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Abstract

We study access to temporal data with TEL, a tem-
poral extension of the tractable description logic EL.
Our aim is to establish a clear computational com-
plexity landscape for the atomic query answering
problem, in terms of both data and combined com-
plexity. Atomic queries in full TEL turn out to be
undecidable even in data complexity. Motivated by
the negative result, we identify well-behaved yet ex-
pressive fragments of TEL. Our main contributions
are a semantic and sufficient syntactic conditions
for decidability and three orthogonal tractable frag-
ments, which are based on restricted use of rigid
roles, temporal operators, and novel acyclicity con-
ditions on the ontologies.

1 Introduction
In recent years, the use of ontologies to enrich plain data
with a semantic layer has become one of the outstanding
applications of description logic (DLs) technologies in the
Semantic Web. The ontology-based data access (OBDA) set-
ting provides information systems with various advantages,
e.g., a friendlier vocabulary for accessing heterogenous data
is given by the ontology, and means of querying potentially
incomplete data are provided by taking account of the im-
plicit knowledge derived from the data and the ontology.
Due to the increasing need to account for the temporal di-
mension of data available on the Web [Roth and Tan, 2013;
Dong and Tan, 2015], the DL community has recently inves-
tigated extensions of the OBDA paradigm for temporal data.
The initial efforts concentrated on temporal query languages
with atemporal ontologies [Gutiérrez-Basulto and Klarman,
2012; Klarman and Meyer, 2014; Baader, Borgwardt, and
Lippmann, 2015; Borgwardt, Lippmann, and Thost, 2015;
Borgwardt and Thost, 2015]. On the other hand, temporal
ontology languages can enhance conceptual modelling with
temporal aspects [Artale et al., 2015], which are required,
e.g., in applications managing data from sensor networks. In
this line, the research has focused on temporal extensions
of DL-Lite that support rewritability of temporal queries
into the monadic second-order logic with order or into two-
sorted first-order logic with < and +

[Artale et al., 2013b;

2015]. Since standard relational database management sys-
tems have such built-in predicates, they can in principle
evaluate the FO(<,+)-rewritings. However, no temporal
extensions of other classical DLs have been investigated
yet in the context of OBDA, which is partly because of
the intractability and often even undecidability of the stan-
dard reasoning tasks (e.g., subsumption) [Artale et al., 2007;
Gutiérrez-Basulto, Jung, and Lutz, 2012; Gutiérrez-Basulto,
Jung, and Schneider, 2014]. On the other hand, temporal data
has also been studied in classical database theory [Chomicki
and Toman, 2005]. In their seminal paper, Chomicki and
Imielinski [1988] identified DATALOG1S as a decidable exten-
sion of DATALOG with one successor function. Here we make
the first (to the best of our knowledge) attempt to link temporal
OBDA with temporal deductive databases [Chomicki, 1990;
Baudinet, Chomicki, and Wolper, 1993].

In this paper, we study TEL, a temporal extension of
EL [Baader, Brandt, and Lutz, 2005]. The underlying DL
component, EL, underpins the OWL 2 EL profile of OWL 2
and the medical ontology SNOMED CT, which provides the
vocabulary for electronic health records (EHRs). Indeed, appli-
cations managing EHRs must be able to provide information,
e.g., on when and for how long some drug has been prescribed
to a patient, so that drugs that interact adversely are not pre-
scribed at the same time. Clinical trials [Shankar et al., 2008;
O’Connor et al., 2009] also require a unified conceptual model
for specifying temporal constraints of protocol entities such
as ‘a viable participant should have had a vaccination with
live virus 5 days ago’ or ‘blood tests of a patient should be
run every 3 days’. These statements can be encoded in TEL:

Patient u�5
P9vaccinated.LiveVirus v ViableParticip, (1)

Patient u�3
PReqBloodTest v ReqBloodTest. (2)

Our main objective is to establish the limits of decidability
and tractability of the query answering problem over TEL
ontologies, in terms of both data and combined complexity.
In order to set the foundations, we focus on temporal atomic
queries. On the one hand, an atomic query ViableParticip(x, t)

with the temporal concept inclusion (1) effectively encodes a
tree-shaped temporal conjunctive query. On the other hand, us-
ing (1) to extend the vocabulary with a concept ViableParticip
is closer to the spirit of the OBDA paradigm than repeating the
same conjunction in all similar user queries. Moreover, a recur-
rent pattern ReqBloodTest is expressible as an atomic query
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ReqBloodTest(x, t) with the temporal concept inclusion (2)
but not expressible as a query without temporal concept inclu-
sions like (2). As we shall see, even for atomic queries rather
surprising (and challenging) results are obtained.

Our main contributions are complexity bounds, algorithms
and rewritability into DATALOG1S for atomic query answering
in fragments of TEL. Since query answering over unrestricted
TEL turns out to be undecidable (in data complexity), we inves-
tigate its fragments to attain decidability and tractability. First,
for TEL�, which allows only the ‘next-’ �

F and ‘previous-
time’ �

P operators, we identify ultimate periodicity as a natu-
ral semantic condition ensuring decidability, more precisely,
PSPACE data complexity (the question of decidability of the
full TEL� is left open for future work). Then, we identify a
number of fragments with better computational properties. (i)
For the fragment of TEL� without rigid (not changing over
time) roles on the right-hand side of concept inclusions, we
construct a polynomial rewriting into DATALOG1S , and so,
establish PSPACE-completeness for data complexity. This frag-
ment contains all EL ontologies as well as both (1) and (2).
(ii) Over temporally acyclic TEL�-ontologies (with rigid roles
and concepts), query answering is PTIME-complete in both
data and combined complexity. This tractable fragment con-
tains (1) and fully captures all atemporal EL ontologies and
may prove particularly useful in applications; it, however, does
not contain (2). (iii) Query answering over DL-acyclic TEL�
ontologies is NC1-complete for data complexity (in principle,
highly parallelizable). This fragment contains many acyclic
EL ontologies as well as both (1) and (2) (note that large
parts of SNOMED CT are in fact acyclic). We remark that our
two novel acyclicity conditions (each constraining only one
dimension) are inspired by the ‘traditional’ notion of acyclic-
ity in (temporal extensions of) DLs [Haase and Lutz, 2008;
Gutiérrez-Basulto, Jung, and Schneider, 2015]. Finally, (iv)
we show that the language with only 3P and 3F (sometime
in the past/future) on the left-hand side of concept inclusions
also enjoys PTIME query answering.

Omitted proofs can be found at tinyurl.com/TempEL16.

2 Preliminaries
We begin by introducing TEL, a temporal extension of the
classical DL EL. Let N

C

, N
R

, N
I

be countably infinite sets of
concept, role and individual names, respectively. We assume
that N

R

is partitioned into two infinite sets, Nrig

R

and N

loc

R

, of
rigid and local role names, respectively. TEL concepts are
defined by the following grammar:

C,D ::= A | C uD | 9r.C | �⇤C | 3⇤C,

where A 2 N

C

, r 2 N

R

, and ⇤ 2 {F, P}. A TEL-TBox
(ontology) T is a finite set of concept inclusions (CIs) C v D

and concept definitions (CDs) C ⌘ D for TEL concepts C,D.
Data is given in terms of temporal ABoxes A, which are finite
sets of assertions of the form A(a, n) and r(a, b, n), where
A 2 N

C

, r 2 N

R

, a, b 2 N

I

, and n 2 Z. We denote by ind(A)

the sets of individual names occurring in A, and by tem(A)

the set {n 2 Z | minA  n  maxA}, where minA and
maxA are, respectively, the minimal and maximal time points
in A. The size, |T | and |A|, of T and A is the number of

symbols required to write T and A, respectively, with time
points n 2 Z encoded in unary. A temporal knowledge base
(KB) K is a pair (T ,A).

An interpretation I is a structure (�

I
, (In)n2Z), where

each In is a classical DL interpretation with domain �

I: we
have A

In ✓ �

I and r

In ✓ �

I⇥�I. Rigid roles r 2 N

rig

R

do not change their interpretation in time: rIn
= r

I0 for all
n 2 Z. We usually write A

I,n and r

I,n instead of AIn and
r

In , respectively, and the mapping ·I,n is extended to complex
TEL-concepts as follows:
(C uD)

I,n
= C

I,n \D

I,n
,

(9r.C)

I,n
=

�
d | there is e 2 C

I,n with (d, e) 2 r

I,n
 
,

(

�⇤C)

I,n
= C

I,n op⇤ 1
,

(3⇤C)

I,n
=

�
d | d 2 C

I,n op⇤ k for some k > 0

 
,

where op⇤ stands for � if ⇤ = P and for + if ⇤ = F . We use
strict 3⇤ (k > 0) but our results do not depend on the choice.

An interpretation I is said to be a model of C v D, written
I |= C v D, if CI,n ✓ D

I,n, for all n 2 Z; and a model of
C ⌘ D if CI,n

= D

I,n, for all n 2 Z. We call I a model
of a TBox T , written I |= T , if I |= ↵ for all ↵ 2 T . Note
that TBoxes are interpreted globally in the sense that all CIs
and CDs must be satisfied at every time point. A concept D
subsumes a concept C with respect to T , written T |= C v D,
if I |= C v D for all models I of T .

For ABoxes A we adopt the standard name assumption:
a

I,n
= a for all a 2 ind(A), n 2 Z (and thus ind(A) ✓ �

I).
The relation |= is extended to ABoxes by taking I |= A(a, n)

iff a 2 A

I,n and I |= r(a, b, n) iff (a, b) 2 r

I,n; I is a model
of A iff I |= ↵ for all ↵ 2 A. An interpretation I is a model
of a KB (T ,A), written I |= (T ,A), iff I |= T and I |= A.
Finally, K |= A(a, n) if I |= A(a, n) for every model I of K.

As the query language, we consider temporal atomic queries
(TAQs) of the form A(x, t) with A 2 N

C

, x an individual
variable and t a temporal variable. Given K = (T ,A), a
certain answer to A(x, t) over K is a pair (a, n) 2 ind(A)⇥
tem(A) with K |= A(a, n). We study the complexity of the
query answering problem over temporal knowledge bases:

TAQ answering
Input: TBox T , ABox A, TAQ A(x, t), a pair (a, n).
Question: Is (a, n) a certain answer to A(x, t) over (T ,A)?
Our results concern both the combined and data complexity of
the problem: for data complexity, the TBox is fixed. As usual,
for a complexity class C and a class X of TBoxes, we say that
TAQ answering over X is C-hard in data complexity if there
is some T 2 X such that answering TAQs over T is C-hard.
Conversely, TAQ answering over X is in C in data complexity
if, for all T 2 X , answering TAQs over T is in C.

As classes X , we will in particular look at full TEL and its
fragments TEL3 and TEL� in which, respectively, only the
temporal operators 3⇤ and �⇤ are allowed. Note that 3⇤ on
the left-hand side and 2⇤ (with the usual semantics) on the
right-hand side of CIs can be expressed in TEL�, e.g., instead
of 3PA v X or, equivalently, A v 2FX , take A v A

0 and
�

PA
0 v A

0 uX , for a fresh A

0. Thus, rigid concepts, which
do not change their interpretation in time, can be expressed in
these two fragments using 3P3F on the left-hand side of CIs.
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3 Query Answering in TEL: Undecidability
We first pinpoint different sources of complexity for the query
answering problem in TEL in order to identify computationally
well-behaved fragments in the sequel.

We begin by showing that TAQ answering over TEL3 is
undecidable. The known undecidability of subsumption in
TEL3 [Artale et al., 2007] translates only into the combined
complexity of TAQ answering. We strengthen the result to
obtain undecidability in data complexity by reducing the halt-
ing problem for the universal Turing machine. We exploit the
crucial observation that disjunction, although not in the syntax,
can be simulated with 3⇤ [Artale et al., 2007].
Theorem 1 TAQ answering over TEL3 is undecidable in data
complexity.
The proof can also be adapted to the non-strict semantics of 3⇤

using the chessboard technique [Gabbay et al., 2003].
TEL�, unlike TEL3, is not capable of expressing disjunc-

tion. Still, its expressiveness makes answering TAQs hard:
Theorem 2 TAQ answering over TEL� is non-elementary in
combined complexity and PSPACE-hard in data complexity.
The proof of PSPACE-hardness is close in spirit to that for
DATALOG1S [Chomicki and Imielinski, 1988]; note that the
lower bound holds even in the restriction of TEL� without
9r.C on the right-hand side of CIs. For the non-elementary
lower bound, we take inspiration in the construction for the
product modal logic LTL⇥K [Gabbay et al., 2003, Theorem
6.34]. Our proof requires a careful implementation of the yard-
stick technique [Stockmeyer, 1974] with only Horn formulas.

Decidability of TAQ answering in full TEL� is left open
as interesting and challenging future work; more insights on
the difficulty of the problem are given in Sec. 4. Nevertheless,
we show that extending TEL� with certain DL constructs that
are harmless for data complexity of atemporal query answer-
ing [Krisnadhi and Lutz, 2007] immediately leads to unde-
cidability. Let TELI� and TELF� be the extensions of TEL�
with inverse roles r� and functionality axioms func(r), respec-
tively.1 For both languages, we reduce the halting problem for
the universal Turing machine to prove:
Theorem 3 TAQ answering over TELI� and TELF� is unde-
cidable in data complexity.
In the rest of the paper, we study decidability and complexity
of TAQ answering in various fragments of TEL� and TEL3.

4 Foundations of Query Answering in TEL�
In this section, we lay the groundwork for the development
of algorithms for query answering in fragments of TEL� by
introducing canonical quasimodels, which are succinct ab-
stract representations of the universal model of the KB, see
also [Artale et al., 2013b; 2015]. They can also be viewed
as a generalization of the canonical structures used for query
answering in pure EL [Lutz, Toman, and Wolter, 2009].

In the sequel, we assume that TEL�-TBoxes are in normal
form, that is, they consist of CIs of the form

A uA

0 v B, A v 9r.B, X v A,

1with the usual semantics: (r�)I,n = {(e, d) | (d, e) 2 rI,n};
I |= func(r) iff e1 = e2, for all (d, e1), (d, e2) 2 rI,n and n 2 Z.

where A, A0 and B are concept names and X is a basic concept
of the form A, �⇤A, or 9r.A, for a concept name A. Observe
that, without loss of generality, �⇤ is restricted to the left-hand
side of CIs: for instance, A v �

FB is equivalent to �
PA v B.

It is routine to show that every TEL�-TBox can be transformed
into the normal form by introducing fresh concept names; see,
e.g., [Baader, Brandt, and Lutz, 2005].

Fix now a KB (T ,A) with a TEL�-TBox T in normal form
and let CN be the set of concept names in (T ,A). A map
⇡ : Z! 2

CN is a trace for T if it satisfies the following:
(t1) if A uA

0 v B 2 T and A,A

0 2 ⇡(n), then B 2 ⇡(n);
(t2) if �⇤A v B 2 T and A 2 ⇡(n), then B 2 ⇡(n op⇤ 1).
Traces are the building blocks of quasimodels: they represent
the temporal evolution of individual domain elements. For
example, for T = {�PC v B,

�
PB v C}, the map ⇡ such

that ⇡(i) is {B} for odd i and {C} for even i is a trace for T .
In order to describe interactions of domain elements, we

require more notation. Let ⇡ be a trace for T . For a rigid role
r 2 N

rig

R

, the r-projection of ⇡ is a map projr(⇡) : Z ! 2

CN

that sends each i 2 Z to {A | 9r.B v A 2 T , B 2 ⇡(i)};
for a local role r 2 N

loc

R

, projr(⇡) is defined in the same way
on 0 but is ; for all other i 2 Z. Given a map % : Z ! 2

CN

and n 2 Z, we say that ⇡ contains the n-shift of % and write
% ✓n

⇡ if %(i � n) ✓ ⇡(i), for all i 2 Z. For example, let
T = {9r.B v B

0} with rigid role r. In the picture below, the
trace ⇡a contains the 1-shift of the r-projection of ⇡B :

0 1-1 2 3 4

⇡B

projr(⇡B)

⇡a

B C B C B

B0 B0 B0

B0

A

B0 B0

If r is local then ⇡a has to contain B

0 only at 1 (but not at 3,
etc.). We are now fully equipped to define quasimodels.

Let D = ind(A) [ CN henceforth. A quasimodel Q for
(T ,A) is a set of traces ⇡d, d 2 D, for T such that
(q1) A 2 ⇡a(n), for all A(a, n) 2 A;
(q2) B 2 ⇡B(0), for all B 2 CN;
(q3) projr(⇡b) ✓0

⇡a, for all r(a, b, n) 2 A;
(q4) if A 2 ⇡d(n) then projr(⇡B) ✓n

⇡d, for all d 2 D,
n 2 Z and A v 9r.B in T .

Intuitively, quasimodels represent models of (T ,A): each ⇡a

stands for the ABox individual a; each ⇡B , on the other hand,
represents all individuals that witness B for CIs A v 9r.B
in T . The latter is, in fact, the crucial abstraction underlying
quasimodels. Note that traces ⇡B are normalized: B occurs
at time point 0, which is compensated by the shift operation
in (q4). For example, in the picture above, if A v 9r.B 2 T
then, in any model, a has an r-successor that belongs to B at
moment 1. Such a successor can be obtained as a ‘copy’ of
trace ⇡B shifted by 1 so that its origin, 0, matches moment 1
for a. Then, by (q4), a belongs to B

0 at all odd moments.
For the purposes of query answering we need to identify

canonical (minimal) quasimodels. We define the canonical
quasimodel as the limit of the following saturation (chase-like)
procedure. Start with initially empty maps ⇡d, for d 2 D, and
apply (t1)–(t2), (q1)–(q4) as rules: (q3), for example, says ‘if
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r(a, b, n) 2 A and A 2 projr(⇡b)(i), then add A to ⇡a(i).’
Then we have the following characterization:

Theorem 4 Let Q = {⇡d | d 2 D} be the canonical quasi-
model of (T ,A) with T a TEL�-TBox. Then, for any A 2 CN,
(T ,A) |= A(a, i) iff A 2 ⇡a(i), for a 2 ind(A), i 2 Z.

The procedure for constructing the canonical quasimodel deals
with infinite data structures (traces) and is generally not termi-
nating. So, although Theorem 4 provides a criterion for certain
answers, it does not immediately yield a decision algorithm
for full TEL�. We remark that known techniques for dealing
with such infinite structures cannot be easily applied: for exam-
ple, MSO (over Z), a standard tool for decidability proofs in
temporal DLs [Gabbay et al., 2003], is not sufficient to encode
the canonical quasimodel directly because (q4) requires +. In
fact, the key to showing decidability for (fragments of) TEL�
is finding a finite representation of traces.

The starting point of the rest of the paper is a semantic
condition on the canonical quasimodel, ultimate periodicity,
which ensures decidability in data complexity. Let T be a
TEL�-TBox and Q the canonical quasimodel for (T , ;). We
say that T is ultimately periodic, if there is p 2 N such that
all ⇡B , B 2 CN, in Q are ultimately p-periodic, that is, for
each B 2 CN, there are positive integers mP , pP ,mF , pF  p

satisfying the following conditions:

⇡B(n� pP ) = ⇡B(n), for all n  �mP ,

⇡B(n+ pF ) = ⇡B(n), for all n � mF .

Intuitively, an ultimately p-periodic trace has repeating sec-
tions on the left and on the right:

0 mF�mP

mF +pF�mP �pP

mF +2pF�mP �2pP

The condition of ultimate periodicity is rather natural. On the
practical side, it is motivated by applications with recurrent
patterns such as health care support [Shankar et al., 2008],
see CIs (1) and (2) in Section 1. From the theoretical point of
view, any satisfiable LTL formula has an ultimately periodic
model [Manna and Wolper, 1984].

We next show that ultimate periodicity is indeed sufficient
for decidability in data complexity.

Theorem 5 TAQ answering over ultimately periodic TEL�-
TBoxes is PSPACE-complete in data complexity.

PSPACE-hardness follows from (the proof of) Theorem 2.
We prove the matching upper bound by rewriting an ulti-
mately periodic TEL�-TBox T into DATALOG1S [Chomicki
and Imielinski, 1988]. First, we take temporal rules

r(x, y, t± 1) r(x, y, t), for r 2 N

rig

R

in T , (3)
B(x, t) A(x, t), A

0
(x, t), for A uA

0 v B in T , (4)
B(x, t) r(x, y, t), A(y, t), for 9r.A v B in T , (5)

which reflect rigidity of roles and standard EL concept in-
clusions on ABox individuals. Second, we observe that, for
any trace ⇡d in the canonical quasimodel Q of any (T ,A), if
A 2 ⇡d(n) and A v 9r.B 2 T then, by (q4), ⇡d contains

the n-shift not only of projr(⇡B) but also of ⇡A. Since T is
ultimately periodic, for each trace ⇡B , we fix integers mP , pP ,
mF , pF and take the following rules with a fresh predicate FB :

A(x, t+ i) B(x, t), for 0  i < mF , A 2 ⇡B(i),

A(x, t+ i) FB(x, t), for 0  i < pF , A 2 ⇡B(mF + i),

FB(x, t+mF ) B(x, t), FB(x, t+ pF ) FB(x, t),

and symmetric rules with mP , pP and fresh PB . Intuitively, the
rules in the first line replicate the (irregular) part of ⇡B from 0

to mF . The two rules in the last line add recurring markers FB

at the start of each period while the rules in the second line
replicate the period of ⇡B starting from each marker FB .

The required DATALOG1S-program ⇧T contains all the
rules above (note that CIs of the form �⇤A v B are also
covered by the rules for traces ⇡B). Using the canonical quasi-
model and Theorem 4, it is readily seen that ⇧T is equivalent
to T : for every temporal ABox A, the answers to ⇧T over A
coincide with the certain answers to (T ,A). Theorem 5 fol-
lows from PSPACE data complexity in DATALOG1S [Chomicki
and Imielinski, 1988] and independence of ⇧T from A.

Observe that Theorem 5 does not imply decidability of full
TEL� since it is open whether every TEL�-TBox is ultimately
periodic. We thus turn our attention to sufficient syntactic con-
ditions for ultimate periodicity and obtain tight complexity
bounds for both data and combined complexity for the result-
ing fragments. We consider two types of conditions: restricted
use of rigid roles and acyclicity of concept inclusions.

5 Restricted Use of Rigid Roles
We first consider TEL�

loc

, the restriction of TEL� in which only
local roles are allowed. Due to the reduced interaction between
the temporal and DL component, we obtain data tractability.
Theorem 6 TAQ answering over TEL�

loc

is PSPACE-complete
in combined and PTIME-complete in data complexity.
PSPACE-hardness follows from the proof of PSPACE-hardness
for entailment in Horn-LTL [Chen and Lin, 1993] and PTIME-
hardness from atomic query answering in EL. For the upper
bounds, let (T ,A) be a KB with T a TEL�

loc

-TBox and Q
its canonical quasimodel. We take a propositional variable
PA,d for each A 2 CN and d 2 D and construct a Horn-
LTL formula 'T ,A whose minimal model is isomorphic to Q:
variable PA,d is true in the model at moment n iff A 2 ⇡d(n).
We take the conjunction of the following formulas, for d 2 D:

2(PA,d ^ PA0,d ! PB,d), for A uA

0 v B 2 T ,

2(�⇤PA,d ! PB,d), for �⇤A v B 2 T ,

�n
PA,a, for A(a, n) 2 A,

PB,B , for B 2 CN,

�n
PB,b ! �n

PA,a, for r(a, b, n)2A, 9r.BvA2T ,

PB0,B!2(PA,d!PA0,d), for A v 9r.B, 9r.B0 v A

02T ,

where �n is �n
F if n � 0 and ��n

P if n < 0 and 2 is the
‘globally’ operator. It is readily verified that 'T ,A is as re-
quired. Crucially, (q4) for local roles boils down to the last for-
mula above. Since entailment in LTL is in PSPACE [Sistla and
Clarke, 1985] and 'T ,A is polynomial in the size of (T ,A),
we obtain membership in PSPACE for combined complexity.
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To obtain the PTIME data complexity, observe that traces
⇡B , B 2 CN, are ultimately 2

|T |-periodic because they are
traces of the canonical quasimodel for (T , ;); so, they can be
maintained in constant space. Next, traces ⇡a, a 2 ind(A), are
ultimately 2

|T |+|A|-periodic, but a closer inspection reveals
that the middle irregular section, mP + mF , is bounded by
|A| + 2

|T |, while both periods, pP and pF , by 2

|T |; see, e.g.,
Lemma 3 [Artale et al., 2013a]. Thus, Q can be stored in space
bounded by a polynomial in |A|. Since each rule application
extends the traces, the saturation procedure for constructing
Q terminates in polynomial time in the size of A.

Since ontologies without rigid roles at all may be too re-
strictive for applications, we consider TEL�

l-rig-TBoxes where
rigid roles are allowed only in CIs of the form 9r.B v A.
Theorem 7 TAQ answering over TEL�

l-rig is PSPACE-complete
in data complexity and in EXPTIME in combined complexity.
PSPACE-hardness in data complexity follows from the proof
of Theorem 2. For the upper bounds, we construct rewritings
into DATALOG1S , similarly to ⇧T in Section 4 (Theorem 5).

6 Acyclicity Conditions
It is known that acyclicity conditions may lead to better com-
plexity. In particular, acyclic TBoxes are a way of obtaining
CTL-based temporal extensions of EL that have rigid roles
and enjoy PTIME subsumption [Gutiérrez-Basulto, Jung, and
Schneider, 2015]. In DATALOG1S , a restriction on recursion
has also been used to attain tractability [Chomicki, 1990].
From the application point of view, large parts of SNOMED CT
and GO [Gene Ontology Cons., 2000] are indeed acyclic. So,
we believe that the fragments we consider below are well-
suited for temporal extensions of such ontologies.

Acyclic TBoxes are finite sets of CDs A ⌘ C, A 2 N

C

, such
that no two CDs have the same left-hand side, and there are
no CDs A1 ⌘ C1, . . . , Ak ⌘ Ck in T such that Ai+1 occurs
in Ci, for all 1  i  k (where Ak+1 := A1). We say A is
defined in T if A ⌘ C 2 T and primitive otherwise.
Theorem 8 TAQ answering over acyclic TEL� is in LOG-
TIME-uniform AC0 in data complexity and in PTIME in com-
bined complexity.
The LOGTIME-uniform AC0 upper bound is established by
rewriting into FO(+): for a given TAQ A(x, t) and TBox
T , we construct a two-sorted first-order formula 'T ,A(x, t)

with functions +1 and �1 on temporal terms such that
(T ,A) |= A(a, i) iff A (viewed as an interpretation) is a
model of 'T ,A(a, i), for all ABoxes A, a 2 ind(A), i 2 Z.
We adapt the technique developed for atemporal EL [Bienvenu,
Lutz, and Wolter, 2012]:

'T ,A(x, t) = SA(x, t), if A is primitive,
'T ,A(x, t) = SA(x, t) _ 'T ,C(x, t), if A⌘C 2T ,

'T ,B1uB2(x, t) = 'T ,B1(x, t) ^ 'T ,B2(x, t),

'T ,9r.B(x, t) = 9y
�
Rr(x, y, t) ^ 'T ,B(y, t)

�
,

'T ,�⇤B(x, t) = 'T ,B(x, t op⇤ 1),

where SA(x, t) is a disjunction of all B(x, t) for concept
names B with T |= B v A, and Rr(x, y, t) is r(x, y, t) for
r 2 N

loc

R

and 9t0 r(x, y, t0) for r 2 N

rig

R

.

Note that 'T ,A is an FOZ-rewriting in the terminology of Ar-
tale et al. [2013b; 2015] because the temporal terms range
over Z. However, the infinite interpretation of A is empty after
at most |T | steps from the ABox and so, 'T ,A can be con-
verted into an FO-rewriting whose temporal terms range over
tem(A) only; see [Artale et al., 2015].

We next introduce novel notions of acyclicity that restrict
only one dimension, DL or temporal.

DL Acyclicity
First, we introduce DL-acyclic TEL�-TBoxes, which are well-
suited as temporal extensions of, say, biomedical ontologies
that may require recurrent patterns but have an acyclic DL
component. A TEL�-TBox T with concept names CN is called
DL-acyclic if there is a mapping `

DL

: CN! N such that:
(i) Av9r.B or 9r.Bv A2 T implies `

DL

(A) > `

DL

(B);
(ii) �⇤A v B implies `

DL

(A) = `

DL

(B);
(iii) A uA

0 v B 2 T implies `
DL

(A) = `

DL

(A

0
) = `

DL

(B).
A DL-acyclic TBox is of depth k if k is minimal such that a
witnessing mapping `

DL

satisfies `
DL

(B)  k for all B 2 CN.

Theorem 9 TAQ answering over DL-acyclic TEL�-TBoxes of
depth k � 1 is k-EXPSPACE-complete in combined complexity
and NC1-complete in data complexity.

A closer inspection of the non-elementary lower bound proof
in Theorem 2 reveals that the TBox used is DL-acyclic and
TAQ answering over TBoxes of depth k is k-EXPSPACE-hard.
NC1-hardness in data complexity follows [Artale et al., 2015]
by reduction of the word problem of NFAs to TAQ answering,
even without the DL dimension.

For the matching upper bounds, fix (T ,A) with T of
depth k. We devise a completion procedure, which is based
on special LTL-formulas and implies ultimate periodicity of
all traces in the canonical quasimodel of (T ,A); cf. Section 5.
Given any A, let the slice Ai consist of all A(a, i) 2 A, all
r(a, b, i) 2 A and all r(a, b, i) with r(a, b, j) 2 A, for some j,
and r 2 N

rig

R

. The algorithm separates consequences of the
role structure of A and local temporal consequences of T . In
particular, it exhaustively extends A by all A(a, i) with either

(T ,Ai) |=A(a, i) or B(a, i op⇤ 1)2A,

�⇤B v A2T . (6)

It turns out that Ai in (6) can be replaced by its suitably defined
quotient Bi. Intuitively, the logic can only distinguish distinct
trees of depth k, whose number depends on |T | only; so, the
size of Bi is independent of |A|. By induction on depth k, we
define LTL-formulas 'a,i of k-fold-exponential size charac-
terizing all A 2 CN with (T ,Bi) |= A(a, i): we begin from
formulas as in Theorem 6; the induction step takes account of
the structure of Bi and incurs an exponential blowup.

Now, for combined complexity, observe that each of the
polynomially many 'a,i can be analyzed in k-EXPSPACE. For
data complexity, observe that checking (T ,Bi) |= A(a, i) can
be done in constant time. The second option in (6), however,
cannot be implemented directly as the number of steps depends
on |A|. Instead, we construct a Büchi automaton that accepts
precisely the traces for T and cast the second option in (6)
as the question of whether all traces extending A have A at
position i, which is a regular property and so, is in NC1.
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Temporal Acyclicity
We next relax acyclicity by admitting recursion in the DL
dimension (but not in temporal); thus, temporally acyclic
TBoxes include general EL-TBoxes. A TEL�-TBox T
with concept names CN is temporally acyclic if there is
`� : CN! N such that:

(i) �
PAvB or �

FBvA2T implies `�(B)=`�(A)+1;
(ii) 9r.B v A or A v 9r.B 2 T implies `�(A) = `�(B);

(iii) A uA

0 v B 2 T implies `�(A) = `�(A0
) = `�(B).

Temporally acyclic TBoxes cannot, unlike DL acyclic ones,
express rigid concepts. Still, we can partition concept names
N

C

into local Nloc

C

and rigid N

rig

C

and obtain the following:

Theorem 10 TAQ answering over temporally acyclic TEL�
(with rigid concepts) is PTIME-complete in data and combined
complexity.
The lower bounds are from EL. For the upper bounds, we
show a small quasimodel property: traces of the canonical
quasimodel of any (T ,A) with such a TBox T satisfy

⇡a(j) = ⇡a(j
0
), if j, j0 > u+ |T | or j, j

0
< l � |T |,

⇡B(j) = ⇡B(j
0
), if j, j0 > |T | or j, j

0
< �|T |,

where u = maxA and l = minA. Intuitively, the canonical
quasimodel has a restricted temporal extension that stretches
only |T | time points beyond A. By the small quasimodel prop-
erty, the procedure for constructing the canonical quasimodel
can be implemented in polynomial time: traces ⇡d require only
polynomial space, and rules (q1)–(q4) extend the traces.

Inflationary TEL3
Next, we follow an approach suggested by Artale et al. [2013b]
(in the context of temporal DL-Lite) and restrict TEL3 by
allowing 3⇤ only on the left-hand side of CIs. This fragment
is denoted by TEL3

infl

, for inflationary TEL (which is related to
inflationary DATALOG1S [Chomicki, 1990]). Note that TEL3

infl

extends general EL-TBoxes. Yet, the complexity is the same:
Theorem 11 TAQ answering over TEL3

infl

is PTIME-complete
in both data and combined complexity.
We need to show only the upper bounds. Observe that TEL3

infl

can still be viewed as a fragment of TEL�; see Section 2.
In fact, one can show an analogue of Theorem 4 with the
following replacement of (t2):

(t20) if 3⇤A v B 2 T and A 2 ⇡d(n), then B 2 ⇡d(n
0
) for

all n0
> n if ⇤ = P and for all n0

< n if ⇤ = F .
We establish a special shape of the traces in the canonical
model of any (T ,A). Let % : Z ! 2

CN be a map and let
l, u 2 Z with l  u. We say that % is an [l, u]-bow tie if

– for all i > u, we have %(i+ 1) ◆ %(i), and if %(i+ 1) =

%(i) then all %(i0), for n0 � i, coincide;
– symmetrically, for all i < l, we have %(i � 1) ◆ %(i),

and if %(i� 1) = %(i) then all %(i0), for i0  i, coincide.
These properties mean that % grows monotonically to the right
of u and to the left of l; in other words, % has inflationary
behaviour. We prove that the traces ⇡d in the canonical quasi-
model Q of (T ,A), for any A, enjoy the following properties:

– ⇡a is a [minA,maxA]-bow tie, for each a 2 ind(A);
– ⇡B is a [0, 0]-bow tie, for each B 2 CN.

Thus, the traces in Q can be represented in polynomial space
because only the middle section and at most |CN| steps at both
ends need to be stored. Since the traces are extended with every
rule application, the procedure terminates after polynomially
many steps; Theorem 11 follows.

7 Discussion and Future Work
We summarize the fragments of TEL, their relationships and
the obtained complexity results in the following diagram:

AC0

PSPACE

� PSPACE

NC1

PTIME

undecidableTEL�
� non-elem

TEL3

undecidableultim. period. TEL�
� non-elem

TEL3
infl

PTIME
DL-acyclic TEL�

non-elem

temp. acyclic TEL�
PTIME

TEL�
l-rig

in EXPTIME

TEL�
loc

PSPACEacyclic TEL�
in PTIME EL

PTIME

acyclic EL
in PTIME

where the solid lines are inclusions between DLs, the dashed
line is a reduction that preserves answers to all queries (model
conservative extension). The data complexity is indicated by
shading and the combined complexity is below the language.

Our data-tractability results show theoretical adequacy of
the identified fragments of TEL for data-intensive applications.
Our two novel forms of acyclicity, DL- and temporal, are some-
what close in spirit to multi-separability [Chomicki, 1990]:
the latter, however, puts a weaker restriction on recursion but
a stricter one on the interaction between the temporal and data
component. DL-acyclic TEL� is the first (to the best of our
knowledge) DL shown to have NC1-complete query answer-
ing (the large gap between data and combined complexity is
also remarkable). On the practical side, there is evidence that
such data-tractable fragments should be sufficient for many
biomedical applications. Following the principles of OBDA,
our framework provides a means of defining temporal concepts
in the ontology for these applications: temporal concepts cap-
ture both (restricted) tree-shaped temporal conjunctive queries
(CQs) and recurring temporal patterns.

As our immediate future work, we will address decidability
of (full) TEL� and then consider CQs with the + operation
on temporal terms. We expect that our positive results can
be lifted to CQs using the combined approach [Lutz, Toman,
and Wolter, 2009], which utilizes a structure similar to our
canonical quasimodel. We will also study succinct and expres-
sive representations of temporal data. For example, the only
known algorithm for DATALOG1S with binary encoding of
timestamps in the data runs in EXPTIME in the size of the
data [Chomicki and Imielinski, 1988]. We, however, presume
that careful materialization should be sufficient to deal with
the issue. We will also consider interval encoding of temporal
ABoxes, e.g., A(a, [n1, n2]), and settings capturing infinite
temporal periodic data as introduced by Kabanza, Stévenne,
and Wolper [1990] and Chomicki and Imielinski [1993].
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