
Answering Metaqueries Over Hi(OWL2QL) Ontologies

Maurizio Lenzerini1, Lorenzo Lepore1,2, Antonella Poggi2
1Dipartimento di Ingegneria Informatica, Automatica e Gestionale “Antonio Ruberti”

2Dipartimento di Scienze Documentarie, Linguistico-Filologiche e Geografiche
Sapienza Università di Roma

lastname@dis.uniroma1.it

Abstract
Hi(OWL2QL) is a new ontology language with
the OWL2QL syntax and a specific semantics de-
signed to support metamodeling and metaquery-
ing. In this paper we investigate the problem of
answering metaqueries in Hi(OWL2QL), which
are unions of conjunctive queries with both ABox
and TBox atoms. We first focus on a specific class
of ontologies, called TBox-complete, where there is
no uncertainty about TBox axioms, and show that
query answering in this case has the same complex-
ity (both data and combined) as in OWL2QL. We
then move to general ontologies and show that an-
swering metaqueries is coNP-complete with respect
to ontology complexity, ⇧p

2-complete with respect
to combined complexity, and remains AC0 with re-
spect to ABox complexity. Finally, we present an
optimized query answering algorithm that can be
used for TBox-complete ontologies.

1 Introduction
The interest in extending ontology languages with metamodel-
ing (i.e., metaclasses and metaproperties) and metaquerying
is growing considerably [de Carvalho et al., 2015]. Roughly
speaking, a metaclass is a class (unary predicate) whose in-
stances can be themselves classes, a metaproperty is a relation-
ship (binary predicate) between metaclasses, and a metaquery
is a query where variables can appear in both predicate and
object position. As pointed out, for example in [Guizzardi
et al., 2015], these features are important in many scenarios,
such as modeling provenance of data, biological taxonomy
(where the notion of species is crucial), product manufactur-
ing (where product types have properties to be described and
retrieved), or, in general, in ontology-based data access and
integration, where data sources often contain not only objects,
but also information about the classes which objects belong
to, and such classes are to be modeled also as individuals in
the ontology.

Unfortunately, the treatment of the above features in OWL2,
which is the de-facto ontology language, is unsatisfactory. As
a simple example, suppose we want to retrieve all individ-
ual animals which live in Central Park Zoo (CPZ), and are
instances of a class corresponding to an endangered species

(ES). The natural formulation of the corresponding metaquery
is Q = { (y) | 9x ES(x) ^ x(y) ^ lives(y,CPZ) }. How-
ever, this query is not legal under the OWL2 Direct Semantics
(DS), which is the formal semantics adopted for interpreting
the logical theories corresponding to OWL2 ontologies. In
particular, Q violates the so-called typing constraint, which,
intuitively, rules out the possibility of using the same variable
in incompatible positions (for example, in individual and in
class position). The reason for such a limitation is that under
DS no element can simultaneously be an individual and a class,
which severely hampers the possibility of using metamodel-
ing and metaquerying in OWL2. To remedy this situation
new semantics (e.g., [Motik, 2007; De Giacomo et al., 2011;
Lenzerini et al., 2016]) have been proposed, mostly based on
HiLog [Chen et al., 1993], which is a logic with a higher order
syntax based on a Henkin-style semantics. We refer, in par-
ticular, to the semantics presented in [Lenzerini et al., 2016],
specifically defined for Hi(OWL2QL) but generalizable to
all Description Logics. In this semantics, each object in an
interpretation can simultaneuosly be an individual object, a
class, an object property (or, relationship), a data property
(or, attribute), and a datatype, and therefore fully supports the
kinds of metaqueries discussed above. Moreover, since classes
and properties are first-order citizens, this semantics naturally
pushes towards full metaqueries, i.e., queries where ABox
atoms, i.e., instance assertions, and TBox atoms, such as ISA
(e.g., every eagle is a bird, Eagle v Bird) or disjointness
(e.g., every eagle is not a condor) assertions coexist. An ex-
ample of such queries is the one obtained from Q by requiring
that the endangered species is a subclass of Bird: { (y) | 9x
ES(x) ^ x(y) ^ x v Bird ^ lives(y,CPZ) }.

The goal of our work is to study algorithms for, and com-
plexity of full metaquerying. We are especially interested
in analyzing the case of OWL2QL, the tractable fragment of
OWL2, that is the most popular language used in the context
of ontology-based data access, and checking whether the nice
computational characteristics of the logic are kept when we
move to full metaquering.

Several papers are relevant for our work. [Motik, 2007]
studies the complexity of the inference problem in OWL
Full, and suggests a HiLog-style semantics, further inves-
tigated in [De Giacomo et al., 2011], which presents an al-
gorithm based on the metagrounding technique for answer-
ing a specific class of queries, called guarded. [Glimm et

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

1174

al., 2010] and [Pan and Horrocks, 2006] present techniques
for metamodeling by axiomatizing higher-order knowledge
into first order assertions, and introducing the stratification
of class constructors and axioms, respectively. Other pa-
pers with focus on ontology languages with metamodeling
capabilities are [Jekjantuk et al., 2010; Homola et al., 2013;
2014; Kubincová et al., 2015], but none of them face the
problem of query answering in such context. Relevant to
our work are recent papers aiming at devising efficient tech-
niques to answer SPARQL queries posed over OWL2QL
ontologies [Arenas et al., 2014; Kontchakov et al., 2014;
Kollia and Glimm, 2013]. However, such papers concen-
trate on DS, and therefore do not aim at the full power of
metamodeling and metaquerying. The conclusion is that none
of the above papers provide results for full metaquerying. In-
deed, to our knowledge, it is unknown whether the problem of
answering full metaqueries is decidable, even for the case of
lighweight ontology languages such as OWL2QL.

In this paper we present several results about answering full
metaqueries in Hi(OWL2QL).

• We identify a class of ontologies satisfying a certain com-
pleteness condition (TBox-completeness), and show that
answering full metaqueries over ontologies within such a
class has the same complexity as answering queries with
ABox atoms only, over OWL2QL ontologies under DS.

• We show that query answering over general ontologies
is decidable. In particular, we present a query answering
algorithm that is in AC0 w.r.t. ABox complexity, in coNP
w.r.t. ontology complexity and in⇧p

2 w.r.t. combined com-
plexity. This is the first decidability (actually, tractability
w.r.t. ABox complexity) result for full metaqueries over
OWL2.

• We provide complexity lower bounds for answering con-
junctive metaqueries, showing that the problem is coNP-
complete w.r.t. ontology complexity, and ⇧p

2-complete
w.r.t. combined complexity, thus sharpening the in-
tractability results in [De Giacomo et al., 2011] for
queries in the presence of union.

• Motivated by the fact that, in practice, TBox-complete
ontologies may be automatically obtained by applying
specific ontology design methodologies, we focus on
them and present an optimized algorithm for answering
queries over TBox-complete ontologies. Experiments
show that the optimized algorithm outperforms the one
based on blind metagrounding.

2 Preliminaries
In this section we briefly recall the Hi(OWL2QL) ontol-
ogy, the metaquery language, and the metaquery answering
technique based on metagrounding. For details, please refer
to [Lenzerini et al., 2016].
Ontology language The syntax of Hi(OWL2QL) is the
same as the one of OWL2QL. In this work, we express
ontologies and queries in the extended functional style
syntax [Glimm, 2011]. Axioms are classified into (i) positive
TBox axioms, i.e., SubClassOf, SubObjectPropertyOf,
SubDataPropertyOf, ReflexiveObjectProperty, and
DataPropertyRange, (ii) negative TBox axioms, i.e.,

DisjointClasses, DisjointObjectProperties,
DisjointDataProperties, and
IrreflexiveObjectProperty, and (iii) ABox axioms,
i.e., ClassAssertion, ObjectPropertyAssertion, and
DataPropertyAssertion.

The vocabulary VO of an Hi(OWL2QL) ontology O is
defined as (V O

N , V O
C , V O

OP , V O
DP , V O

DT , LO
QL), where (i)

V O
N is the set of IRIs occurring in O extended with the
OWL2QL reserved vocabulary, (ii) V O

C is the subset of V O
N

consisting of the IRIs appearing in class positions in O
(i.e., in a SubClassOf or DisjointClasses axiom, or in
a Declaration(Class) axiom, or in the first position of
a ClassAssertion axiom), or are reserved IRIs denoting
classes, (iii) V O

OP , V O
DP , V O

DT are defined similarly for ob-
ject properties, data properties, and datatypes, and (iv) LO

QL
is the set of literals occurring in some logical axiom of O.
Note that, by virtue of OWL2 punning, the same entity name
can in fact appear in positions of different types (e.g., as an
argument of a SubClassOf axiom and as the argument of
an ReflexiveObjectProperty axiom). Thus, V O

C , V O
OP ,

V O
DP and V O

DT may not be disjoint. Also, we denote with
ExpO the finite set of all well-formed expressions that denote
elements of the ontology, and can be built on the basis of
VO. For example, if e1, e2 are well-formed expressions, then
ObjectSomeValuesFrom(e1e2) is a well-formed expression
too. Note that ExpO is actually partitioned into class expres-
sions (ExpOC), object property expressions (ExpOOP), V O

DP ,
and V O

DT . For example, ObjectSomeValuesFrom(e1e2) is
a class expression in ExpOC .

The semantics of Hi(OWL2QL), called Higher-Order Se-
mantics (HOS), is based on the notion of interpretation struc-
ture, which plays the same role as the “interpretation domain”
in classical first-order logic. Specifically, an interpretation
structure is a tuple ⌃ = h�o,�v, ·I , ·E , ·R, ·A, ·T i where:

• the object domain�o and the value domain�v are two
disjoint non-empty sets;

• ·E : �o ! P(�o) is a partial function;
• ·R : �o ! P(�o ⇥�o) is a partial function;
• ·A : �o ! P(�o ⇥�v) is a partial function;
• ·T : �o ! P(�v) is a partial function;
• ·I : �o ! {T,F} is a total function such that for each
d 2 �o, if ·E , ·R, ·A, ·T are all undefined for d, then
dI = T.

Note that domain objects are polymorphic: each of them can
simultaneuosly be an individual object (this is the case where
function ·I is T), a class (·E is defined), an object property (·R
is defined), a data property (·A is defined), and a datatype (·T
is defined). A crucial aspect of such interpretation structure,
which distinguishes it from the one proposed in [De Giacomo
et al., 2011], is that the functions ·E , ·R, ·A, and ·T are partial,
so that, for example, an object can be both an individual and
an object property without being a class. The importance of
this feature for metaquerying will be clear later in the paper.
An interpretation J for O is a pair, h⌃J , IoJi, where ⌃J =
h�J

o ,�
J
v , ·IJ , ·EJ , ·RJ , ·AJ , ·TJ i is an interpretation structure

and IoJ is the interpretation function for J , i.e., a function
that maps every expression in ExpO into an object in �J

o ,
and every literal in LQL into a value in �J

v , according to a

1175

set of suitable conditions. The semantics of logical axioms
is based on the usual notion of satisfaction of an axiom with
respect to an interpretation J . Also, the notions of model and
satisfiability of an ontology are the usual ones. Finally, if ↵ is
an axiom, we say that ↵ is logically implied by an ontology O
if it is satisfied in every model of O, while ↵ is violated by O
if O [{↵} is unsatisfiable.
Query language. As for the query language, we concen-
trate on unions of boolean conjunctive queries (simply called
queries in the following). A boolean conjunctive query q over
an ontology O is an expression of the form ask where B,
where B, called query body1, is a conjunction of atoms over
VO. Thus, an atom has the same form of a logical axiom and
involves, besides symbols in VO, variables in an alphabet V
disjoint from VO. We call metavariable of a query a variable
that occurs in predicate position (i.e., class position, object
property position, dataproperty position or datatype position)
in the query, and we say that an atom is (meta)ground if no
(meta)variable occurs in it. A query is ground (resp. meta-
ground) if all its atoms are ground (resp. metaground), and is
an instance query if it includes ABox atoms only.

The semantics of queries resorts to (↵) interpreting the
queried ontology according to HOS, (�) extending the class
of legal queries for the SPARQL DS entailment regime, by
relaxing the so-called typing constraint, and (�) defining the
answers to a query as the usual notion of certain answers,
where both union, and existentially quantified variables are
assigned the classical logical meaning.
Query answering through metagrounding. Given a query
Q, an n-tuple ~x of variables of Q, and an n-tuple ~t of ex-
pressions and literals, the ~x-instantiation of Q with ~t, denoted
INST(Q, ~x ~t), is the query obtained from Q by first substi-
tuting each xi in ~x with ti in ~t, for i 2 {1, . . . , n}, and then
replacing non Hi(OWL2QL) atoms, if any, with equivalent
Hi(OWL2QL) atoms involving new variables2.

A metagrounding of Q with respect to O is an ~x-
instantiation of Q with any n-tuple ~t, where x1, x2, . . . , xn

are the metavariables in Q, and for every i 2 {1, . . . , n}, if xi

occurs in class (object property, data property, datatype) posi-
tion in Q, then ti is any expression in ExpOC (resp. ExpOOP ,
V O
DP , V O

DT) that occurs in O. We denote by MG(Q,ExpO)
the metaground query that is the union of all metagroundings
of Q w.r.t. O. As reported in [Lenzerini et al., 2016], it can be
shown that answering a union of conjunctive instance queries
Q over an Hi(OWL2QL) O can be reduced to answering
MG(Q,ExpO), for which one can use the well-known rewrit-
ing approach, typical of the DL-Lite family (see, for instance,
[Calvanese et al., 2007]). In other words, instance metaqueries
in Hi(OWL2QL) can be dealt with the so-called metaground-
ing technique. A similar observation holds for the problem of
checking satisfiability of a Hi(OWL2QL) ontology.

In the next sections, we study the complexity of query
answering: given a Hi(OWL2QL) satisfiable ontology O,

1In SPARQL jargon, a query body is a basic graph pattern.
2E.g., ClassAssertion(ObjectSomeValuesFrom(e1e2)e3) is re-

placed by the conjunction of ObjectPropertyAssertion(e1e3w) and
ClassAssertion(e2w), where w is a new variable.

and a full metaquery Q over O, is the certain answer of Q
w.r.t. O true (i.e., O |= Q)? In particular, we refer to different
assumptions: (i) T , ExpO and Q are fixed (ABox complexity),
(ii) Q is fixed (ontology complexity), (iii) A and Q are fixed
(TBox complexity), and (iv) no component of the input is fixed
(combined complexity).

We finally point out that, from now on, we implicitly assume
to deal with a satisfiable Hi(OWL2QL) ontology O and a
query Q over O, and we assume that O does not contain any
data property3.

3 TBox-complete ontologies
We start with an example highlighting a source of complexity
in answering metaqueries over general ontologies.

Example 1 Let O1 be the following ontology:
ClassAssertion(:B :F), ClassAssertion(:C :F),
DisjointClasses(:A :C),
ObjectPropertyAssertion(:R :E :E),
ObjectPropertyAssertion(:R :C :A),
ObjectPropertyAssertion(:R :B :C).

and let Q be the query: ask {DisjointClasses(:A
$x). ClassAssertion(:B $y). ObjectProperty-
Assertion(:R $x $z).ClassAssertion($z $y)} .

It is not hard to see that there exists no substitution µ of the
metavariables of Q1 for which µ(Q1) is true in every model
of O1. So, metagrounding does not suffice in this case. On
the other hand, suppose to partition the sets of models of O1

into the set M1 of models in which :A and :B are interpreted
as non-disjoint classes, and the set M2 of models in which
:A and :B are interpreted as disjoint classes. Then, consider
the metagroudings of Q1 with the following substitutions:
µ1 : {x :C, z :A}, and µ2 : {x :B, z :C}.
Clearly, µ1(Q1) is satisfied in every model of M1, while
µ2(Q1) is not. On the other hand, µ2(Q1) is satisfied in every
model of M2, while µ1(Q1) is not. Therefore, for every every
model there exists a substitution of variables that makes Q1

evaluate to true, which proves that O1 |= Q1. 2

The example shows that, in the presence of TBox atoms in
the query, query answering requires to reason by cases, origi-
nating from negative TBox axioms which are neither logically
implied by O nor violated by O. Motivated by the latter ob-
servation, in this section we investigate query answering for a
class of ontologies, called TBox-complete, for which such a
possibility does not exist.

Let UO denote the set of negative axioms that can be con-
structed over V O

N . If ↵ is an axiom in UO, ↵ is said to be
certain if either O |= ↵, or ↵ is violated by O; otherwise, we
say that ↵ is uncertain. Thus, if every negative axiom in UO is
certain, then we say that O is TBox-complete. Note that every
unsatisfiable ontology is trivially TBox-complete.

Example 2 The ontology O1 presented in Example 1
is not TBox-complete. Indeed, both the axioms
DisjointClasses(:A :B) and DisjointClasses(:B
:A) are neither logically implied nor violated by O1. 2

3The whole approach can be extended to capture data properties
too.

1176

The conceptual tool we use for addressing query answer-
ing in a TBox-complete ontology O is a variant of the chase
used for DL-Lite [Calvanese et al., 2007]. We build a (pos-
sibly infinite) structure, starting from an initial structure
Chase0(O), and then repeatedly computing Chasej+1(O)
from Chasej(O) by applying suitable rules. In doing so, we
make use of an infinite alphabet So of variables, disjoint from
ExpO and LO

QL, for introducing new unknown individuals,
when needed. The initial structure Chase0(O) is defined as
the set of axioms obtained from O by adding, for every class
C that is nonempty in O (i.e., such that the TBox does not
logically imply DisjointClasses(C C)), an axiom assert-
ing that C contains a new unknown individual in So, that is
specific for C, and doing a similar addition for non-empty
object properties. Intuitively, the new individual for C will be
an instance of only those classes that are superclasses of C in
O (similarly, for object properties), and therefore will be used
in the chase to falsify all subset and disjointness relations that
are not implied by O. Then, to compute Chasej+1(O) from
Chasej(O) we apply one of the chase rules, where each rule
can be applied only if suitable conditions hold. For example,
if ClassAssertion(c1 e)2 Chasej(O), SubClassOf(c1
ObjectSomeValuesFrom(p c)) 2 O, and 8e0 such that
ObjectPropertyAssertion(p e e0) 2 Chasej(O), we
have that ClassAssertion(c e0)/2 Chasej(O), then we
set Chasej+1(O)=Chasej(O)[{ClassAssertion(c s),
ObjectPropertyAssertion(p e s}, where s 2 So does
not appear in Chasej(O). Finally, we set Chase(O) =S

i2N Chasei(O). Note that Chase(O) is a (possibly infi-
nite) set of ABox axioms.

Based on Chase(O), we define the model (called canoni-
cal) Can(O) of O as follows:

• ⌃Can(O)is an interpretation structure such that (i)
�Can(O)

o = (ExpO[So), (ii)�Can(O)
v = D, where D is

the set data values admitted in OWL2QL, (iii) if e occurs
in individual position in Chase(O), then eICan(O) = T
otherwise eICan(O) = F, and (iv) the various func-
tions ·ICan(O) , ·ECan(O) , ·RCan(O) , ·ACan(O) , ·TCan(O) are
derived from Chase(O); e.g., if e /2 ExpOC then
·ECan(O) is undefined for e; otherwise, if e 2 V O

C ,
then eECan(O) = {e1 | ClassAssertion(e e1) 2
Chase(O)}, and similarly for the other cases of e 2
ExpOC .

• IoCan(O) is such that (i) it maps every expression into
itself, i.e., for every e 2 ExpO, eIo

Can(O)

= e, and (ii)
it maps every literal according to the OWL2QL datatype
map.

Let us now show that Can(O) plays a crucial role in rep-
resenting the set of all models of O. To this aim, we need
to introduce the notion of extended homomorphism. If M

is a model of O, we say that a function from �Can(O)
o to

�M
o and from�Can(O)

v to�M
v is an extended homomorphism

from Can(O) to M if for every e 2 ExpO, (e) = eIo

M

,
for every v 2 D, (v) = v, and all the semantic properties
that are expressible in terms of Hi(OWL2QL) axioms and
hold in Can(O), are preserved in M under . For example,
for every e1, e2 2 �Can(O)

o such that eECan(O)

1 ✓ e
E

Can(O)

2 ,

 (e1)EM ✓ (e2)EM .

Proposition 3 If O is TBox-complete, then for every model M
of O, there exists an extended homomorphism from Can(O)
to M .

Two aspects are essential for the proof of the above theorem.
First, the functions ·ECan(O) , ·RCan(O) , ·ACan(O) , ·TCan(O) are
undefined for each newly introduced unknown individual taken
from So. This is possible with HOS because, unlike in other
semantics, such functions are partial. Indeed, when the above
functions are total, each newly introduced unknown individual
is a class, that either (i) is empty, in which case it represents
a subset of every class in the ontology, or (ii) has at least one
instance. Both cases prevent the existence of an extended
homomorphism from Can(O) to every model of the ontology.
Second, it is crucial that for every class C that is non-empty
in O, we have added a new instance for C in Chase(O) (all
similar additions for non-empty object properties are also
essential). Such new instances are harmless for ABox atoms,
but are crucial for TBox axioms, because they prevent TBox
axioms that are not implied by O to be satisfied by Can(O).
Based on Proposition 3, one can show the following.

Proposition 4 If O is TBox-complete, then O |= Q if and
only if Can(O) |= MG(Q,ExpO).

We finally address the problem of checking whether
Can(O) |= MG(Q,ExpO). First notice that Can(O) |=
MG(Q,ExpO) if and only if Can(O) |= Q0 for some ground
conjunctive query Q0 which is a disjunct of MG(Q,ExpO).
So, it remains to illustrate a method for checking whether
Can(O) satisfies a metaground conjunctive query.

Proposition 5 If O is TBox-complete and Q is a metaground
conjunctive query, then Can(O) |= Q if and only if O |=
int(Q) and Can(O) |= ext(Q), where ext(Q) and int(Q)
denote the conjunctions of ABox and TBox atoms of Q, respec-
tively.

Propositions 4 and 5 suggest an algorithm, based on blind
metagrounding, that we call NAIVE. Given a TBox-complete
ontology O, the set ExpO, and a query Q, NAIVE computes
MG(Q,ExpO) and answers “true” if and only if for some
conjunctive query Q0 that is a disjunct of MG(Q,ExpO), it
holds that: (i) all the atoms in int(Q0) are logically implied
by O, and (ii) O |= ext(Q0). Hence, query answering over
TBox-complete ontologies can be done by using any off-the-
shelf OWL2QL reasoner. The following theorem characterizes
the complexity of the problem.

Theorem 6 Query answering over TBox-complete ontologies
is in AC0 w.r.t. ABox complexity, PTIME w.r.t. ontology com-
plexity, and NP-complete w.r.t. combined complexity.

4 General ontologies
In this section, we address query answering over general on-
tologies, by first providing a non-deterministic algorithm, and
then studying the complexity of the problem.

Let us first introduce the notions of violation set and on-
tology completion, both crucial to characterize the sets of
models of O under HOS. If ↵ is a negative axiom in UO,

1177

we call violation set of ↵ w.r.t. O, a minimal set of ABox
axioms V↵,O, whose entities in predicate position belong to
V O
N , and entities in individual position are IRIs not in V O

N ,
specific for ↵, and such that ↵ [V↵,O is unsatisfiable. For ex-
ample, a violation set of ↵1 =DisjointClasses(C1 C2) is
the set {ClassAssertion(C1 s↵1), ClassAssertion(C2

s↵1)} where s↵1 is an IRI not in V O
N . Also, if � is a subset

of UO, the �-completion of O, denoted O�, is the ontology
O[�[CUO\� , where CUO\� is the union of the violation sets
of axioms in UO that are not in �. Intuitively, O� is obtained
from O by adding all axioms in � and suitable axioms in such
a way that all axioms in UO but not in � are violated. Note
that O� may not be satisfiable, and is TBox-complete. The
following theorem shows the importance of ontology comple-
tion.
Theorem 7 O 2 Q if and only if there exists a subset � of
UO such that O� 2 Q.

From Theorem 7 it is easy to derive a nondeterministic
algorithm for checking whether the certain answer to Q is
false: non deterministically guess a subset � of UO, and then
check whether O� 2 Q. The following characterizes query
answering complexity over general ontologies.

Theorem 8 Query answering is coNP-complete w.r.t. TBox
complexity, ⇧p

2-complete w.r.t. combined complexity, and AC0

w.r.t. ABox complexity.

Proof (Sketch) The ontology and the combined complexity
upper bounds can be easily derived by considering the above
nondeterministic algorithm and Theorem 6. As for the ABox
complexity, one can show that given an ontology O, for every
query Q, answering Q over O can be reduced to the prob-
lem of answering a first-order query Q0 over an ontology O0,
where the size of Q0 does not depend on the ABox and the
size of O0 is linear in the size of the ABox. In a nutshell,
O0 is built as follows. First, for every subset � of UO, we
compute the ontology (O�)0 by substituting in O� every oc-
currence of an entity E that is not an individual with E� , and
by adding the axiom SubClassOf(E E�) if E is a class, and
SubObjectPropertyOf(E E�) if E is an object property.
Then, O0 is defined as the union of the ABox of O with (O�)0,
for every �. As for Q0, we define, for every �, the query (Q�)0
that is the rewriting of Q� [Qunsat,� w.r.t. O0, where Q�

is obtained by renaming the entities occurring in Q accord-
ingly to (O�)0, and Qunsat,� is the query that checks whether
(O�)0 is unsatisfiable (such query can be easily derived from
the TBox of (O�)0). We then obtain Q0 as the union of all
(Q�)0. It can be shown that (Q�)0 is a first-order query such
that O 6|= Q iff (Q�)0 is false when evaluated over the ABox
of O.

As for the TBox complexity lower bound, the proof
is by reduction from 3-SAT. Given a 3-CNF formula
F , we define an ontology OF with an individual g,
one class ci for each clause ci, classes dj , pj , pj for
each letter pj , classes B,D, object properties R1, . . . , R5.
The axioms of OF are D(g), DisjointClasses(B D),
plus suitable axioms representing the literals in the var-
ious clauses (e.g., a clause c1 with literals p2,¬p4, p5,
is represented by R1(c1, p2), R2(c1, p4), R3(c1, p5) plus

R4(c1, D), R5(c1, D)), and suitable axioms representing
complementary literals (e.g., R4(d2, p2), R5(d2, p2) plus
R1(d2, B), R2(d2, B), R3(d2, B) for literals on the letter p2).
The idea is that there is a one-to-one correspondence between
each model M of F and the models of OF where each class
pi (or pi) is disjoint from D iff pi (or pi) is false in M . We
then define a query QF simply asking whether there exists a
class ci such that all classes corresponding to the literals in
the clause ci are disjoint from D, or a class dj such that both
pj and pj are not disjoint from D. It can be shown that F
is satisfiable iff the certain answer to QF w.r.t. OF is false.
coNP-completeness follows from the fact that the size of OF

is polynomial w.r.t. to the size of F , and the size of QF is
constant.

Finally, to show the combined complexity lower-bound,
the proof is by reduction from the problem of checking the
satisfiability of a Quantified Boolean Formula of the form
8x1, . . . , xn9y1, . . . , ymc1 ^ · · · ^ ck to query answering in
Hi(OWL2QL), in such a way that both the TBox of the
resulting ontology and the query have polynomial size with
respect to the size of the formula. 2

5 Optimization
In this section we present an optimized algorithm, called LAZY
METAGROUNDING (LMG), for query answering over TBox-
complete ontologies. LMG generalizes the idea of the algo-
rithm proposed in [Lenzerini et al., 2014] that was targeted to
instance queries over Hi(DL-Lite) ontologies. We then con-
clude the section by presenting a set of experiments showing
that LMG outperforms the NAIVE algorithm, based on blind
metagrounding.We point out that assuming to deal with TBox-
complete ontologies is reasonable in practice. Indeed, once
the domain analysis has highlighted the set of negative axioms
that are certain, an automated procedure can be devised, that
adds suitable facts to make the remaining negative axioms vio-
lated. We argue that, in most cases, such an addition achieves
TBox-completeness without changing the intended models of
the ontology.

Similarly to the NAIVE algorithm, LMG aims at exploit-
ing existing OWL2QL reasoners as blackboxes computing
answers to instance queries without metavariables. However,
LMG improves NAIVE by significantly reducing the number of
queries to be evaluated, by adopting an optimization strategy
targeted to a scenario where the ABox is stored in a relational
database ATB (this corresponds to the OBDM scenario, where
the so-called “virtual ABox” is expressed by mappings [Lenz-
erini, 2011]), and additional relations in such database store
the logical closure of the TBox (e.g., the table SubClassOf
stores all pairs C1, C2 such that O |= SubClassOf(C1C2)).

While presenting LMG, we go beyond boolean queries,
and deal with queries with distinguished variables. Coher-
ently with SPARQL we sanction that in the answers to a
query Q(~X), the distinguished variables ~X are bound to IRIs.
Given an ontology O and a query Q(Xd), LMG applies two
functions: (i) BUILDQUERYPLAN, computing a sequence S of
annotated queries encoding a query plan, (ii) and EXECUTE-
QUERYPLAN, executing S over O.
The BUILDQUERYPLAN function. First, based on Q(~Xd), the

1178

function constructs a graph G as follows. The nodes of G are
the atoms of Q and there is an edge from a1 to a2 if and only
if at least one of the following occurs: (i) a1 is a TBox atom,
a2 is an ABox atom and a1 involves a variable occurring in a2;
(ii) a1 and a2 are ABox atoms and a1 involves a variable in
individual position that occurs in predicate position in a2; (iii)
there is a variable x of Q that is not a metavariable, is not in
Xd, and occurs in individual position both in a1 and a2 (in this
case, there will be an edge also from a2 to a1). Intuitively, the
function defines an edge from a1 to a2 to indicate that a1 has
to be evaluated before a2, according to the following observa-
tions: (1) in order to exploit an OWL2QL reasoner one needs
to instantiate the metavariables (see condition), (2) since the
number of TBox axioms logically implied is typically less
than the number of ABox axioms logically implied, to min-
imize the instantiations of the metavariables, it is preferable
to evaluate the TBox atoms first (see condition (i)), and (3)
in order to provide correct answers, atoms sharing existential
variables in individual positions should be evaluated together
(see condition (iii)).

Second, BUILDQUERYPLAN annotates each atom a of G with
an integer d(a) indicating its depth, by using the following
strategy: (a) assign 0 to each TBox atom and set k 1; (b)
do the following until the graph is empty: (b.1) remove from
G atoms with depth k � 1 together with their incoming edges;
(b.2) assign k to each atom n occurring in a strongly connected
component C; (b.3) k k + 1.

Third, the function computes a sequence of queries S =
(q0, . . . , qm), where m is the maximal depth of atoms in G,
and qi is such that its body is the conjunction of all atoms
at depth i and its distinguished variables are all variables in
its body that are in ~Xd or are metavariables in Q. Intuitively,
BUILDQUERYPLAN aims at minimizing the number of con-
junctive queries to be evaluated by an OWL2QL reasoner, by
maximizing the number of atoms of the original query that
can be evaluated within the same conjunctive query, based on
the ordering induced by the edges of G.
The EXECUTEQUERYPLAN function. Based on S, the func-
tion progressively builds the answers to Q by storing into an in-
termediate relation Ai the result of executing the join operator
of relational algebra between Ai�1 and the answers to qi. The
goal of Ai is twofold: on one hand it maintains a projection of
the answers to Q (if any) computed so far by evaluating the por-
tion of Q consisting of the subqueries q0, . . . qi; on the other
hand, it provides bindings for the metavariables of qi+1 to
obtain a metaground query evaluable using standard OWL2QL
reasoners. Given the query plan S = (q0(~wo), . . . , qm(~wm)),
EXECUTEQUERYPLAN proceeds as follows.
• It evaluates q0 over the ATB database, and stores its an-

swers into A0.
• For every i = 1, . . . ,m, let ~vi be the tuple of variables

appearing in ~wi or ~vi�1 that are input variables of qi+1

(i < m), or are in ~Xd of Q (~v0 is assumed to be sim-
ply ~w0). The function first builds the query q00i as the
union of the various INST(qi, ~w0

i ~t), where ~w0
i are

the input variables of qi, and ~t is a tuple in the projec-
tion of Ai�1 onto such input variables. Then, to cope
with metavariables in q00i that are not input variable of qi,

it computes the metagrounding of q00i , evaluates it and
stores its answers in Gi. Finally, the function computes
Ai by executing the join between Ai�1(~vi�1) and Gi.

• The function returns the set of tuples of IRIs in Am

disregarding possible complex expressions in Am.

Theorem 9 Given a TBox-complete ontology O and a query
Q, LMG terminates and computes the certain answers to Q
over O.

Clearly, LMG is in PTIME w.r.t. data and ontology com-
plexity, and in NP w.r.t. combined complexity.
Experiments. To test the practical applicability of LMG, we
have conducted a set of experiments on query answering using
both LMG, and NAIVE. In particular, we compared the eval-
uation time of 8 queries, over an ontology containing about
100000 ABox axioms, and 260 TBox axioms.

The tests have been performed using Mastro [Calvanese et
al., 2011] as OWL2QL reasoner with java 7 on a Dell computer
equipped with an Intel i7 2.70GHz processor, assigning 2GB
memory to Java. The results of the experiments, reported
in Table 1, show that, except for query Q1(x, y) (which is
the query select $x $y {ClassAssertion($x $y)}, for
which LMG and NAIVE resort to evaluate the same set of
queries over Mastro), LMG outperforms NAIVE in terms of
evaluation time, thanks to the smarter instantiation of the
metavariables performed by LMG. We point out that such a
speed up increases with the number of variables occurring
both in individual and predicate positions.

LMG NAIVE
of metaground # of metaground

query queries time queries time
Q1 132 0.58 s 132 0.58 s
Q2 4401 0.92 s 15376 15.12 min
Q3 8619 1.33 s > 70000 timeout 3 h
Q4 12793 1.59 s > 70000 timeout 3 h
Q5 114 0.36 s > 15000 timeout 3 h
Q6 25 0.2 s > 60000 timeout 3 h
Q7 85 0.19 s > 14000 timeout 3 h
Q8 50 0.34 s 132 2.43 min

Table 1: Comparison between LMG and NAIVE

6 Conclusion
We plan to continue our work along several directions. We
aim at studying interesting subclasses of queries, and charac-
terize their complexity. For example, we already know that
answering queries whose TBox atoms are ground is PTIME
in ontology complexity, exactly like in [De Giacomo et al.,
2011]. Furthermore, we plan to increase the expressive power
of Hi(OWL2QL) by extending both the ontology language
(for example, with mechanisms for expressing integrity con-
straints), and the query language (for example, by allowing
the use of atoms with data types as predicates), while keeping
the same computational complexity of metaquerying. Also,
we aim at studying further optimization techniques for query
answering, targeted towards storage structures for the ABox
different from the one considered here.

1179

Acknowlegments
Work supported by the EU under the FP7 project “Optique”
– grant n. FP7-318338, by MIUR under the SIR project
“MODEUS” – grant n. RBSI14TQHQ, and by Regione Lazio
under the project “MAGISTER”.

References
[Arenas et al., 2014] Marcelo Arenas, Georg Gottlob, and

Andreas Pieris. Expressive languages for querying the
semantic web. In Proc. of the 33rd ACM SIGACT SIGMOD
SIGAI Symp. on Principles of Database Systems (PODS),
pages 14–26, 2014.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family. J. of
Automated Reasoning, 39(3):385–429, 2007.

[Calvanese et al., 2011] Diego Calvanese, Giuseppe De Gia-
como, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco
Ruzzi, and Domenico Fabio Savo. The Mastro system for
ontology-based data access. Semantic Web J., 2(1):43–53,
2011.

[Chen et al., 1993] Weidong Chen, Michael Kifer, and
David Scott Warren. HILOG: A foundation for higher-order
logic programming. J. of Logic Programming, 15(3):187–
230, 1993.

[de Carvalho et al., 2015] Victorio Albani de Carvalho, João
Paulo A. Almeida, Claudenir M. Fonseca, and Giancarlo
Guizzardi. Extending the foundations of ontology-based
conceptual modeling with a multi-level theory. In Proc. of
the 34th Int. Conf. on Conceptual Modeling (ER), pages
119–133, 2015.

[De Giacomo et al., 2011] Giuseppe De Giacomo, Maurizio
Lenzerini, and Riccardo Rosati. Higher-order description
logics for domain metamodeling. In Proc. of the 25th AAAI
Conf. on Artificial Intelligence (AAAI), 2011.

[Glimm et al., 2010] Birte Glimm, Sebastian Rudolph, and
Johanna Völker. Integrated metamodeling and diagnosis in
OWL 2. In Proc. of the 9th Int. Semantic Web Conf. (ISWC),
volume 6496 of Lecture Notes in Computer Science, pages
257–272. Springer, 2010.

[Glimm, 2011] Birte Glimm. Using SPARQL with RDFS
and OWL entailment. In RW-11, pages 137–201. 2011.

[Guizzardi et al., 2015] Giancarlo Guizzardi, João Paulo An-
drade Almeida, Nicola Guarino, and Victorio Albani de Car-
valho. Towards an ontological analysis of powertypes. In
Proc. of the Joint Ontology Workshops 2015, 2015.

[Homola et al., 2013] Martin Homola, Jan Kluka, Vojtech
Svátek, and Miroslav Vacura. Towards typed higher-order
description logics. In Proc. of the 26th Int. Workshop on
Description Logic (DL), pages 221–233, 2013.

[Homola et al., 2014] Martin Homola, Jan Kluka, Vojtech
Svátek, and Miroslav Vacura. Typed higher-order variant

of SROIQ - why not? In Proc. of the 27th Int. Workshop
on Description Logic (DL), pages 567–578, 2014.

[Jekjantuk et al., 2010] Nophadol Jekjantuk, Gerd Gröner,
and Jeff Z. Pan. Modelling and reasoning in metamod-
elling enabled ontologies. Int. J. Software and Informatics,
4(3):277–290, 2010.

[Kollia and Glimm, 2013] Ilianna Kollia and Birte Glimm.
Optimizing SPARQL query answering over OWL ontolo-
gies. J. Artif. Intell. Res. (JAIR), 48:253–303, 2013.

[Kontchakov et al., 2014] Roman Kontchakov, Martin Rezk,
Mariano Rodriguez-Muro, Guohui Xiao, and Michael Za-
kharyaschev. Answering SPARQL queries over databases
under OWL 2 QL entailment regime. In Proc. of the 13th
Int. Semantic Web Conf. (ISWC), pages 552–567, 2014.

[Kubincová et al., 2015] Petra Kubincová, Jan Kluka, and
Martin Homola. Towards expressive metamodelling with
instantiation. In Proc. of the 28th Int. Workshop on Descrip-
tion Logic (DL), 2015.

[Lenzerini et al., 2014] Maurizio Lenzerini, Lorenzo Lepore,
and Antonella Poggi. Practical query answering over
Hi(DL-LiteR) knowledge bases. In Proc. of the 27th Int.
Workshop on Description Logic (DL), volume 1193, 2014.

[Lenzerini et al., 2016] Maurizio Lenzerini, Lorenzo Lepore,
and Antonella Poggi. A higher-order semantics for meta-
querying in owl 2 ql. In Proc. of the 15th Int. Conf. on
the Principles of Knowledge Representation and Reasoning
(KR), 2016.

[Lenzerini, 2011] Maurizio Lenzerini. Ontology-based data
management. In Proc. of the 20th Int. Conf. on Information
and Knowledge Management (CIKM), pages 5–6, 2011.

[Motik, 2007] Boris Motik. On the properties of metamodel-
ing in OWL. J. of Logic and Computation, 17(4):617–637,
2007.

[Pan and Horrocks, 2006] Jeff Z. Pan and Ian Horrocks.
OWL FA: a metamodeling extension of OWL DL. In Proc.
of the 15th Int. World Wide Web Conf. (WWW), pages 1065–
1066, 2006.

1180

