
A Decision Procedure for a Fragment of Linear Time Mu-Calculus

Yao Liu, Zhenhua Duan

⇤
and Cong Tian

⇤

ICTT and ISN Laboratory, Xidian University
Xi’an, 710071, P. R. China

yao liu@stu.xidian.edu.cn, {zhhduan,ctian}@mail.xidian.edu.cn

Abstract

In this paper, we study an expressive fragment,
namely Gµ, of linear time µ-calculus as a high-
level goal specification language. We define Goal
Progression Form (GPF) for Gµ formulas and show
that every closed formula can be transformed into
this form. Based on GPF, we present the notion
of Goal Progression Form Graph (GPG) which can
be used to describe models of a formula. Further,
we propose a simple and intuitive GPG-based deci-
sion procedure for checking satisfiability of Gµ for-
mulas which has the same time complexity as the
decision problem of Linear Temporal Logic (LTL).
However, Gµ is able to express a wider variety of
temporal goals compared with LTL.

1 Introduction

Linear Temporal Logic (LTL) is a convenient formalism
for specifying and verifying properties of reactive systems
[Pnueli, 1977]. Also, due to its simplicity, it has been ex-
tensively used in planning for temporally extended goals
[Bacchus and Kabanza, 1998; De Giacomo and Vardi, 1999;
Calvanese et al., 2002; Kabanza and Thiébaux, 2005; Baier
and McIlraith, 2006; Patrizi et al., 2011]. However, restricted
by its expressiveness, LTL cannot be used to specify rela-
tively complex goals. Therefore, extensions of LTL [De Gi-
acomo and Vardi, 2013; 2015] have been studied in order to
make it more powerful. Unfortunately, these extensions con-
sider only finite LTL rather than standard LTL over infinite
traces.

To this end, we investigate a fragment, called Gµ, of lin-
ear time µ-calculus (⌫TL) over infinite traces [Barringer et
al., 1986] as a high-level goal specification language. ⌫TL
is an extension of LTL with least and greatest fixpoint op-
erators whose expressive power is !-regular [Emerson and
Clarke, 1980]. Fixpoints not only nicely capture the non-
terminating behaviors of intelligent systems, but also allow us
to express a much wider range of temporally extended goals
than LTL does. However, the current best time complexity for
the decision problem of ⌫TL is 2O(|�|2 log |�|) [Kaivola, 1995;
Bradfield et al., 1996; Dax et al., 2006], which prevents ⌫TL

⇤Corresponding authors. All authors are joint first authors.

from being used directly as goal formulas for planning. Given
a formula �, the logic Gµ we present in this paper stipulates,
for each least fixpoint subformula F of � and each formula of
the form �

1

^ �
2

in the closure of �, that F appears at most
in one conjunct of �

1

^ �
2

. Despite this restriction, Gµ is
still very expressive. Consider the following goal: “a sweep-
ing robot must clean a house on every Monday (whether it
cleans the house on other days is not cared about)”. Ob-
viously, such a goal is not expressible in LTL. However, it
can be easily specified by a simple greatest fixpoint formula
⌫X.(pmon ^�������X) of Gµ.

In this paper, we focus on the satisfiability problem of Gµ.
Motivated by the idea of formula progression [Bacchus and
Kabanza, 1998], we define Goal Progression Form (GPF) for
Gµ formulas and prove that every closed formula can be trans-
formed into this form. GPF decomposes a formula into the
present and future parts. The present part is the conjunction
of atomic propositions or their negations while the future part
is the conjunction of elements in the closure of a given for-
mula. Additionally, based on GPF, we introduce the notion of
Goal Progression Form Graph (GPG) which can be used to
describe models of a formula. In a GPG, an edge may be as-
sociated with a mark which is a subset of variables occurring
in the formula and utilized to keep track of the infinite unfold-
ing problem for least fixpoints. Further, we present a decision
procedure for checking satisfiability of Gµ formulas based on
GPG. It is achieved, with the help of marks, by searching for
a ⌫-path in a GPG on which no least fixpoint unfolds itself
infinitely. We show that the time complexity of the proposed
decision procedure is 2O(|�|), which is equivalent to that of
LTL [Sistla and Clarke, 1985]. This makes Gµ useful in tem-
poral planning: with Gµ, more goals can be specified than
utilizing LTL while the complexity keeps the same with LTL.

GPGs are very useful for generating plans for Gµ goals
by exploiting ⌫-paths. Moreover, following the decision pro-
cedure mentioned above, we can easily obtain a GPG-based
model checking approach for Gµ which can be further applied
to dealing with different kinds of planning problems.

2 Preliminaries

Let P be a set of atomic propositions, and V a set of variables.
⌫TL formulas are constructed based on the following syntax:

� ::= p | ¬p |X |� _ � |� ^ � |� � |µX.� | ⌫X.�

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

1195

where p ranges over P and X over V .
We use � to denote either µ or ⌫, and ṗ to denote either p

or ¬p. An occurrence of a variable X in a formula is called
free if it does not lie in the scope of �X; it is called bound
otherwise. A formula is called closed if it contains no free
variables. We write �[�0/Y] for the result of simultaneously
substituting �0 for all free occurrences of the variable Y in
�. For each variable X in a formula, we assume that X is
bound at most once. Thus, it can be seen that all formu-
las constructed by the syntax above are in positive normal
form [Kozen, 1983], i.e. negations can be applied only to
atomic propositions and each variable occurring in a formula
is bound at most once. Then, for each bound variable X in
a formula �, there exists a unique fixpoint subformula �X.'
of � identified by X . A µ-variable (resp. ⌫-variable) in � is
a variable which identifies a formula of the form µX.' (resp.
⌫X.').

For two formulas �X.� and �Y.�0 where �Y.�0 is a subfor-
mula of �X.�, we say Y depends on X , denoted by X C Y ,
iff X occurs free in �0. The dependency relationship among
the variables in a formula is transitive.

A formula is guarded if, for each bound variable X in that
formula, every occurrence of X is in the scope of a next (�)
operator. Every formula can be transformed into an equiva-
lent one in guarded form with an exponential increase in the
size of the formula in the worst case [Bruse et al., 2015].
⌫TL formulas are interpreted over linear time structures. A

linear time structure over P is a function K: N ! 2P where
N denotes the set of natural numbers. The semantics of ⌫TL
formulas, relative to K and an environment e : V ! 2N , is
defined as follows:

kpkKe := {i 2 N | p 2 K(i)}
k¬pkKe := {i 2 N | p /2 K(i)}
kXkKe := e(X)

k' _ kKe := k'kKe [k kKe
k' ^ kKe := k'kKe \ k kKe
k� 'kKe := {i 2 N | i+ 1 2 k'kKe }
kµX.'kKe :=

T
{W ✓ N | k'kKe[X 7!W]

✓ W}
k⌫X.'kKe :=

S
{W ✓ N | W ✓ k'kKe[X 7!W]

}

where e[X 7! W] is the environment e0 agreeing with e ex-
cept for e0(X) = W . e is used to evaluate free variables and
can be dropped when � is closed.

For a given formula �, we say � is true at state i of a linear
time structure K, denoted by K, i |= �, iff i 2 k�kKe . We say
� is valid, denoted by |= �, iff K, j |= � for all linear time
structures K and all states j of K; � is satisfiable iff there
exists a linear time structure K and a state j of K such that
K, j |= �.

Let Ord denote the class of ordinals. Approximants of
fixpoint formulas are defined inductively by: µ0X.� =
?, ⌫0X.� = >, �↵+1X.� = �[�↵X.�/X], µ�X.� =W

↵<� µ
↵X.� and ⌫�X.� =

V
↵<� ⌫

↵X.� where ↵,� 2
Ord. In particular, � is a limit ordinal. The following lemma
[Tarski, 1955] is a standard result about approximants.
Lemma 1 (

[

Tarski, 1955

]

) For a linear time structure K, we
say K, 0 |= ⌫X.� iff 8↵ 2 Ord, K, 0 |= ⌫↵X.�; and K, 0 |=
µY.� iff 9↵ 2 Ord, K, 0 |= µ↵Y.�.

The closure CL(�) of a formula �, based on [Fischer and
Ladner, 1979], is the least set of formulas such that: (1)
�, true 2 CL(�); (2) if ' _ or ' ^ 2 CL(�), then
', 2 CL(�); (3) if �' 2 CL(�), then ' 2 CL(�); (4)
if �X.' 2 CL(�), then '[�X.'/X] 2 CL(�). It has been
proved that the size of CL(�) is linear in the size of � (de-
noted by |�|) [Fischer and Ladner, 1979].

Given a formula �, we call it a Gµ formula iff for each
least fixpoint subformula µX.' of � we are focusing on and
each �

1

^ �
2

2 CL(�), µX.' appears at most in one �i
(i 2 {1, 2}). For example, ⌫X.µY.(�Y _ p ^ �X) and
µX.(q _ p^�X)^ ⌫Y.(r^��Y) are Gµ formulas while
⌫X.(µY.(p _ �Y) ^ �X) and µX.(p _ �X ^ � � X)
are not. The syntax of Gµ enables us to trace conveniently
the infinite unfolding problem for least fixpoints and provide
efficient decision procedures.

Gµ can be employed to specify a wide variety of proper-
ties. Currently, there already exists a fragment of modal µ-
calculus [Kozen, 1983], called deterministic µ-calculus (Dµ),
which has been used in motion planning [Karaman and Fraz-
zoli, 2009]. The syntax of Dµ is defined as follows:

� ::= p | ¬p |X |� _ � | p ^ � | ¬p ^ � |⌃� |µX.� | ⌫X.�

Compared with modal µ-calculus, Dµ allows only the exis-
tential next-state operator ⌃. Moreover, for the boolean con-
nective ^, at least one conjunct is a proposition. Despite its
succinct syntax, Dµ is able to specify all !-regular properties.
However, due to the strict restriction on the boolean connec-
tive ^, many properties cannot be directly expressed in Dµ.
We can employ Gµ to overcome this weakness. For instance,
the Gµ formula µX.(q _ p^�X)^ ⌫Y.(r^��Y) cannot
be intuitively represented as a formula in Dµ. Since the re-
striction on the boolean connective ^ for Gµ is strictly weaker
than that for Dµ, Gµ will be no less in expressive power than
Dµ.

From now on, we confine ourselves to Gµ formulas in
guarded form with no _ appearing as the main operator un-
der each next (�) operator. This can be easily achieved by
pushing next (�) operators inwards using the equivalence
�(�

1

_ �
2

) ⌘ ��
1

_��
2

.

3 GPF of Gµ Formulas

In this section, we define GPF of Gµ formulas and prove that
every closed formula can be transformed into this form.

Definition 1 Let � be a closed formula, P� the set of atomic
propositions appearing in �. GPF of � is defined by: � ⌘Wn

i=1

(�pi ^ ��fi), where �pi ⌘
Vn1

h=1

q̇ih, qih 2 P� for
each h, and �fi ⌘

Vn2

m=1

�im, �im 2 CL(�) for each m.

Intuitively, in a GPF, �pi represents the present part while
�fi represents the future one.

Theorem 2 Every closed formula ' can be transformed into
GPF.

Proof. Let Conj() represent the set of all conjuncts in .
The proof proceeds by induction on the structure of '.

• Base case:

1196

– ' is p (or ¬p): p (or ¬p) can be written as: p ⌘ p ^
�true (or ¬p ⌘ ¬p ^ �true). Therefore, ' can be
transformed into GPF in these two cases.

• Induction:

– ' is ��: �� can be written as: �� ⌘
W

i(true^��i).
For each �c 2 Conj(�i), we have �c 2 CL(') since
� 2 CL('). Hence, ' can be transformed into GPF in
this case.

– ' is �
1

_�
2

: by induction hypothesis, both �
1

and �
2

can
be transformed into GPF: �

1

⌘
Wn

i=1

(�
1pi ^ ��

1fi),
�
2

⌘
Wm

j=1

(�
2pj ^ ��

2fj) where �
1c 2 Conj(�

1fi)
and �

1c 2 CL(�
1

), �
2c 2 Conj(�

2fj) and �
2c 2

CL(�
2

), for each i and j. Then, we have ' ⌘ �
1

_�
2

⌘Wn
i=1

(�
1pi ^ ��

1fi) _
Wm

j=1

(�
2pj ^ ��

2fj). Since
�
1

_ �
2

2 CL('), we have �
1

,�
2

2 CL('). For each
�
1c 2 Conj(�

1fi), by induction hypothesis, we have
�
1c 2 CL(�

1

). Therefore, �
1c 2 CL('). Similarly,

we can obtain that each �
2c 2 CL('). Thus, ' can be

transformed into GPF in this case.
– ' is �

1

^�
2

: by induction hypothesis, both �
1

and �
2

can
be transformed into GPF: �

1

⌘
Wn

i=1

(�
1pi ^ ��

1fi),
�
2

⌘
Wm

j=1

(�
2pj ^ ��

2fj) where �
1c 2 Conj(�

1fi)
and �

1c 2 CL(�
1

), �
2c 2 Conj(�

2fj) and �
2c 2

CL(�
2

), for each i and j. Then ' can be further con-
verted into: ' ⌘ �

1

^ �
2

⌘ (
Wn

i=1

(�
1pi ^ ��

1fi)) ^
(
Wm

j=1

(�
2pj ^ ��

2fj)) ⌘
Wn

i=1

Wm
j=1

(�
1pi ^ �

2pj ^
�(�

1fi ^ �
2fj)). Since �

1

^ �
2

2 CL('), we have
�
1

,�
2

2 CL('). For each �
1c 2 Conj(�

1fi), by in-
duction hypothesis, we have �

1c 2 CL(�
1

). Hence,
�
1c 2 CL('). Similarly, we can obtain that each
�
2c 2 CL('). Therefore, all conjuncts behind the next

(�) operators in ' belong to CL(') and ' can be trans-
formed into GPF in this case.

– ' is µX.�: to transform µX.� into GPF, we first need
to unfold it using the equivalence µX.� ⌘ �[µX.�/X].
That is to say, we can treat the free variable X occur-
ring in � as an atomic proposition when transforming
� into GPF since X will finally be replaced by µX.�.
As a result, by induction hypothesis, � can be trans-
formed into GPF: � ⌘

Wn
i=1

(�pi ^ ��fi). For each
�c 2 Conj(�fi), by induction hypothesis, we have
�c 2 CL(�). Further, by substituting µX.� for all
the free occurrences of X in �, we have that ' ⌘
�[µX.�/X] ⌘

Wn
i=1

(�pi ^ ��fi [µX.�/X]). Since
�c 2 CL(�) for each �c, we can easily obtain that
�c[µX.�/X] 2 CL(�[µX.�/X]) after the substitution.
Since �[µX.�/X] 2 CL('), we have �c[µX.�/X] 2
CL('). Therefore, ' can be transformed into GPF in
this case.

– ' is ⌫X.�: this case can be proved similarly to the case
when ' is µX.�. ⇤

Following Theorem 2, we present algorithm GPFTr in the
following for transforming a closed formula � into GPF.

GPFTr uses the function AND to deal with the boolean
connective ^. It can be seen that the inputs, and ', for AND
are both in GPF. Suppose is of the form

W
i(i ^ � 0

i)

Algorithm 1 GPFTr(�)
1: case

2: � is true: return true ^�true
3: � is false: return false
4: � is �p where �p ⌘

Vn
h=1

q̇h: return �p ^�true
5: � is �p ^�': return

W
i(�p ^�'i)

6: � is �': return

W
i(true ^�'i)

7: � is �
1

_ �
2

: return GPFTr(�
1

) _ GPFTr(�
2

)
8: � is �

1

^ �
2

: return AND(GPFTr(�
1

), GPFTr(�
2

))
9: � is �X.': return GPFTr('[�X.'/X])

10: end case

while ' of the form
W

j('j ^ �'0
j). AND finally returnsW

i

W
j(i ^ 'j ^�(0

i ^ '0
j)).

Theorem 3 Transforming a formula � into GPF by algo-
rithm GPFTr can be completed in 2O(|�|).

Proof. The proof proceeds by induction on the structure of �.
• Base case:

– � is true, false, �p, �p ^�' (where �p is of the formVn
h=1

q̇h), or �': the theorem holds obviously in these
cases.

• Induction:

– � is �
1

_ �
2

: by induction hypothesis, GPFTr(�
1

)
and GPFTr(�

2

) can be done in 2O(|�1|) and 2O(|�2|),
respectively. Therefore, GPFTr(�) can be finished in
2O(|�1|) + 2O(|�2|), namely 2O(|�|).

– � = �
1

^ �
2

: by induction hypothesis, GPFTr(�
1

) and
GPFTr(�

2

) can be completed in 2O(|�1|) and 2O(|�2|),
respectively. After the GPF transformation, the number
of disjuncts in �

1

(resp. �
2

) is bounded by 2O(|�1|) (resp.
2O(|�2|)). Hence, the function AND can be accomplished
in 2O(|�1|+|�2|). It follows that GPFTr(�) can be done
in 2O(|�1|) + 2O(|�2|) + 2O(|�1|+|�2|), namely 2O(|�|).

– � = �X.': regarding X as an atomic proposition,
' can be transformed into GPF by algorithm GPFTr,
which can be accomplished, by induction hypothesis, in
2O(|'|). Subsequently, by substituting �X.' for all free
occurrences of X in ', we have that '[�X.'/X] can be
transformed into GPF by algorithm GPFTr in 2O(|'|).
Therefore, GPFTr(�X.') can be done in 2O(|�|). ⇤

4 Goal Progression Form Graph

The GPG, G�, of a formula � is a tuple (N�, E�, n0

) where
N� is a set of nodes, E� a set of directed edges, and n

0

the
root node. Each node in N� is specified by the conjunction
of formulas in CL(�) while each edge in E� is identified by
a triple (�

0

,�e,�1), where �
0

, �
1

2 N� and �e is the label
of the edge from �

0

to �
1

. An edge may be associated with a
mark which is a subset of variables occurring in �.
Definition 2 Given a closed formula �. N� and E� are
inductively defined by: (1) n

0

= � 2 N�; (2) for all
' 2 N�\{false}, if' ⌘

Wk
i=1

('pi^�'fi), then'fi 2 N�,
(','pi ,'fi) 2 E� for each i (1  i  k).

1197

In a GPG, the root node is denoted by a double circle
while each of other nodes by a single circle. Each edge is
denoted by a directed arc with a label and also possibly a
mark that connects two nodes. To simplify notations, we
usually use variables to represent the corresponding fixpoint
formulas occurring in a node. An example of GPG for for-
mula µX.(p _�X) _ ⌫Y.(q ^�Y) is depicted in Figure 1.
There are four nodes in the GPG where n

0

is the root node.
(n

0

, q, n
3

) is an edge with the label being q and the mark be-
ing {Y } while (n

0

, p, n
1

) is an edge with the label being p
and no mark.

n
0

n
2

n
0

: µX.(p _�X) _ ⌫Y.(q ^�Y)

n
2

: X

true, {X}

p

p
n
3

true, {X}

q, {Y }

q, {Y }
n
3

: Y

n
1

true

n
1

: true

Figure 1: An example of GPG

A path ⇧ in a GPG is an infinitely alternate sequence
of nodes and edges departing from the root node. Let
Atom(

Vm
i=1

q̇i) denote the set of atomic propositions or their
negations appearing in formula

Vm
i=1

q̇i. Given a path ⇧ =
�
0

,�e0,�1,�e1, . . . in a GPG, we can obtain its correspond-
ing linear time structure Atom(�e0), Atom(�e1), For ex-
ample, in Figure 1, the path n

0

, true, n
2

, p, (n
1

, true)! cor-
responds to the linear time structure {true}{p}{true}! .

From Figure 1 we can see that there may exist a path in a
GPG, e.g. n

0

, true, (n
2

, true)! , which arises from the infi-
nite unfolding of a least fixpoint. Thus, marks are essential
in a GPG to keep track of the infinite unfolding problem for
least fixpoints when constructing the GPG.
Definition 3 Given a GPG G� and a node �m 2 N�

where �m ⌘
Wk

i=1

(�pi ^ ��fi). The mark of an edge
(�m,�pi ,�fi) (1  i  k) is a set of variables Mv such that
for each X 2 Mv , its corresponding fixpoint formula �X.�X
appears as a subformula of �fi and has been unfolded by it-
self in the GPF transformation process.

When transforming a formula into GPF, the occurrence of
a fixpoint formula �X.�X in the future part may be caused by
the unfolding of either (I) itself, or (II) another fixpoint for-
mula. For example, as shown in Figure 2, when the node
n
0

is transformed into GPF: n
0

⌘ true ^ �n
1

, the oc-
currence of ⌫Y.(p ^ �Y) in n

1

is due to the unfolding of
µX.� (�⌫Y.(p^�Y)^X), hence Y does not exist in the
mark of the edge (n

0

, true, n
1

).

n
0

n
1

n
0

: µX.� (�⌫Y.(p ^�Y) ^X)

n
1

: �Y ^X
n
2

p, {Y,X}
true, {X} true, {X}

n
2

: Y ^�Y ^X

Figure 2: GPG of µX.� (�⌫Y.(p ^�Y) ^X)

Note that the cases I and II above may occur simultane-
ously for a greatest fixpoint formula ⌫Z.�Z , we will add Z
to the corresponding mark in such a situation, e.g. the oc-
currence of Y in the mark of the edge (n

2

, p, n
2

) in Figure
2. However, for a least fixpoint formula, the cases I and II

cannot happen simultaneously due to the syntactic restriction
of Gµ. Actually, this restriction makes, for a given formula �,
each µX.' 2 CL(�) occur at most in one conjunct of each
node in G�. This further facilitates the tracing of the infinite
unfolding problem for least fixpoints.

Given a closed formula �, the whole process of construct-
ing G� is presented in Algorithm 2.

Algorithm 2 GPGCON(�)
1: n

0

= �, N� = {n
0

}, E� = ;
2: while there exists an unhandled ' 2 N� \ {false} do

3: ' = GPFTr(') /*suppose ' =
Wk

i=1

('pi ^�'fi)*/
4: for i = 1 to k do

5: E� = E� [{(','pi ,'fi)}
6: N� = N� [{'fi}
7: MARK((','pi ,'fi))
8: end for

9: end while

10: for all ' 2 N� with no outgoing edge do

11: N� = N� \ {'}
12: E� = E� \

S
i{('i,'e,')}

13: end for

14: return G�

The algorithm repeatedly converts an unhandled formula
' 2 N� into GPF and then adds the corresponding nodes and
edges to N� and E�, respectively, until all formulas in N�

have been handled. Function MARK is utilized to mark an
edge with a subset of variables occurring in � by distinguish-
ing appropriate fixpoint formulas from all fixpoint formulas
contained in the future part of a certain GPF. Given an edge
(','pi ,'fi), MARK checks each conjunct 'c of 'fi . If 'c

is of the form �n�X.'X (n � 0) and �X.'X has been un-
folded by itself in the GPF transformation process, X will be
added to the mark of the edge. Here �n represents the con-
secutive occurrence of next (�) operators for n times. Addi-
tionally, throughout the construction of G�, a false node (e.g.
q ^ ¬q) may be generated which corresponds to an inconsis-
tent subset of CL(�). Such kind of nodes have no successor
and are redundant. We use the for loop in Line 10 of the al-
gorithm to remove these nodes and the relative edges.

In the GPG G� of a formula �, since each node in N� is the
conjunction of formulas in CL(�), the following corollary is
easily obtained.

Corollary 4 For any closed formula �, both the number of
nodes and the number of edges in G� are bounded by 2O(|�|).

Theorem 5 Constructing the GPG of a formula � by algo-
rithm GPGCON can be done in 2O(|�|).

Proof. By Corollary 4, the number of iterations of the while
loop is bounded by 2O(|�|). In each iteration, algorithm
GPFTr is called first, which can be done in 2O(|�|) by Theo-
rem 3. Subsequently, after the GPF transformation, we have
that the number of iterations of the for loop in Line 4 is
bounded by 2O(|�|). Function MARK checks if a fixpoint
formula, which has been unfolded by itself in a GPF trans-
formation process, exists in the future part of the GPF and

1198

can be completed in O(|�|). Therefore, the while loop can
be finished in 2O(|�|). Further, it is obvious that eliminat-
ing redundant nodes and the relative edges can be finished in
2O(|�|). Consequently, GPGCON can be done in 2O(|�|). ⇤

5 A Decision Procedure Based on GPG

In this section we show how to find a model for a given for-
mula � from G�. According to the theory of eventually pe-
riodic models [Banieqbal and Barringer, 1989], we restrict
ourselves here only to the paths ending with loops in G�. Let
⇧ be a path in G�, for convenience, we use LES(⇧) to denote
the set of edges appearing in the loop part of ⇧, Mark(e) the
mark of an edge e, and LMS(⇧) the set of all the µ-variables
occurring in each Mark(el) where el 2 LES(⇧).

In the following, we present the notion of ⌫-paths which
will play a vital role in obtaining the GPG-based decision
procedure for Gµ.

Definition 4 Given a GPG G� and a path ⇧ in G�. We call
⇧ a ⌫-path iff for each X 2 LMS(⇧), an edge e 2 LES(⇧)
can be found such that X /2 Mark(e) and there exists no
X 0 2 Mark(e) where X CX 0.

We consider the following two paths in Figure 1 to show
what a ⌫-path is: (1) ⇧

1

: n
0

, q, (n
3

, q)! . ⇧
1

is a ⌫-path since
LMS(⇧

1

) = ;; (2) ⇧
2

: n
0

, true, (n
2

, true)! . We have that
LES(⇧

2

) = {(n
2

, true, n
2

)} and LMS(⇧
2

) = {X}. For the
only µ-variable X 2 LMS(⇧

2

), we cannot find an edge from
LES(⇧

2

) whose mark does not contain X . Therefore, ⇧
2

is
not a ⌫-path.

Regarding the notion of ⌫-paths, the following theorem is
formalized.

Theorem 6 A closed formula � is satisfiable iff a ⌫-path can
be found in G�.

Proof. ()) Suppose � is satisfiable and no ⌫-path exists in
G�. In this case, for any path ⇧

1

= �
0

,�e0,�1,�e1, . . . , (�k,
�ek,�k+1

,�e(k+1)

, . . . ,�l,�el)! in G�, there exists at least
one X 2 LMS(⇧

1

) such that for each edge e
1

2 LES(⇧
1

),
either X 2 Mark(e

1

) or X 0 2 Mark(e
1

), where X CX 0. As
a result, we can obtain the following sequence of variables X
according to the sequence of marks in the loop part of ⇧

1

:
X

1

, X
2

, X
3

, . . . , Xl�k+1

, where each Xi 2 Mark((�i+k�1

,
�e(i+k�1)

,�i+k)) (1  i  l � k + 1) is either X itself or
a variable depending on X . Let �Xi denote the conjunct in
�i+k corresponding to Xi, then X determines a sequence of
formulas �X : �X1 ,�X2 ,�X3 , . . . ,�Xl�k+1 . For each vari-
able Xj on X that depends on X , we have that µX.�X ap-
pears as a subformula of �Xj , where µX.�X 2 CL(�) rep-
resents the fixpoint formula corresponding to X . Suppose ⇧

1

characterizes a model K. There must exist a state t
1

of K
where µX.�X can be satisfied. By Lemma 1, there exists an
ordinal m such that K, t

1

|= µmX.�X . Pushing this satisfac-
tion further down the sequence �X , we will eventually reach
a state t

2

of K such that K, t
2

|= µ0X.�X , which is impos-
sible. Therefore, we can see that ⇧

1

does not characterize a
model of �. This contradicts the premise that � is satisfiable.
Therefore, if � is satisfiable, there exists at least one ⌫-path
in G�.

(() Let ⇧
2

= �
0

,�e0,�1,�e1, . . . , (�k,�ek,�k+1

,
�e(k+1)

, . . . ,�l,�el)! be a ⌫-path in G�. When LMS(⇧
2

)
is empty, the infinite unfolding problem for least fixpoints
will not be involved on ⇧

2

. Consequently, ⇧
2

characterizes a
model of � in this case.

When LMS(⇧
2

) is not empty, we have that for each Y 2
LMS(⇧

2

), an edge e
2

2 LES(⇧
2

) can be found such that
Y /2 Mark(e

2

) and there exists no Y 0 2 Mark(e
2

) where
Y C Y 0. Subsequently, we can obtain the following sequence
of variables Y according to the sequence of marks in the loop
part of ⇧

2

: Y
1

, Y
2

, . . . , Yj , Yj+1

, . . . , Yl�k+1

, where each Yi

2 Mark((�i+k�1

,�e(i+k�1)

,�i+k)) (1  i  l�k+1), and
Yj is neither Y nor a variable depending on Y while any other
variable on Y is the opposite. Let �Yi denote the conjunct in
�i+k corresponding to Yi, then Y determines a sequence of
formulas �Y : �Y1 ,�Y2 ,�Y3 , . . . ,�Yl�k+1 . Further, we have
that µY.�Y does not appear as a subformula of �Yj , where
µY.�Y 2 CL(�) represents the fixpoint formula correspond-
ing to Y . Similarly, we can obtain that ⇧

2

characterizes a
model of � using the notion of approximants. It follows that
when there exists a ⌫-path in G�, � is satisfiable. ⇤

Consequently, we reduce the satisfiability problem of a for-
mula to a ⌫-path searching problem from its GPG. In the fol-
lowing, we present algorithm NuSearch used to find a ⌫-path
from a GPG.

Algorithm 3 NuSearch(n
0

)
1: NS.push back(n

0

)
2: for each edge e in G� do

3: if src[e] = n
0

and visit[e] = 0 then

4: ES.push back(e)
5: visit[e] = 1
6: if LOOP(tgt[e], pos) then

7: TES.assign(ES.begin() + pos, ES.end())
8: if TES corresponds to a ⌫-path then

9: return satisfiable
10: end if

11: ES.pop back()
12: else

13: NuSearch(tgt[e])
14: end if

15: end if

16: end for

17: if ES.size() > 0 then

18: ES.pop back()
19: end if

20: NS.pop back()

Given a GPG G�, the algorithm first takes the root node
n
0

of G� as input and tries to build a ⌫-path. Two global
variables, ES and NS, are used in the algorithm. ES is a vector
which stores the sequence of edges aiming to construct a path
ending with a loop. NS is also a vector storing the sequence
of nodes corresponding to ES. In addition, src[] and tgt[] are
employed to obtain the source and target nodes of an edge,
respectively. visit[e] = 1 (or. 0) indicates that an edge e has
(or. has not) been visited. For each edge e in G�, visit[e]
is initialized to 0. LOOP is a simple boolean function which

1199

determines whether a node u exists in NS and obtains, if so,
the position pos of u in NS.

In algorithm NuSearch, n
0

is added to NS first. After that,
for each unvisited edge e in G� whose source node is n

0

,
the algorithm adds it to ES and assigns visit[e] to 1. Then,
it determines whether tgt[e] exists in NS by means of func-
tion LOOP. If the output of LOOP is true, there exists a loop
in ES and we use TES to store the loop of ES. Further, if
TES corresponds to a ⌫-path, the given formula is satisfiable
and the algorithm terminates; otherwise, the last edge in ES
is removed and a new for loop begins in order to search for
another unvisited edge from G� whose source node is n

0

to
establish a new path. In case the output of LOOP is false,
which means the current ES cannot construct a path ending
with a loop, the algorithm calls itself and tries to build new
paths from the node tgt[e]. If the conditional statement in
Line 3 is never satisfied, i.e. any edge in G� with n

0

being its
source node has been visited, n

0

is removed from NS. Note
that if the size of ES is greater than 0 when the for loop ter-
minates, we need to remove the last edge in ES generated by
the next level of recursion.
Theorem 7 For the GPG G� of a closed formula �, algo-
rithm NuSearch can be completed in 2O(|�|).
Proof. By Corollary 4, we have that both the number of nodes
|N�| and the number of edges |E�| in G� are bounded by
2O(|�|). Since each edge in G� is handled exactly once, the
total number of recursive calls for NuSearch is bounded by
2O(|�|). Moreover, the number of iterations of the for loop
is also bounded by 2O(|�|). Subsequently, function LOOP
checks whether a node exists in NS, which can apparently be
done in 2O(|�|). Further, since the size of TES is in 2O(|�|),
by maintaining, for each µ-variable X occurring in �, a list
of variables depending on X , we can determine whether TES
corresponds to a ⌫-path in 2O(|�|). Therefore, algorithm
NuSearch can be completed in 2O(|�|). ⇤

As a consequence of Theorems 5 and 7, we obtain the fol-
lowing theorem.
Theorem 8 For a given closed formula �, the GPG-based
decision procedure can be done in 2O(|�|).

6 Related Work

GPG is a useful formalism for describing the models satis-
fying a formula. Therefore, it can be employed to generate
plans for Gµ goals. More precisely, it is ⌫-paths in a GPG
that characterize such plans. Representing Gµ goals as GPGs
is similar to the compilation approaches [Rintanen, 2000;
Cresswell and Coddington, 2004; Kabanza and Thiébaux,
2005; Edelkamp, 2006; Baier and McIlraith, 2006; Patrizi et
al., 2011] to planning for LTL goals which exploit the re-
lationship between LTL and finite-state automata (FSA). The
compilation approaches are particularly useful when there ex-
ists no search control knowledge. Recently, a novel method
[Torres and Baier, 2015] to compile away finite LTL goals
running in polynomial time is proposed. The method exploits
alternating automata instead of FSA. However, all the above-
mentioned methods consider LTL goals, which are less ex-
pressive than Gµ goals presented in this paper. In addition,

although LTL has been extended in [De Giacomo and Vardi,
2013; 2015] in order to express a wider variety of goals,
these extensions, unfortunately, consider only LTL over fi-
nite traces, which can be more easily handled than standard
LTL over infinite traces. In contrast, our logic Gµ focuses on
infinite traces.

The decision problems of ⌫TL have been extensively stud-
ied. In [Vardi, 1988], Vardi first adapts the classical automata
theoretic decision procedure for modal µ-calculus [Streett
and Emerson, 1984] to ⌫TL with past operators, yielding an
algorithm running in 2O(|�|4). Later, Banieqbal and Barringer
[Banieqbal and Barringer, 1989] demonstrate that the satisfi-
ability problem of a formula can be reduced to a good path
searching problem from a graph. This method is equivalent
in time complexity to Vardi’s but runs in exponential space.
In [Stirling and Walker, 1990], the first tableau characteriza-
tion for ⌫TL’s decision problems is presented without men-
tioning complexity issues. After that, based on the work in
[Kaivola, 1995], the tableau system is improved by simpli-
fying the success conditions for a tableau [Bradfield et al.,
1996]. The algorithm obtained runs in 2O(|�|2 log |�|). Further,
a proof system for checking validity of ⌫TL formulas is pro-
posed in [Dax et al., 2006] which runs in 2O(|�|2 log |�|) and
has been implemented in OCAML. However, the complexi-
ties of these decision procedures are too high, which hinders
the use of ⌫TL goals in planning. Therefore, we focus on
an expressive fragment Gµ of ⌫TL in this paper and provide a
better GPG-based decision procedure running in 2O(|�|). This
makes Gµ a compelling goal specification language.

It is worth pointing out that the idea of breaking a formula
into the present and future parts has also been considered in
[Duan et al., 2008; Duan and Tian, 2014; Duan et al., 2016]
to solve the decidability problem of Propositional Projection
Temporal Logic (PPTL).

7 Conclusion

In this paper, we have investigated an expressive fragment
Gµ of ⌫TL and presented GPF and GPG for Gµ formulas.
Also, we have proposed a simple GPG-based decision pro-
cedure for checking satisfiability of Gµ formulas running in
2O(|�|), which makes Gµ a compelling alternative for speci-
fying a richer class of goals in planning compared with LTL.

In the future, we are going to implement the proposed deci-
sion procedure. We also plan to develop a GPG-based model
checker to solve different kinds of planning problems.

Acknowledgments

The authors would like to thank all the anonymous review-
ers for their valuable comments on this paper. This research
is supported by the National Natural Science Foundation of
China Grant Nos. 61133001, 61322202, 61420106004, and
91418201.

References

[Bacchus and Kabanza, 1998] Fahiem Bacchus and Froduald
Kabanza. Planning for temporally extended goals. Annals of
Mathematics and Artificial Intelligence, 22(1-2):5–27, 1998.

1200

[Baier and McIlraith, 2006] Jorge A. Baier and Sheila A.
McIlraith. Planning with first-order temporally extended
goals using heuristic search. In AAAI, pages 788–795. AAAI
Press, 2006.

[Banieqbal and Barringer, 1989] Behnam Banieqbal and
Howard Barringer. Temporal logic with fixed points. In
Temporal Logic in Specification, volume 398 of LNCS,
pages 62–74. Springer, 1989.

[Barringer et al., 1986] Howard Barringer, Ruurd Kuiper, and
Amir Pnueli. A really abstract concurrent model and its tem-
poral logic. In POPL, pages 173–183. ACM Press, 1986.

[Bradfield et al., 1996] Julian Bradfield, Javier Esparza, and
Angelika Mader. An effective tableau system for the linear
time µ-calculus. In ICALP, volume 1099 of LNCS, pages
98–109. Springer, 1996.

[Bruse et al., 2015] Florian Bruse, Oliver Friedmann, and
Martin Lange. On guarded transformation in the modal µ-
calculus. Logic Journal of the IGPL, 23(2):194–216, 2015.

[Calvanese et al., 2002] Diego Calvanese, Giuseppe De Gia-
como, and Moshe Y. Vardi. Reasoning about actions and
planning in LTL action theories. In KR, pages 593–602.
Morgan Kaufmann, 2002.

[Cresswell and Coddington, 2004] Stephen Cresswell and
Alexandra M. Coddington. Compilation of LTL goal
formulas into PDDL. In ECAI, pages 985–986. IOS Press,
2004.

[Dax et al., 2006] Christian Dax, Martin Hofmann, and Martin
Lange. A proof system for the linear time µ-calculus. In
FSTTCS, volume 4337 of LNCS, pages 274–285. Springer,
2006.

[De Giacomo and Vardi, 1999] Giuseppe De Giacomo and
Moshe Y. Vardi. Automata-theoretic approach to planning
for temporally extended goals. In ECP, volume 1809 of
LNAI, pages 226–238. Springer, 1999.

[De Giacomo and Vardi, 2013] Giuseppe De Giacomo and
Moshe Y. Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In IJCAI, pages 854–860. AAAI Press,
2013.

[De Giacomo and Vardi, 2015] Giuseppe De Giacomo and
Moshe Y. Vardi. Synthesis for LTL and LDL on finite traces.
In IJCAI, pages 1558–1564. AAAI Press, 2015.

[Duan and Tian, 2014] Zhenhua Duan and Cong Tian. A prac-
tical decision procedure for propositional projection tempo-
ral logic with infinite models. Theoretical Computer Sci-
ence, 554:169–190, 2014.

[Duan et al., 2008] Zhenhua Duan, Cong Tian, and Li Zhang.
A decision procedure for propositional projection temporal
logic with infinite models. Acta Informatica, 45(1):43–78,
2008.

[Duan et al., 2016] Zhenhua Duan, Cong Tian, and Nan
Zhang. A canonical form based decision procedure and
model checking approach for propositional projection tem-
poral logic. Theoretical Computer Science, 609:544–560,
2016.

[Edelkamp, 2006] Stefan Edelkamp. On the compilation of
plan constraints and preferences. In ICAPS, pages 374–377.
AAAI Press, 2006.

[Emerson and Clarke, 1980] E. Allen Emerson and Ed-
mund M. Clarke. Characterizing correctness properties of
parallel programs using fixpoints. In ICALP, volume 85 of
LNCS, pages 169–181. Springer, 1980.

[Fischer and Ladner, 1979] Michael J. Fischer and Richard E.
Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18(2):194–211,
1979.

[Kabanza and Thiébaux, 2005] Froduald Kabanza and Sylvie
Thiébaux. Search control in planning for temporally ex-
tended goals. In ICAPS, pages 130–139. AAAI Press, 2005.

[Kaivola, 1995] Roope Kaivola. A simple decision method for
the linear time mu-calculus. In Structures in Concurrency
Theory, pages 190–204. Springer, 1995.

[Karaman and Frazzoli, 2009] Sertac Karaman and Emilio
Frazzoli. Sampling-based motion planning with determin-
istic µ-calculus specifications. In CDC, pages 2222–2229.
IEEE Press, 2009.

[Kozen, 1983] Dexter Kozen. Results on the propositional µ-
calculus. Theoretical Computer Science, 27(3):333–354,
1983.

[Patrizi et al., 2011] Fabio Patrizi, Nir Lipoveztky, Giuseppe
De Giacomo, and Hector Geffner. Computing infinite plans
for LTL goals using a classical planner. In IJCAI, pages
2003–2008. AAAI Press, 2011.

[Pnueli, 1977] Amir Pnueli. The temporal logic of programs.
In FOCS, pages 46–57. IEEE Press, 1977.

[Rintanen, 2000] Jussi Rintanen. Incorporation of temporal
logic control into plan operators. In ECAI, pages 526–530.
IOS Press, 2000.

[Sistla and Clarke, 1985] A. Prasad Sistla and Edmund M.
Clarke. The complexity of propositional linear temporal log-
ics. Journal of the ACM, 32(3):733–749, 1985.

[Stirling and Walker, 1990] Colin Stirling and David Walker.
CCS, liveness, and local model checking in the linear time
mu-calculus. In Automatic Verification Methods for Fi-
nite State Systems, volume 407 of LNCS, pages 166–178.
Springer, 1990.

[Streett and Emerson, 1984] Robert S. Streett and E. Allen
Emerson. The propositional mu-calculus is elementary. In
ICALP, volume 172 of LNCS, pages 465–472. Springer,
1984.

[Tarski, 1955] Alfred Tarski. A lattice-theoretical fixpoint the-
orem and its applications. Pacific Journal of Mathematics,
5(2):285–309, 1955.

[Torres and Baier, 2015] Jorge Torres and Jorge A. Baier.
Polynomial-time reformulations of LTL temporally ex-
tended goals into final-state goals. In IJCAI, pages 1696–
1703. AAAI Press, 2015.

[Vardi, 1988] Moshe Y. Vardi. A temporal fixpoint calculus.
In POPL, pages 250–259. ACM Press, 1988.

1201

