(C, g). Assume
b 2 sat(C � g) so that, by Proposition 3, it holds that
b 2 sat(T 0

) for some T 0 2 cert(C) \ cert(C, g). In particular,
b 2 sat(C). It suffices to show that b 62 sat(C, g).

Otherwise, by (3), b 2 sat(T) for some T 2 cert(C, g).
Since T 0 62 cert(C, g), we have T 6= T 0. It follows that there
exist two distinct gates k and k0 in C, wiring an _-gate h in C,
such that T contains k and T 0 contains k0. Then b 2 sat(Tk)

and b 2 sat(Tk0
), so that b 2 sat(Ck) and b 2 sat(Ck0

).
Again, h is nondeterministic in C, a contradiction.

It follows from Lemma 4 that the process of iteratively
eliminating gates in a DNNF (until it becomes unsatisfiable)
yields a rectangle cover; moreover, by Lemma 5, the rectangle
cover is disjoint if the DNNF is deterministic.

We strengthen the above remark by proving that a suitable
elimination sequence in a (deterministic) DNNF C yields not
just a (disjoint) rectangle cover of C, but indeed a balanced
one, a crucial feature for the intended application (Section 4).
Theorem 6. Let C be a (deterministic) DNNF computing a
function f . Then f has a balanced (disjoint) rectangle cover
of size at most |C|.

Proof. Let C = C0 be a (deterministic) DNNF over variables
X = var(C) computing f . For i = 0, 1, . . ., we find a suitable
gate gi 2 Ci and construct the (deterministic) DNNF Ci+1

=

Ci � gi by eliminating gi in Ci, until we hit l  |C| such that
Cl ⌘ 0. Along the way, we construct a set

{Ri | i = 0, . . . , l � 1} (5)

that, we claim, is the desired rectangle cover of f .
For i = 0, 1, . . ., we choose the gate gi as follows. We

distinguish two cases. If 2|X|/3 < |var(Ci
)| then, by a de-

scent from the output gate of Ci, we find a gate gi 2 Ci

1011

NNF DNNF DNF CNF PI IP
DNNF 6⇤⇤   6⇤⇤ 6⇤⇤ 

d-DNNF 6⇤⇤ 6⇤ ? 6⇤⇤ 6⇤⇤ ?

Table 1: Relative succinctness of knowledge compilation lan-
guages, taking into account the results of Section 4.1 (⇤) and
Section 4.2 (⇤⇤).

such that |X|/3  |var(Ci
gi)|  2|X|/3. By Theorem 1 we

have that sat(Ci, gi) is a rectangle over X with underlying
partition (var(Ci

gi), X \ var(Ci
gi)). Then Ri = sat(Ci, gi) is

a balanced rectangle over X .
If |var(Ci

)| < 2|X|/3 then we let gi be the root of Ci. We
obtain the desired rectangle as follows. Let var(Ci

) ✓ X 0 ✓
X be obtained by adding to var(Ci

) enough variables from
X \ var(Ci

) so that (X 0, X \X 0
) is a balanced partition of X .

We put

Ri = (sat(Ci
)⇥ {0, 1}X

0\var(Ci)
)⇥ {0, 1}X\X0

,
where we view Ci as a DNNF over var(Ci

). Then Ri is
trivially a balanced rectangle over X .

It follows from the above construction and Lemma 4 that
the set in (5) is a balanced rectangle cover of C. Moreover,
if C is deterministic, then such rectangle cover is disjoint,
because sat(Ci, gi) \ sat(Ci+1

) = ; by Lemma 5.

4 Separating Knowledge Representation

Languages via Communication Complexity

In this section, we combine the connection between (deter-
ministic) DNNFs and (disjoint) rectangle covers established in
Section 3 with deep combinatorial lower bounds on the size of
(disjoint) rectangle covers from the communication complex-
ity literature to obtain exponential separations of DNNFs from
deterministic DNNFs (Section 4.1) and of prime implicates
(PI) from DNNFs (Section 4.2).

As illustrated in Table 1, these results allow us to answer
several questions regarding the relative succinctness of lan-
guages left open in the “knowledge compilation map” (cf.
Table 3 of [Darwiche and Marquis, 2002]).

4.1 DNNFs Versus Deterministic DNNFs

We first prove an exponential separation of DNNFs from deter-
ministic DNNFs. The two classes are separated by a function
introduced and studied by Sauerhoff [2003].

Let gn : {0, 1}n ! {0, 1} be the function evaluating to 1

if and only if the sum of its inputs is divisible by 3. The
Sauerhoff function Sn : {0, 1}n

2 ! {0, 1} is defined on the
n⇥ n matrix X = (xij)1i,jn of variables by

Sn(X) = Rn(X) _ Cn(X) (6)

where Rn, Cn : {0, 1}n
2 ! {0, 1} are defined by

Rn(X) =

nM

i=1

gn(xi1, xi2, . . . , xin)

and Cn(X) = Rn(X
>
), where X> denotes the transpose of

X , and � denotes addition modulo 2.
The Sauerhoff function has polynomial DNNF size.

Proposition 7. Sn in (6) has DNNF size O(n2
).

Proof (Sketch). The functions Rn and Cn have OBDDs of
size O(n2

), ordering the variables by rows and columns, re-
spectively; their disjunction has size O(n2

).

We use a highly nontrivial exponential lower bound on the
size of balanced disjoint rectangle covers for Sn [Sauerhoff,
2003, Theorem 4.10].
Theorem 8 (Sauerhoff). Any balanced disjoint rectangle
cover of the Sauerhoff function Sn in (6) has size 2

⌦(n).

We remark that Sauerhoff actually proves the above lower
bound only for rectangles whose underlying partitions have
blocks of the same size ±1, but a careful inspection of the
proof reveals that the same argument can be lifted to our more
relaxed notion of balancedness.

By putting together Theorem 6 and Theorem 8, we get the
following lower bound, which, in combination with Proposi-
tion 7, yields an explicit, unconditional, exponential separation
of DNNFs from deterministic DNNFs:
Theorem 9. Sn in (6) has deterministic DNNF size 2

⌦(n).

4.2 Prime Implicates Versus DNNFs

Next, we show a (strongly) exponential separation of prime
implicates (PIs) from DNNFs. In recent (unpublished)
work [Bova et al., 2014], we established this separation by
means of an involved combinatorial proof; here, we obtain the
same result by leveraging a lower bound on the multi-partition
communication complexity of a function studied by Jukna and
Schnitger [2002], which is defined as follows.

For n � 2, let Kn be the set of all 2-element subsets (edges)
of {1, . . . , n}. We view every subset of Kn as the edge set of
a graph G whose vertex set is {1, . . . , n}. We identify edges
in Kn with Boolean variables, so that the graph G ✓ Kn is
encoded by the {0, 1}-assignment of Kn mapping a variable
(edge) to 1 if and only if it is in the edge set of G.

A triangle T on n vertices is a graph with ver-
tices {1, . . . , n} and edges {{i, j}, {i, k}, {j, k}}, where
|{i, j, k}| = 3; it corresponds to the assignment of Kn map-
ping {i, j}, {i, k}, {j, k} to 1 and the other edges to 0.

We let Tn be the set of all triangles on n vertices. For a set
A ✓ Tn, we let

JSA
n : {0, 1}Kn ! {0, 1} (7)

denote the function accepting exactly those graphs over
{1, . . . , n} that avoid all triangles in A (the edge set of no
triangle in A is contained in the edge set of the input graph).

Jukna and Schnitger [2002, Theorem 3.1] show an exponen-
tial lower bound on the size of balanced rectangle covers for
functions as in (7).
Theorem 10 (Jukna and Schnitger). For every n there exists
An ✓ Tn of size O(n2

) such that any balanced rectangle
cover of JSAn

n in (7) has size 2

⌦(n2).

The Jukna-Schnitger function JSn : {0, 1}Kn ! {0, 1} is
defined by

JSn = JSAn
n (8)

where An is chosen by Theorem 10 (n � 2).

1012

It is readily verified that the Jukna-Schnitger function has
polynomial PI size. Recall that a CNF F is in prime implicate
(PI) form if every clause entailed by F is already entailed by
a clause of F , and no clause of F entails another clause of F .
Proposition 11. JSn in (8) has PI size O(n2

).

Proof (Sketch). Let JSn = JSAn
n . Take the CNF Fn stating

that every triangle in An has an edge that is not in the input
graph; it computes JSn and it is in PI. Also, Fn has size
O(n2

), since |An| = O(n2
) by Theorem 10.

By combining Theorem 6 and Theorem 10, we obtain the
following lower bound.

Theorem 12. JSn in (8) has DNNF size 2

⌦(n2).

Jointly, Proposition 11 and Theorem 12 yield an uncondi-
tional, strongly exponential separation of PIs from DNNFs.
As already observed in [Bova et al., 2014], since PI ✓ CNF ✓
NNF and d-DNNF ✓ DNNF, the remaining separations in
Table 1 marked with † follow from this result.

5 Structured Knowledge Representation

Languages and Communication Complexity

The lower bound techniques for structured DNNFs introduced
by Pipatsrisawat and Darwiche [2010] have a natural inter-
pretation in terms of communication complexity. Their main
result can be paraphrased thus:
Theorem 13 (Pipatsrisawat and Darwiche). Let D be a (de-
terministic) structured DNNF on variables X computing a
function f and respecting a vtree T . For every node v 2 T , f
has a (disjoint) rectangle cover of size at most |D| where each
rectangle has underlying partition (Xv, X \Xv).

Proof (Sketch). Let v be a node in T . We can find a gate g
of D such that, for every certificate C of D containing g, it
holds that var(Cg) ✓ Xv and var(C \Cg) ✓ X \Xv . We can
show as in Theorem 1 that sat(D, g) is thus a rectangle with
underlying partition (Xv, X \Xv). We then apply a similar
elimination process as in the proof of Theorem 6.

In contrast to Theorem 6, the above statement speaks about
rectangle covers whose rectangles share the same underlying
partition. Such covers are closely related to a measure known
as the best-partition communication complexity [Lipton and
Sedgewick, 1981], and Theorem 13 allows us to transfer lower
bounds on the best-partition communication complexity and
prove a conjecture by Pipatsrisawat and Darwiche [2010].

Let Xn = {x1, . . . , xn} and Yn = {y1, . . . , yn}. Let T
be a vtree for Xn [Yn where the subtree rooted at the left
(respectively, right) child of the root is a right-linear vtree for
Xn (respectively, Yn). Pipatsrisawat and Darwiche [2010]
conjecture that any deterministic DNNF computing

fn = (x1 ^ y1) _ · · · _ (xn ^ yn) (9)

and respecting T has size exponential in n. We appeal to a
nice piece of communication complexity theory to prove the
following statement (thus confirming the conjecture).

Proposition 14. Let T be any vtree for Xn [Yn containing
a vtree for Xn as a subtree. Then any deterministic DNNF
computing fn in (9) and respecting T has size at least 2n � 1.

Let f : {0, 1}Z ! {0, 1} be a function, and let (Z1, Z2) be
a partition of X where |Z1| = |Z2| = n. The communication
matrix of f relative to (Z1, Z2), denoted by M(f, Z1, Z2) is
a (Boolean) matrix whose rows and columns are indexed by
assignments of Z1 and Z2, respectively, and whose (b1, b2)th
entry equals f(b1 [b2).4

A basic fact in communication complexity is that the rank
of the communication matrix is a lower bound on the size
of disjoint rectangle covers of a function [Jukna, 2012, Sec-
tion 4.1].
Theorem 15. Let (Z1, Z2) be a partition of the variables of
a function f , where |Z1| = |Z2| = n. Then every disjoint
rectangle cover of f into rectangles with underlying partition
(Z1, Z2) has size at least rank(M(f, Z1, Z2)).

The complement of the function fn in (9), called the dis-
jointness function,

dn = ¬fn = (¬x1 _ ¬y1) ^ · · · ^ (¬xn _ ¬yn), (10)
is a well studied object in communication complexity; we
denote by Dn = M(dn, Xn, Yn) its communication matrix.
The following fact is folklore [Jukna, 2012, Exercise 7.1].
Proposition 16. rank(Dn) = 2

n.

Proof of Proposition 14. Let C be any deterministic DNNF
computing fn in (9) and respecting a vtree T as in the hy-
pothesis. By Theorem 13, fn has a disjoint rectangle cover
of size at most |C| where each rectangle has underlying par-
tition (Xn, Yn). Let En = M(fn, Xn, Yn). By Theorem 15,
|C| � rank(En). Since Dn = 1 � En by (10), we have
2

n
= rank(Dn) = rank(1�En)  rank(1) + rank(En) =

1+rank(En) by Proposition 16 and basic linear algebra, hence
rank(En) � 2

n � 1. We conclude that |C| � 2

n � 1.

We conclude by noting that the same general strategy used
for obtaining the lower bounds in Section 4 works for struc-
tured DNNFs. For instance, the exponential lower bound on
the structured DNNF size of the circular bit shift (CBS) func-
tion [Pipatsrisawat, 2010], follows directly by Theorem 13
and known exponential lower bounds on the size of rectangle
covers for CBS in the best-partition model [Kushilevitz and
Nisan, 1997, Chapter 7.2].

6 Conclusion

We established a connection between the DNNF size and the
multi-partition communication complexity of Boolean func-
tions. This connection allowed us to translate lower bounds
from communication complexity into lower bounds on the
(deterministic) DNNF size and prove exponential separations
of DNNFs from d-DNNFs and of PIs from DNNFs.

We are confident that the applicability of our approach goes
beyond the specific lower bound results proved here. In partic-
ular, we hope that it can help resolve a few questions from the
“knowledge compilation map” that remain open [Darwiche
and Marquis, 2002].

4We regard communication matrices as matrices over the reals.

1013

Acknowledgments

The first author was supported by the FWF Austrian Science
Fund (P26200). The second author was supported by the
French Agence Nationale de la Recherche, AGGREG project
reference ANR-14-CE25-0017-01. The third author was sup-
ported by the ANR Blanc International ALCOCLAN. The
fourth author was supported by the FWF Austrian Science
Fund (P27721).

References

[Beame and Liew, 2015] P. Beame and V. Liew. New Lim-
its for Knowledge Compilation and Applications to Exact
Model Counting. In In Proceedings of the 31st AAAI Con-
ference on Conference on Uncertainty in Artificial Intelli-
gence (UAI 2015), pages 131–140, 2015.

[Bova et al., 2014] S. Bova, F. Capelli, S. Mengel, and
F. Slivovsky. A Strongly Exponential Separation of DNNFs
from CNF Formulas. CoRR, abs/1411.1995, 2014.

[Brachman and Levesque, 1984] R.J. Brachman and H.J.
Levesque. The Tractability of Subsumption in Frame-Based
Description Languages. In Proceedings of the 4th AAAI
Conference on Artificial Intelligence (AAAI 1984), pages
34–37, 2015.

[Darwiche, 2001] A. Darwiche. Decomposable Negation
Normal Form. J. ACM, 48(4):608–647, 2001.

[Darwiche, 2001b] A. Darwiche. On the Tractable Counting
of Theory Models and its Application to Truth Maintenance
and Belief Revision. J. Appl. Non-Classical Logics, 11(1-
2):11–34, 2001.

[Darwiche, 2011] A. Darwiche. SDD: A New Canonical Rep-
resentation of Propositional Knowledge Bases. In Proceed-
ings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI 2011), pages 819–826, 2011.

[Darwiche and Marquis, 2002] A. Darwiche and P. Marquis.
A Knowledge Compilation Map. J. Artif. Intell. Res.,
17:229–264, 2002.

[Duris et al., 2004] P. Duris, J. Hromkovic, S. Jukna,
M. Sauerhoff, and G. Schnitger. On Multi-Partition Com-
munication Complexity. Inf. Comput., 194(1):49–75, 2004.

[Gogic et al., 1995] G. Gogic, H.A. Kautz, C.H. Papadim-
itriou, and B. Selman. The Comparative Linguistics of
Knowledge Representation. In Proceedings of the 14th
International Joint Conference on Artificial Intelligence
(IJCAI 1995), pages 862–869, 1995.

[Hromkovic, 1997] J. Hromkovic. Communication Complex-
ity and Parallel Computing. Springer, 1997.

[Jukna and Schnitger, 2002] S. Jukna and G. Schnitger.
Triangle-Freeness is Hard to Detect. Combinatorics, Prob-
ability & Computing, 11(6):549–569, 2002.

[Jukna, 2012] S. Jukna. Boolean Function Complexity.
Springer, 2012.

[Kushilevitz and Nisan, 1997] E. Kushilevitz and N. Nisan.
Communication Complexity. Cambridge University Press,
1997.

[Levesque and Brachman, 1987] H.J. Levesque and R.J.
Brachman. Expressiveness and Tractability in Knowledge
Representation and Reasoning. Comput. Intell., 3:78–93,
1987.

[Lipton and Sedgewick, 1981] R.J. Lipton and R. Sedgewick.
Lower Bounds for VLSI. In Proceedings of the 13th Annual
ACM Symposium on Theory of Computing (STOC 1981),
pages 300–307, 1981.

[Marquis, 2015] P. Marquis. Compile! In Proceedings of
the 29th AAAI Conference on Artificial Intelligence (AAAI
2015), pages 4112–4118, 2015.

[Pipatsrisawat and Darwiche, 2010] T. Pipatsrisawat and
A. Darwiche. A Lower Bound on the Size of Decompos-
able Negation Normal Form. In Proceedings of the 24th
AAAI Conference on Artificial Intelligence (AAAI 2010),
2010.

[Pipatsrisawat, 2010] T. Pipatsrisawat. Reasoning with Propo-
sitional Knowledge: Frameworks for Boolean Satisfiability
and Knowledge Compilation. PhD thesis, University of
California Los Angeles, 2010.

[Ponnuswami and Venkateswaran, 2004] A.K. Ponnuswami
and H. Venkateswaran. Monotone Multilinear Boolean
Circuits for Bipartite Perfect Matching Require Exponential
Size. In Proceedings of the 24th International Conference
on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2004), pages 460–468, 2004.

[Razgon, 2015] I. Razgon. Quasipolynomial Simulation of
DNNF by a Non-Deterministic Read-Once Branching Pro-
gram. In Proceedings of the 21st International Conference
on Principles and Practice of Constraint Programming (CP
2015), pages 367–375, 2015.

[Sauerhoff, 2003] M. Sauerhoff. Approximation of Boolean
Functions by Combinatorial Rectangles. Theor. Comput.
Sci., 1-3(301):45–78, 2003.

[Wegener, 2000] I. Wegener. Branching Programs and Bi-
nary Decision Diagrams. SIAM, 2000.

1014

