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Abstract
Reasoning about the nested beliefs of others is
important in many multi-agent scenarios. While
epistemic and doxastic logics lay a solid ground-
work to approach such reasoning, the computa-
tional complexity of these logics is often too high
for many tasks. Proper Epistemic Knowledge
Bases (PEKBs) enforce two syntactic restrictions
on formulae to obtain efficient querying: both dis-
junction and infinitely long nestings of modal oper-
ators are not permitted. PEKBs can be compiled, in
exponential time, to a prime implicate formula that
can be queried in polynomial time, while more re-
cently, it was shown that consistent PEKBs had cer-
tain logical properties that meant this compilation
was unnecessary, while still retaining polynomial-
time querying. In this paper, we present a belief up-
date mechanism for PEKBs that ensures the knowl-
edge base remains consistent when new beliefs are
added. This is achieved by first erasing any formu-
lae that contradict these new beliefs. We show that
this update mechanism can be computed in polyno-
mial time, and we assess it against the well-known
KM postulates for belief update.

1 Introduction
Reasoning about the nested beliefs of others is important in
many multi-agent scenarios. Epistemic and doxastic modal
logics lay a solid groundwork to approach such reasoning.
Hintikka’s seminal work [Hintikka, 1962] proposed a logic
for knowledge at the individual level, while Fagin et al.
[1995] were some of the first to look at multi-agent log-
ics, including formal models of concepts such as common
knowledge and belief. While such formalisms offer expres-
sive logics with sound and complete proof systems, the com-
putational complexity of these logics is high: Ladner [1977]
proved that satisfiability in logic KDn for a single agent is
NP-complete, while Halpern and Moses [1985] demonstrated
that for multiple agents, the problem is PSPACE-complete.

Proper Epistemic Knowledge Bases1 (PEKB) Lakemeyer
1We will use the term belief bases to acknowledge that formulae

in a PEKB can be incorrect.

and Lespérance [2012] are syntactic epistemic belief bases
that aim to overcome this complexity. While syntactic treat-
ments of belief and knowledge have been proposed in the
past; e.g. [Eberle, 1974; Konolige, 1983], PEKBs place re-
strictions on the syntax of formulae to provide desirable com-
putational properties. Lakemeyer and Lespérance define a
PEKB as a set (or conjunction) of restricted modal liter-
als (RML), in which RMLs are modal literals that do not
contain conjunction, disjunction, >, or ?. They show how
to compile a PEKB into a set of prime implicates, similar
to the method employed by [Bienvenu, 2008; 2009] for the
logic Kn. This allows entailment queries to be answered
in polynomial time by structurally traversing the prime im-
plicates instead of querying the original belief base. The
cost is that the compilation into prime implicates is exponen-
tial. PEKBs have been shown to be expressive enough for
many applications, such as collaborative filtering [Lakemeyer
and Lespérance, 2012], epistemic planning problems such as
gossip protocols [Muise et al., 2015a], and team formation
[Muise et al., 2015b].

Recently, Muise et al. [2015c] showed that, if a PEKB is
consistent, compilation into prime implicates is not required.
Thus, entailment queries can be formed directly on a consis-
tent PEKB, avoiding the costly compilation step. However,
this approach requires a PEKB to be maintained consistent if
new beliefs are inserted as the world changes.

In this paper, we present an approach for updating a PEKB
as new beliefs about changes in the world are added. The up-
date operator ensures that the belief base remains consistent
when new beliefs are added by first removing any formula
in the belief base that contradicts the new information, called
belief erasure [Katsuno and Mendelzon, 1991], and removing
only this information.

Such a mechanism is not straightforward. Consider a belief
base containing a single formula ⇤i⇤jp, meaning that agent
i believes that agent j believes that p is true. If we erase the
belief }i⇤jp from the belief base, we need to remove the
formula ⇤i⇤jp, because this entails the erased belief2. How-
ever, if we simply remove ⇤i⇤jp, we have removed more
than is required: the formula ⇤i}jp also holds in the original
belief base, but is not entailed by the erased belief, so should
hold in new belief base. Thus, as well as removing conflicting

2In any logic containing the axiom D.
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RMLs, a belief update mechanism should also calculate the
strongest implicates that entail the old belief base but do not
contradict the update formulae.

We show that due to the restricted syntax of PEKBs, this
update can be computed syntactically in polynomial time, de-
spite the update process being non-trivial. We then assess the
mechanism against the (KM) postulates for belief update and
erasure [Katsuno and Mendelzon, 1991].

In Section 2, we present background on epistemic logic,
while in Section 3, we introduce PEKBs and show some prop-
erties that enable efficient computation of entailment and be-
lief update. In Section 4, we present operators for belief era-
sure and update on PEKBs, show that these can be computed
in polynomial time, and assess them against the KM postu-
lates for belief update. Section 5 concludes the paper.

2 Background and Related Work
In this section, we briefly present some background material
on epistemic and doxastic3 logics that is required for the pa-
per. In particular, we are interested in the modal logic KDn,
which we present here briefly (for a more complete treatment,
see Fagin et al. [1995]).

Let P and Ag respectively be finite sets of propositions and
agents. The set of well-formed formulae, L, for multi-agent
epistemic logic is obtained from the following grammar:

� ::= p | � ^ � | ¬� | ⇤i�

in which p 2 P and i 2 Ag. Informally, ⇤i� means that
agent i believes �. The grammar permits statements of the
form ⇤i⇤j⇤kp, meaning that agent i believes that agent j
believes that agent k believes that p is true. Such nestings
can be arbitrarily long, and we use depth(�) to refer to the
maximum number of such nestings in the formula �.

The semantics can be given to this language using Kripke
structures [Fagin et al., 1995]. Each Kripke structure is a
tuple M = (W,⇡, R1, . . . Rn), in which W is the set of all
worlds considered in a model, ⇡ : W ! 2

P is a function that
maps each world to the set of propositions that hold in that
world, and each Ri ✓ W ⇥W (for each i 2 Ag) is a belief
accessibility relation. Each agent has an accessibility relation
that captures the agent’s uncertainty about the world such that
for the actual world, w, the set Ri(w) is the set of worlds that
agent i considers possible: Ri(w) = {w0 | Ri(w,w

0
)}.

Given these definitions, the satisfaction of a formula � in a
Kripke structure M and a world w is denoted as M,w ✏ �,
and it is defined inductively over the structure of �:

M,w ✏ p iff p 2 ⇡(w)
M,w ✏ ' ^  iff M,w ✏ ' and M,w ✏  
M,w ✏ ¬' iff M,w 2 '
M,w ✏ ⇤i' iff for all v 2 Ri(w), M, v ✏ '

Entailment is defined as: � ✏  if and only if for every model
M and world w such that M,w ✏ �, we have M,w ✏  .

Additional operators for _, �, and ⌘ can be derived in the
usual way, as can > (true) and ? (false). Further, we use a
second modal operator, }i�, defined as }i� ⌘ ¬⇤i¬�.

3For simplicity, we will follow convention and use “epistemic”
to refer to both knowledge and belief throughout the paper.

Placing certain constraints on Kripke structures leads to
specific properties of knowledge or belief, which can be rep-
resented as axioms of the logic [Fagin et al., 1995]. We are
particularly interested in the systems containing the axioms
K and D. The axiom K holds for any standard modal logic,
while axiom D holds if the Kripke structure is serial:

K ⇤i(� �  ) � (⇤i� � ⇤i ) (Distribution)
D ⇤i� � ¬⇤i¬� (Consistency)

Axiom D states that an agent cannot have inconsistent be-
liefs: if an agent believes �, then it cannot believe ¬� as well.
In this paper we consider consistent belief bases, and so we
will assume that axiom D holds. One way to achieve a con-
sistent belief base is to use a belief update mechanism. As the
world changes and new beliefs are added, any old beliefs that
contradict the new beliefs are erased.

While belief update has been long studied for propositional
belief bases; e.g. see the following for a selection of work
that has influenced this paper: [Lang, 2007; Herzig and Rifi,
1999; Herzig et al., 2013; Katsuno and Mendelzon, 1991;
Baral and Zhang, 2005], belief revision is gaining atten-
tion in epistemic logic; e.g. see [Van Ditmarsch, 2005;
van Ditmarsch et al., 2007; Van Benthem, 2007], and action
models provide a way to update epistemic knowledge bases
given the observation of an action [van Ditmarsch et al., 2007;
Baltag et al., 1998; Son et al., 2015], the concept of updating
a set of nested epistemic formulae with another has received
minimal study, with existing work studying the problem from
a model-based perspective unsuited for tractable belief update
of PEKBs [Baral and Zhang, 2005; Zhang and Zhou, 2009].

3 Proper Epistemic Knowledge Bases
Lakemeyer and Lespérance [2012] define a PEKB as a be-
lief base consisting of sets (conjunctions) of restricted modal
literals (RMLs). Each RML satisfies the following grammar:

� ::= p | ¬p | ⇤i� | }i�

Note that each RML is in negation normal form (NNF), i.e.,
negation appears only in front of propositional variables, and
any formula comprising an arbitrary string of modal opera-
tors terminated with a literal can be converted into NNF via
simple re-write rules [Lakemeyer and Lespérance, 2012].

We use Lit(�) to refer to the literal at the end of RML �;
e.g. Lit(⇤i}jp) = p.

Lakemeyer and Lespérance show how to compile PEKBs
into a prime implicate formula, and query the compiled for-
mula, building on earlier work in more general modal logic
[Bienvenu, 2008; 2009]. They show that the size of a com-
piled prime implicate formula is at most exponential in the
depth of the PEKB �, rather than double exponential in the
general case as shown by Bienvenu, with a worst-case execu-
tion time of O(|�|d+2

), where � is the formula representing
the belief base and d is the maximum depth of a modal lit-
eral in �. The complexity of a query of this formula is only
O(n2

), in which n is the size of the belief base. The ap-
proach proposed by Lakemeyer and Lespérance is sound, and
is complete for formulae that are logically separable — an
important concept in this paper.
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Definition 1 (Logical Separability [Lakemeyer and
Lespérance, 2012]). The set of RMLs P is logically
separable if and only if for every consistent set of RMLs P 0

the following holds:

if P [ P 0 |= ? then 9� 2 P, s.t. P 0 [ {�} |= ?

Intuitively, a set of formulae is logically separable if we
cannot infer anything by combining two or more formulae
from the set. For example, the formulae {⇤ip,⇤i(p � q)}
is not logically separable, because we can infer ⇤iq from
the combination of the two formulae in the set. The set
{⇤ip,⇤i(p � q)}[{}i¬q} is inconsistent, but }i¬q is con-
sistent with both other formulae individually. Logical separa-
bility plays an important role later in this paper.

In more recent work, Miller et al. [2016] extended PEKBs
to handle a restricted form of disjunction: ‘knowing whether’
a proposition holds, without knowing that it holds or does not
hold. They show that the desirable computational properties
hold even with the introduction of this limited form of dis-
junction, although they only prove completeness for a smaller
set of formulae than Lakemeyer and Lespérance.

In the remainder of this section, we explore some proper-
ties of PEKBs that are referred to throughout the paper.
Theorem 1. Given a PEKB P = (� ^}i 1 ^ . . .^}i m ^
⇤i�1 ^ . . . ^⇤i�n), we have that P |= ? i↵ at least one of
the following:
(a) � |= ?
(b)  j ^ �1 ^ . . . ^ �n |= ? (for some j)
(c) �1 ^ . . . ^ �n |= ?.

Proof. A proof for the logic Kn (for which only parts (a) and
(b) above are required) is presented by Bienvenu [2009] (see
Theorem 1, part (3)). It is straightforward to see that with
the addition of the axiom D, that part (c) must be added as a
consistent PEKB cannot contain the formula ⇤i?.

The following lemma is a property of the logic KDn [Lake-
meyer and Lespérance, 2012].
Lemma 1. � |=  i↵ }i� |= }i i↵ ⇤i� |= ⇤i 

Theorem 2. Given a consistent PEKB P and RML  , if P |=
 then 9� 2 P , s.t. � |=  

Proof. This theorem was argued informally by Muise et al.
[2015c], but here we prove this inductively on the structure of
 . Assume P = (�^}i 1^. . .^}i m^⇤i�1^. . .^⇤i�n).

The case of  ⌘ � is straightforward because PEKBs con-
tain no disjunction. For the  ⌘ ⇤i 

0 case, P |= ⇤i 
0 iff

P ^ }i¬ 0 |= ?. From Theorem 1 and the assumption that
the PEKB is consistent, it follows that �1 ^ . . . ^ �n |=  0.
By induction, there must be some �k 2 {�1, . . . ,�n} such
that �k |=  0. From Lemma 1, we know that ⇤i�k |= ⇤i 

0

and that ⇤i�k 2 P , so this case holds.
The case of  ⌘ }i 

0 is similar. If P |= }i 
0,

then from Theorem 1, it follows that either for some  j 2
{ 1, . . . , m}, we have that  j ^ �1 ^ . . . ^ �n |=  0, or
that �1 ^ . . . ^ �n |=  0. By induction, it must be that
 j |=  0 or �k |=  0 for some �k 2 {�1, . . . ,�n}. From
Lemma 1 and axiom D, we know that either }i j |= }i 

0

(where }i j 2 P ), or ⇤i�k |= }i 
0 (where ⇤i�k 2 P ); so

this case holds. From the three cases, the theorem holds.

From the above theorem, it is clear to see that if a PEKB is
inconsistent, this inconsistency can be detected by checking
all pairwise RMLs.
Corollary 1. A consistent PEKB is logically separable.

This follows from Definition 1 and Theorem 2.
Corollary 1 is an important property in the context of belief

update: given a PEKB P , updating it with a new RML �, we
only need to check � against each element in P to check if it
is inconsistent with the belief base.

4 Belief Erasure and Update
In this section, we present a belief update mechanism for
PEKBs. Given two PEKBs P and Q, P ^ Q is the PEKB
resulting from an update of Q on P , defined as follows:

Mod(P ^Q) = {P 0 | P 0 |= Q and Q |= P 0 \ P}
in which Mod(P ) is the set of models (in this case we just
use PEKBs) that entail P ; i.e. {P 0 | P 0 |= P}.

Thus, any resulting model P 0 (a PEKB) must entail the Q,
and anything that has changed as a result of the update must
be as a result of the new information Q. This definition is
a re-casting of the definition of belief update based on for-
mula/variable dependence proposed by Herzig et al. [2013],
in which our models are based on PEKBs, and the definition
of the dependence function is that  depends on � is � |=  .

This section presents an algorithm for computing a unique
PEKB that conforms to the definition of Mod(P ^Q), and in
which the resulting PEKB is prime; that is, none of the RMLs
in the updated PEKB are entailed by any other — they are all
prime implicates of the PEKB.

As our update operator is defined according to the ‘forget-
then-conjoin’ model, we first define a belief erasure operator,
and then define the belief update operator, which uses the era-
sure operator to ‘forget’.

4.1 PEKBs as posets
For definition purposes, we consider a PEKB as a partially-
ordered set (poset) (P, |=). Given a propositional literal p (or
negated propositional literal) and a string s of modal oper-
ators, we can form a bounded poset from the set (S, |=), in
which S is the set of RMLs ending in p (or ¬p) all of the
same depth. For example, see the Hasse diagram representa-
tion in Figure 1. The poset is bounded, with the top element
}}}p and the bottom element ⇤⇤⇤p.

We use P to denote the PEKB that contains the negation of
every RML in P ; that is P = {¬� | � 2 P}
Definition 2 (Upwards and downwards closure). Given an
RML �, we define the upward closure "� of � as the upward
closure with respect to its poset, defined as:

"� = { | � |=  }

The downward closure of �, denoted #�, is just "¬�; that is
#� = { |  |= �}.

The upward closure of a PEKB P is "P =

S
�2P "�. The

downward closure of a PEKB P is defined as "P .
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Figure 1: A representative Hasse diagram with bottom el-
ement ⇤⇤⇤p. The shaded set represents #⇤}}p, which
would be removed if ⇤}}p was erased from a PEKB con-
taining ⇤⇤⇤p. The shaded formula }⇤⇤p should be
the RML that remains, because it is the maximal RML in
"⇤⇤⇤p that is not in with #⇤}}p.

We call a PEKB P prime if and only if all elements in P
are prime implicates of P (maximal elements); that is, for
all �, 2 P , if � |=  then  |= �. The set of maximal
elements of a PEKB is denoted max(P ). Thus, for a prime
PEKB P and an RML �, we have that P |= � iff � 2 "P .

4.2 Belief Erasure
Our definition of belief update in PEKBs uses the ‘forget-
then-conjoin’ approach of first removing any beliefs that con-
flict with the update, and then adding the update. This ‘for-
getting’ process, which Katsuno and Mendelzon [1991] term
belief erasure, is not simply the act of subtracting the negation
of the RMLs in the update, because we must also remove any
RML that implies the negated update. For example, given the
PEKB {⇤ip}, removing }ip should also remove ⇤ip; other-
wise, the belief base would still entail }ip.

Further, a belief erasure operator should follow the princi-
ple of minimal change: when removing belief from an exist-
ing belief base, we should remove only what we must so that
the belief base no longer entails the removed belief. As an
example, consider the Hasse diagram in Figure 1, represent-
ing a PEKB containing a single RML ⇤⇤⇤p. If we want to
erase the RML ⇤}}p, we must remove ⇤⇤⇤p, otherwise
after the erasure, ⇤⇤⇤p will remain in the PEKB, and there-
fore ⇤}}p would still hold. However, after the erasure, the
RML }⇤⇤p should still hold: it held before the update and
we have not erased it or any of its implicates. All RMLs be-
low }⇤⇤p in the poset need not be added, because }⇤⇤p
is a prime implicate of those.

Given two PEKBs P and Q, the PEKB P _ Q, the set of
models resulting from erasing Q from P , is defined as fol-

lows:

Mod(P _Q) = {P 0 | P |= P 0 and P \ P 0 |= Q} (1)

Thus, any new model must entail everything previously in P ,
except the RMLs that are erased (P \ P 0), which must be
erased as a result of Q.
Definition 3 (Belief erasure in PEKBs). Given PEKBs P and
Q, we define the erasure of Q from P , denoted as P _Q, as:

P _Q = max("P \ #Q)

That is, take the upward closure of P and remove the down-
ward closure of Q, removing any non-prime RMLs. This re-
moves Q and anything that implies it, leaving those things
that are in the upward closure of P but that do not entail Q.

It is straightforward to see that this corresponds with the
definition of Mod(P _Q) in Equation 1, and that the resulting
PEKB is prime. However, the computational complexity of
calculating the closure of a PEKB is exponential in the size of
the PEKB and depth of RMLs in the PEKB. We next define a
method for computing this in polynomial time using syntactic
transformation of the elements inside the PEKB.

From Theorem 2, we know that a PEKB is logically sepa-
rable, so we can perform erasure and update by considering
just the pairs of RMLs from PEKBs P and Q respectively.
Thus, we first define the erasure between two RMLs.
Definition 4 (��  ). Given two RMLs � and  , the erasure
of  with respect to �, defined as � �  , is the following
algorithm:

1. If � 6|=  return {�}.
2. If  = > (the top element in the poset), return {}. Note

that any propositional literal is the top element of its
poset.

3. For each modal operator index that is ⇤i in both � and
 , create a new RML that is equivalent to � but with }i

at that index. Return this set of new RMLs.

Consider the example from Figure 1, in which ⇤⇤⇤p is
the element in the PEKB, and we calculate ⇤⇤⇤p�⇤}}p.
It is clear that ⇤⇤⇤p |= ⇤}}p and that we are not erasing
the top element. The first index is the only one in which both
modal operators are ⇤ operators, so we create one new RML
with the ⇤ replaced by }, to get the new RML }⇤⇤p.

As a less trivial example, consider ⇤⇤⇤p � }⇤⇤p. In
this case, we have two indices in which both RMLs contain
a ⇤. Thus, the result is the two RMLs ⇤⇤}p and ⇤}⇤p,
which is the set of maximal elements in "⇤⇤⇤p \ #}⇤⇤p.

This syntactic transformation resembles Dalal’s treatment
of belief revision in propositional belief bases [Dalal, 1988],
although this is over the space of RMLs instead of conjunc-
tions of propositional letters.
Theorem 3. ��  = {�} _ { }

Proof. Step 1: if � 6|=  then "� \ # = "�, and the only
maximal element is clearly �.

Step 2: Step 3 determines the set of RMLs that correspond
to set of prime implicates after subtracting one RML from
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Algorithm 1: Belief erasure

Input: PEKBs P and Q
Output: P _Q

1 P 0 = list(P )
2 R0 = ;
3 i = 0
4 while i < |P 0| do
5 � = P 0(i)
6 for  2 Q do
7 if ��  6= {�} then
8 P 0 = P 0 · list(��  )
9 R0 = R0 [ {�}

10 i = i+ 1

11 return set(P 0) \R0;

another. If  is the top element, then this set of RMLs corre-
sponds to top itself, so we must remove � entirely.

Step 3: We need to find the strongest prime implicates P 0

such that � |= P 0 and P 0 6|=  . Clearly, P 0 ⇢ "�, so all
elements in P 0 must be the same as �, but with some ⇤i op-
erators substituted with }i operators (e.g., see Figure 1).

For an RML  0 2 P 0 that is like � with more than one ⇤i

substituted by }i,  0 cannot be prime. There must be some
�0 2 P in which exactly one of those operators is substituted,
and clearly �0 |=  0. This establishes that substituting more
than one ⇤i operator in � results in a non-prime RML.

All that remains is to show that all RMLs that have one
operator substituted are also prime. Consider any �0 2 P 0.
The modal operator index where the operator was substituted
is }i. For all other  0 2 P 0, the corresponding operator is ⇤i

in �, so it must be that �0 6|=  0. Thus, the theorem holds.

Proposition 1. (��  )� � = (�� �)�  

We abuse notation here because �� actually returns a set
of elements, but this proposition states that it does not matter
in which order formulae are erased. This holds because from
Theorem 3 we know that � �  is equivalent to {�} _ { },
and that the _ operator is just defined using set complement.

Algorithm 1 defines a function erase(P,Q) for erasure
over PEKBs. The functions list and set convert a set to a list
and vice-versa. This algorithm creates a list P 0 from P , and
iterates over pairs of RMLs in P 0 and Q. For each pair, the al-
gorithm assesses if � needs to be replaced (if ��  6= {�}).
If so, it adds � into the set R0, which represents the set of
RMLs that will be removed, and adds ��  to the end of P 0

to be assessed against Q later (in case the new RMLs should
also be erased by another element in Q). Finally, remove R0

from the set of elements in P 0, and returns this.
Theorem 4. erase(P,Q) = P _Q

Proof. This follows from Theorem 3 and Proposition 1.

The worst-case execution time of Algorithm 1 is polyno-
mial in the size and depth of P and Q. ��  creates at most
d new RMLs, where d = depth(�) (at most one for each ⇤i

operator). Thus, the algorithm will perform |P | · d · |Q| itera-
tions over the inner loop. The calculation of �� is at worst

linear in the depth of � or  , meaning that in the worst case,
the complexity is O(|P | · |Q| · 2d).

4.3 Belief Update
Given a belief erasure operator, belief update for a PEKB is
straightforward: update is forget (erase) then conjoin. We use
t as the conjunction operator, and this simply means to merge
two PEKBs P and Q, eliminating any RML that is not prime
in the set P [Q; that is, P tQ = max(P [Q).
Definition 5. Given PEKBs P and Q, we define belief update
of P with Q, denoted as P ^Q, as follows:

P ^Q = (P _Q) tQ

That is, remove anything that conflicts with Q, then add the
elements in Q, and take the maximal elements from this.

It is straightforward to see that for prime PEKBs P and Q,
a polynomial-time algorithm for ^ can be implemented by us-
ing the erase function defined in Algorithm 1 to erase Q, and
then adding Q while removing any RML that is subsequently
no longer prime.

Thus, we have defined belief erasure and belief update
for PEKBs, and presented algorithms for computing these in
polynomial time.

4.4 KM Postulates for Belief Update
Katsuno and Mendelzon [1991] propose a set of postulates for
belief update called the Katsuno-Mendelzon (KM) postulates.
These postulates, which echo the AGM postulates for belief
revision [Alchourrón et al., 1985], specify eight properties
that a belief update operator should have to be an appealing
update mechanism (phrased using our notation):
U1 P ^Q |= Q

U2 If P |= Q then P ^Q ⌘ P

U3 If P and Q are satisfiable, then P ^Q is satisfiable
U4 If P ⌘ P 0 and Q ⌘ Q0 then P ^Q ⌘ P 0 ^Q0

U5 (P ^Q) tR |= P ^ (Q tR)

U6 If P ^Q |= R and P ^R |= Q then P ^Q ⌘ P ^R

U7 If P is complete then (P ^Q)t (P ^R) |= P ^ (Q_R)

U8 (P _Q)

^R ⌘ (P ^R) _ (Q ^R)

Because PEKBs do not permit disjunction, U7 and U8 are
not relevant for our belief update operator.

Despite their widespread use, it is not commonly accepted
that all postulates are desirable for all belief update operators.
Herzig and Rifi [1999] argue that only postulates U1, U3, U8,
and (possibly) U4 should be satisfied by all update operators.
Theorem 5. KM postulates U1, and U3-U6 hold for PEKB
belief update operator ^. U2 holds if P is satisfiable.

For the proof of this theorem, see the extended version of
this paper [Miller and Muise, 2016].

Katsuno and Mendelzon [1991] present the so-called rep-
resentation theorem, which shows the completeness of the
belief update operator. It is clear that the pre-order on in-
terpretations defined by Katsuno and Mendelzon can simply
be defined over the poset corresponding to the elements in the
PEKB. Due to the logical separability of PEKBs, Definition 5
amounts to an equivalent notion of Katsuno and Mendelzon’s
representation theorem.
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4.5 KM Postulates for Belief Erasure
Katsuno and Mendelzon [1991] also propose a set of pos-
tulates for belief erasure based on the principle of minimal
change: when removing belief from an existing belief base,
we should remove only what we must so that the belief
base no longer entails the removed belief. These postulates
phrased using our notation are:
E1 P |= P _Q

E2 If P |= Q then P _Q ⌘ P

E3 If P is satisfiable then P _Q 6|= Q

E4 If P ⌘ P 0 and Q ⌘ Q0 then P _Q ⌘ P 0 _Q0

E5 (P _Q) tQ |= P

E8 (P _Q)

_R ⌘ (P _R) _ (Q _R)

E8 does not make sense because PEKBs cannot contain
disjunctive formulae.

Katsuno and Mendelzon define an identity, a mirror of the
identity Harper introduced that expresses belief contraction in
terms of set operations and belief contraction [Harper, 1976].
Katsuno and Mendelzon’s identity can be expressed as:

P _Q ⌘ P u (P ^Q) (2)

in which P u Q = max("P \ "Q). Intuitively, this identity
stipulates that erasing Q should be the same as restricting the
belief base to what would hold if the negation of Q was added.

Katsuno and Mendelzon show that if the identity in Equa-
tion 2 holds and the ^ operator satisfies postulates U1-U4
and U8, then the _ operator satisfies postulates E1-E5 and
E8. The following counterexample demonstrates that Equa-
tion 2 does not hold on our operators: P = {⇤ip} and
Q = {}ip,}i¬p}. From this, P _ Q = {}, while P ^ Q =

{}ip,}i¬p}, which when intersected with "P leaves {}ip}.
Katsuno and Mendelzon define a second identity between

update and erasure:

P ^Q ⌘ (P _Q) tQ (3)

This mirrors the Levi identity for belief revision and con-
traction [Levi, 1978]. They show that if this identify holds
and the _ operator satisfies E1-E4 and E8, then ^ satisfies U1-
U4 and U8. Equation 3 is just our definition of belief update,
and Katsuno and Mendelzon’s theorem about the relationship
between the two sets of postulates holds:
Theorem 6. KM postulates E1, E3, and E4 hold for the
PEKB belief erasure operator. E2 holds if P is satisfiable.

For the proof of this theorem, See the extended version of
this paper [Miller and Muise, 2016].

The E5 postulate does not hold. As a simple counterexam-
ple to this, consider the PEKBs P = {⇤ip} and Q = {}ip}.
Erasing Q from P will result in an empty set, and then adding
Q will result in {}ip}, which does not entail ⇤ip.

Finally, we note briefly on a controversial4 postulate — the
recovery postulate:

(P _Q)

^Q |= P

4See a discussion of the issues surround the postulate in [Makin-
son, 1987].

This extends postulate E5, using ^ instead of t. The coun-
terexample for E5 serves to show this postulate does not hold.
However, we can characterise precisely when postulate E5
and the recovery postulate are satisfied: when Q = #Q. This
follows directly from the definition of _.

4.6 Relationship to belief revision and contraction
It is noted earlier that because PEKBs do not permit disjunc-
tion, postulates U7, U8, and E8 are not relevant for our belief
update and erasure operators. This is important because pos-
tulates U7, U8, and E8 distinguish belief update from belief
revision [Katsuno and Mendelzon, 1991].

In the case of PEKBs, belief update and belief revision es-
sentially collapse to the same operator. Our belief update op-
erator satisfies the postulates for belief revision (postulates
R1-R5) proposed by Alchourrón et al. [1985], which are
equivalent to postulates U1-U5, except that postulate U2 is
weaker than R2:
R2 If P tQ is satisfiable, then P ^Q ⌘ P tQ

Postulate R2 holds for our update operator: P ^Q is equiv-
alent to (P _ Q) t Q. If P t Q is satisfiable, then there
cannot be any RML � entailed by both P and Q. Therefore,
P _Q ⌘ P , and thus P ^Q ⌘ P _Q tQ ⌘ P tQ.

However, the corresponding relationship does not hold for
belief contraction and erasure. Postulates C1-C5 for belief
contraction [Alchourrón et al., 1985] echo those of E1-E5 of
belief erasure, except with the addition of E8 for erasure, and
that the postulate E2 is weaker than its counterpart, C2:
C2 If P 6|= Q, then P _Q ⌘ P

This is trivially false. Consider the PEKBs P = {p, q}
and Q = {q, r}. It is clear that P 6|= Q, but that P _ Q =

{p}. Thus, our belief update operator satisfies the postulates
proposed by Alchourrón et al. [1985] for a belief revision
operator, but our belief erasure operator does not satisfy the
postulates for a belief contraction operator.

5 Conclusion
In this paper, we present belief update and erasure operators
for PEKBs. Our update operator is based on the ‘forget-then-
join’ theory, meaning that everything that conflicts with the
update is removed before the updated beliefs are added. The
result is a consistent belief base that entails the new beliefs
and any prior beliefs that do not conflict with the new beliefs.
We present algorithms for computing belief erasure and up-
date in polynomial time, and then show that our mechanism
is sound with respect to the KM postulates and complete.
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