
Efficient Representations for the Modal Logic S5

Alexandre Niveau and Bruno Zanuttini
GREYC, UMR 6072, UNICAEN/CNRS/ENSICAEN, France

{alexandre.niveau,bruno.zanuttini@unicaen.fr}

Abstract
We investigate efficient representations of subjec-
tive formulas in the modal logic of knowledge, S5,
and more generally of sets of sets of propositional
assignments. One motivation for this study is con-
tingent planning, for which many approaches use
operations on such formulas, and can clearly take
advantage of efficient representations. We study the
language S5-DNF introduced by Bienvenu et al.,
and a natural variant of it that uses Binary Deci-
sion Diagrams at the propositional level. We also
introduce an alternative language, called Epistemic
Splitting Diagrams, which provides more compact
representations. We compare all three languages
from the complexity-theoretic viewpoint of knowl-
edge compilation and also through experiments.
Our work sheds light on the pros and cons of each
representation in both theory and practice.

1 Introduction
The epistemic modal logic S5 is the logic of monoagent
knowledge [Fagin et al., 1995], allowing for statements such
as (Kp _ Kp) ^ (¬K(p ^ q)), which means that the agent
knows that p is true or knows that p is false (i.e., it knows
the value of p), but does not know that p^q is true (it knows
that p^q is false, or does not know whether it is true or false).

A particular setting where the logic S5 arises naturally is
that of contingent planning [Herzig et al., 2003; Petrick and
Bacchus, 2004; Hoffmann and Brafman, 2005; Iocchi et al.,
2004; Bonet and Geffner, 2014], which is the problem of
computing a plan towards a given goal, using two kinds of
actions. Ontic actions change the actual state of the world
in a nondeterministic fashion, and epistemic actions give the
agent feedback about the actual state. The plan sought for can
be conditional on the feedbacks received from the epistemic
actions.

It is not hard to see that at any moment, an agent executing
a contingent plan has a unique set of states which are can-
didates for being the actual state of the environment. Such a
set is called a belief state in the planning literature. For in-
stance, if the agent knows that the initial state satisfies p^q,
and executes an ontic action switch which nondeterministi-
cally switches either the value of p or that of q, then the re-

sulting belief state can be described by (p^q)_(p^q). If the
agent then executes the epistemic action test, which indicates
whether p^ r is true, and receives the feedback that it is the
case, then the resulting set can be described by (p^q^ r).

When planning, or verifying the validity of a plan, it is
also useful to consider the evolution of several possible belief
states at the same time, a process usually called offline pro-
gression. For instance, if the initial belief state is p^ q, then
the ontic action switch leads to (p^q)_ (p^q) as above, but
the epistemic action test leads to two possible belief states,
depending on its feedback: either (p ^ q ^ r) as above, or
(p^q)_ (p^q^ r) if feedback p_ r is received. So, in plan-
ning and in other applications, it is important to be able to
handle general S5 formulas, which represent sets of belief
states. In the example above, we would use the representation
K(p^q^r)_K

�
(p^q)_(p^q^r)

�
(note that planning usu-

ally does not use only-knowing [Levesque, 1990]: goals being
typically positive, knowing more is always better—in partic-
ular, one often needs only positive knowledge formulas).

Motivated by such uses in planning, we investigate sev-
eral representations of (subjective) S5 formulas from the
point of view of space and time efficiency. We consider
the s-S5-DNFDNF,CNF representation proposed by Bienvenu et
al. [2010], as well as its natural variant s-S5-DNFOBDD,OBDD. We
moreover introduce a new representation (Sections 3 and 4),
using structures that we call Epistemic Splitting Diagrams
(ESDs), which use ideas similar to Binary Decision Dia-
grams. We investigate these three languages from the point
of view of knowledge compilation [Darwiche and Marquis,
2002], comparing their ability to support queries and trans-
formations efficiently (Section 5) and to represent S5 formu-
las succinctly (Section 6). Finally, we report on experiments,
which confirm in practice the properties of the different lan-
guages (Section 7). Our results show that each language has
its pros and cons; they also show that ESDs are more compact
than previous representations for positive S5 formulas.

2 Preliminaries
S5 The reader is supposed to be acquainted with the basic
concepts of propositional logic. We consider the language of
propositional S5 [Fagin et al., 1995], in which formulas are
built on a set of propositional atoms X with the usual con-
nectives ¬,_,^ and the knowledge modality K. For instance,
(Kx1^¬K(x2_x3))_¬K(x1) is an S5 formula. We denote by

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

1223

Var(F) the set of propositional atoms mentioned in a formula
F (i.e., {x1,x2,x3} in the previous example). For space rea-
sons, and motivated by the representations typically needed
in planning, we restrict our study to subjective S5, in which
one can express statements about the knowledge of agents,
but not about the actual state of the world (even though our
study could be rather directly extended to general S5 formu-
las). We thus only consider formulas in which all proposi-
tional atoms appear in the scope of K: e.g., x1 ^Kx2 is not a
subjective formula. Since any S5 formula is equivalent to one
without nested modalities, we use the following definition.

Definition 1. A subjective S5 formula over X is a Boolean
combination, using ¬, _ and ^, of epistemic atoms of the
form Kj , where each j is a propositional formula over X .

We use uppercase (resp. lowercase) Greek letters F,Y, . . .
(resp. j,y, . . .) to denote S5 (resp. propositional) formulas.
Due to the axiomatic of S5, subjective formulas are natu-
rally interpreted over structures, which are simply nonempty
subsets of 2X , that is, nonempty sets of propositional assign-
ments (we silently assume that structures are over the set of all
propositional atoms under consideration). Intuitively, a struc-
ture represents a belief state, i.e., a set of assignments that the
agent considers as candidates for being the actual state of the
world; an S5 formula represents a set of such belief states.

A structure M is said to satisfy an epistemic atom Kj if all
propositional assignments m2M satisfy j under the standard
propositional semantics; M satisfies F^Y (resp. F_Y) if
it satisfies F and Y (resp. F or Y), and ¬F if it does not
satisfy F. Note that M satisfies ¬Kf if it contains at least one
propositional countermodel of j (intuitively, the agent does
not know f if f is false in at least one state which may be the
actual one), and that this is different from satisfying K¬j .

We write M |= F if the structure M satisfies the subjective
S5 formula F; it is a model of F, and we denote by Mod(F)
the set of models of F. When Mod(F) = Mod(Y), F and
Y represent the same set of belief states; we call them logi-
cally equivalent, written F ⌘ Y. When Mod(F) ✓ Mod(Y),
we say that F entails Y, written F |= Y. A formula is tauto-
logical if all structures satisfy it. Notably useful in planning
are positive S5 formulas, i.e., formulas equivalent to someW

i Kji; it can be shown that those are exactly the formulas
whose model set is closed by taking (nonempty) subsets.

Propositional languages A propositional formula (over X)
is in the NNF (Negation Normal Form) language if it is a com-
bination by _ and ^ of propositional literals of the form x or
x (x 2 X). Identical subformulas are shared in NNF formulas:
they are not trees but rather directed acyclic graphs (DAGs),
and the size |j| of a formula j is thus its number of nodes.
A term (resp. clause) is a conjunction (resp. disjunction) of
literals. A formula is in disjunctive (resp. conjunctive) nor-
mal form if it is a disjunction of terms (resp. a conjunction
of clauses); the corresponding language is called DNF (resp.
CNF). Conditioning a formula j by a literal ` is, intuitively,
deciding on the value of the corresponding atom; it can be
done syntactically by replacing every instance of ` (resp. `)
by > (resp. ?). The result is denoted by j|`. We also write

?

x3

x1
x2

>
>

?

x2

K K¬

^^

_

K

—

xn xn

_

_

x1x1

_

x2 x2

_

>

x3

x2

x1

x3

—

x1

_

x2

>

_

D

D

D

D

DD

D

D

Figure 1: An EBDD (left) and two ESDs. Dots are to right
children of ite’s and spl’s, and leaves are duplicated only for
clarity.

M|` for the structure obtained from a structure M by keeping
only the assignments satisfying `, then removing ` from them.

A Binary Decision Diagram (BDD) is a constant or a for-
mula of the form (x^N)_ (x^N0), where N,N0 are BDDs;
the latter is written ite(x,N,N0). A BDD can be seen as a
DAG over nodes labeled with atoms (e.g., on Figure 1, left,
the DAG rooted at x1 is a BDD). A BDD is an ordered BDD
(OBDD) if atoms are encountered at most once and in the
same order along all paths from the root to a leaf. It is well-
known that any NNF j can be represented as an OBDD (over
any atom ordering), using the Shannon expansion.

S5-DNF Bienvenu et al. [2010] give the first study of effec-
tive representations for S5 formulas, notably introducing the
following parameterized language:

Definition 2. Let L,L0 be two (propositional) sublanguages
of NNF; an S5 formula is in s-S5-DNFL,L0 if it is a disjunction
of terms, each consisting of at most one positive epistemic
literal Kj and of an arbitrary number of negative epistemic
literals ¬Kyi, where j is in L and each yi is in L0.

They study the properties of s-S5-DNFL,L0 in a general set-
ting, in terms of the properties of L and L0; they also focus on a
specific instantiation, s-S5-DNFDNF,CNF (we denote it by EDNF
for short), which turns out to have good properties for the
operations involved in planning. Another natural instantia-
tion is s-S5-DNFOBDD,OBDD (denoted here by EBDD); Bienvenu et
al. [2010] did not explicitly consider it, but most of their gen-
eral results directly apply to it. Figure 1 (left) gives an EBDD
for (K(x1 _ x3)^¬K(x2 _ x3))_ (¬K(x2 _ x3)^K(x2)).

3 Epistemic Splitting Diagrams
We now introduce a new language, written ESD, for rep-
resenting subjective S5 formulas. As pointed out by Bi-
envenu et al. [2010, Example 15], the Shannon expansion
cannot be used for S5 formulas at the epistemic level, but
we introduce the related notion of splitting. Intuitively, a
split over a propositional atom x divides a structure M
into M|x and M|x. For instance, with M1 = {x2x3,x2x3}
and M2 = {x2x3}, spl(x1,M1,M2) represents the structure
{x1x2x3,x1x2x3,x1x2x3}. More generally, we allow splits to
represent sets of structures of a specific form: spl(x,M,M0)
represents the set {spl(x,M,M0) | M 2M,M0 2M0}.

1224

As splits are not enough for obtaining a complete language,
ESD also uses the _ connective. Moreover, since the model set
of an S5-formula contains structures, which are themselves
sets, we have four constant formulas: the usual constants ?
and >, which are satisfied by no structure and by all struc-
tures, respectively, and two new ones, D and —, respectively
satisfied exactly by the empty structure, and by all nonempty
structures. The two latter constants are notably used as chil-
dren of splitting nodes; for instance, on Figure 1 (right), the
ESD rooted at the bottom left x2 node is satisfied by all struc-
tures which contain an assignment satisfying x2. Formally:
Definition 3. The language ESD of epistemic splitting dia-
grams is defined inductively as follows:

• >, —, ?, and D are ESDs;
• if F1 and F2 are ESDs, then spl(x,F1,F2) is an ESD;
• if F1, . . . ,Fn are ESDs, then

Wn
i=1 Fi is an ESD.

A structure M satisfies an ESD F, denoted by M |=F, if either
(i) F is — (resp. D) and M is not ? (resp. is ?); or (ii) F is
spl(x,F1,F2) and M|x |= F1 and M|x |= F2 hold; or (iii) F
is

Wn
i=1 Fi and M satisfies Fi for at least one i 2 {1, . . . ,n}.

Additionally, M always satisfies > and never satisfies ?.
Recall that S5 formulas are interpreted over nonempty

structures. However, for ease of exposition we allow the
empty structure M? as a model of some ESDs. This is harm-
less since F^— has the same models as F except for M?,
and can be computed efficiently (Proposition 14).

Figure 1 (right) gives an example of an ESD: the left child
of its root is satisfied exactly by the structures M such that
(i) M|x1 is empty or contains an assignment satisfying x2, and
(ii) M|x1 contains an assignment satisfying x3. Remark that,
like OBDDs, we view ESDs as DAGs, and we assume that
identical subgraphs are systematically shared.

Definition 3 places no specific syntactic restriction on
ESDs; it is however useful to consider reduced ESDs.
Definition 4. An ESD F is said to be reduced if none of the
following rules applies to it:

• simplify using (?_F)⌘F, (>_F)⌘>, spl(x,D,D)⌘
D, spl(x,>,>)⌘>, spl(x,F,?)⌘ spl(x,?,F)⌘?;

• replace spl(x,F,Y1) _ spl(x,F,Y2) by spl(x,F,Y1 _
Y2), and dually when it is right children that match;

• remove duplicates among children of _-nodes, and flat-
ten (F1_ · · ·_(Y1_ · · ·_Yk)_ · · ·_Fm) into (F1_ · · ·_
Y1_ · · ·_Yk _ · · ·_Fm),

W
{F} into F, and

W? into ?;
• replace (F1 _ · · ·_ D _ · · ·_ Fk) by (F1 _ · · ·_ Fk) if

some Fi is satisfied by M?;
• replace (F1 _ · · ·_—_ · · ·_Fk) by > if some Fi is sat-

isfied by M? and by — otherwise.
It is easily seen that all these rules preserve logical equiv-

alence, and can be enforced in linear time. Another impor-
tant property (obtained by a simple structural induction), is
that the only reduced ESD equivalent to ? (resp. to D) is
? itself (resp. D itself). Contrastingly, as is the case for
EDNF and EBDD, there are several reduced ESDs equivalent
to > or —. For instance (abusing notation), spl(x,Ky,D) _

spl(x,>,—)_ spl(x,¬Ky,>) is reduced but logically equiv-
alent to K(x^ y)_¬Kx_¬K(x_ y), which is tautological.

As for OBDD, we can impose ESDs to be ordered. Given a
total ordering < on X , an ESD is said to be <-ordered if the
propositional atoms appear in (strict) increasing order wrt <
along each path from the root to a leaf.

In this paper, we only consider reduced ordered ESDs. We
write ESD for the language consisting of all ESDs which are
reduced and ordered (leaving < implicit). For instance, the
ESDs on Figure 1 are reduced, and ordered wrt x1 < · · ·< xn.

ESDs share many features with OBDDs. An important dif-
ference is in the status of stuttering nodes. A node ite(x,j,j)
can be eliminated from an OBDD (and replaced by j), but the
same is not true for ESDs: in general, we have spl(x,F,F) 6|=
F. For instance, with F⌘Ky_Ky, we have that M = {xy,xy}
satisfies spl(x,F,F) (since M|x = {y} satisfies Ky and hence
F, and M|x = {y} satisfies Ky and hence F), but M does not
satisfy F (since in M both y and y are possible). Due to this,
in order to be efficient, some transformations require that (re-
duced, ordered) ESDs have a specific form.
Definition 5. Let < be a total order on X , with x1 < · · ·< xn.
An ESD F is said to be explicitly <-ordered if it is <-ordered
and for each path P from the root to a leaf, the set of atoms
appearing along P is {x1,x2, . . . ,xi} for some i 2 {1, . . . ,n}.

For instance, on the ESD of Figure 1 (right), the third path
from the left, (_,x1,_,x2,—), is explicitly ordered with re-
spect to x1 < x2 < x3, but the fourth one, (_,x1,x3,—), is not
(x2 is missing). Hence the ESD is not explicitly ordered.

In the rest of the paper, we always consider OBDDs and
ESDs ordered over the same (implicit) atom ordering. Unless
specified, we do not require the ESDs to be explicitly ordered.

4 Compiling Epistemic Atoms into ESDs
Arguably, it is natural to specify formulas such as goals, ini-
tial states, etc., in the form of S5 logical formulas. Manip-
ulating ESDs thus requires to first compile [Marquis, 2015]
standard epistemic representations into the ESD language. We
show in this section how to compile epistemic atoms as ESDs;
Section 5 will show how to combine them using connectives.

Since compiling propositional formulas into OBDD is a
well-studied problem [Bryant, 1992; Meinel and Theobald,
1998; Huang and Darwiche, 2005], we assume that epistemic
atoms are in the form Kj , where j is an OBDD over the
atom ordering that we want for the ESD. Building j is hard,
but once it is done, Kj can be obtained very efficiently:
Proposition 6. Given a formula j in OBDD, one can build in
linear (resp. quadratic) time an ordered ESD (resp. an explic-
itly ordered ESD) logically equivalent to Kj _D or to ¬Kj .

Proof. Let us build an ESD F from j by replacing the ?
leaf by D and each node ite(x,f1,f2) by spl(x,F1,F2), with
F1,F2 obtained recursively from f1,f2. Then we can show
by induction that F is equivalent to Kj _D because (i) by
replacing ? by D we prevent any countermodel of j to be in
a satisfying structure, and (ii) by keeping the > leaf we allow
any model of j to be or not to be in a satisfying structure. The
result follows from M |= Kj _D , M ✓ Mod(j).

1225

Query ESD EBDD EDNF

CO
p

[9]
p

[B19]
p

[B19]
VA,IM � [11] � [B18] � [B18]
EQ,SE � [11] � [B18] � [B18]

MCe
p

[9]
p

[9]
p

[9]
BCEBDD

p
E [12]

p
[12] ?

MXe
p

[10]
p

[10]
p

[10]

Transf. ESD EBDD EDNF

_C
p

[13]
p

[B20]
p

[B20]
^BC

p
E [14]

p
[B20]

p
[B20]

^C • [13] • [B20] • [B20]
¬C • [13] • [B20] • [B20]
FO • [15] • [B21]

p
[B21]

SFO
p

E [15]
p

[B21]
p

[B21]

Table 1: Complexity of operations; names come from Bi-
envenu et al. [2010] and the KC literature. Symbols

p
,•,�

resp. mean “polytime”, “not polytime”, and “not polytime if
P 6= NP”;

p
E means “polytime if the formula is explicitly

ordered, otherwise unknown”. Brackets refer to propositions
here or in Bienvenu et al. [2010].

For ¬Kj , we build an ESD Y from j by replacing ? by
—, > by ?, and each node ite(x,f1,f2) by spl(x,Y1,>)_
spl(x,>,Y2), with Y1,Y2 obtained recursively. An easy in-
duction shows that a structure M satisfies Y exactly if it con-
tains at least one countermodel of j , hence Y ⌘ ¬Kj .

Observe that both constructions do not require j to be a
reduced OBDD. Hence, the resulting ESD is explicitly or-
dered if j is first made explicitly ordered, by recursively
replacing all nodes ite(xi,y, ·), where y = ite(xk,j1,j2),
by ite(xi, ite(x j,y,y), ·), as long as there is a j such that
xi < x j < xk holds (and dually for the other child). This clearly
increases the size of j by a factor |Var(j)| at most.

Moreover, an interesting feature of ESDs is that they can
efficiently represent “only-know” atoms. Recall that Oj is
satisfied by a single structure, namely Mod(j): the agent
knows j , but does not know more [Levesque, 1990]. Mixing
K and O modalities requires specific inference rules, while
representing Oj using K modalities requires the conjunction
Kj ^

V
m|=j ¬K¬m (in general, exponentially long). So the

ability to represent Oj naturally is unique to ESD.
Proposition 7. Given an OBDD j , one can build an explic-
itly ordered ESD logically equivalent to Oj in quadratic time.

Proof. We first make j fully explicit: for each path in j ,
we proceed as in Proposition 6, but also until the leaves
are reached (e.g., we recursively replace ite(xi,>, ·) by
ite(xi, ite(x j,>,>), ·)). Then we replace ? by D, > by —, and
each ite(x,f1,f2) by spl(x,F1,F2), with F1,F2 obtained re-
cursively. The resulting ESD is satisfied exactly by Mod(j)
because D prevents the countermodels of j to be in a satisfy-
ing structure, and — forces its models to be in.

Observing that any formula F is equivalent to
W

M|=F OjM ,
where jM is an OBDD with Mod(j) = M, we easily deduce:
Proposition 8. ESD is complete for subjective S5: for any
subjective S5 formula F, there exists an ESD Y with Y ⌘ F.

5 Queries and Transformations
With EDNF, EBDD, and ESD, we have three available languages
for representing subjective S5 formulas. Before comparing
their ability to represent formulas compactly (Section 6), we
study how efficiently they support queries (i.e., reasoning
tasks) and transformations; this is summarized in Table 1 to
allow for easy comparison. Most results for EDNF and EBDD

come from Bienvenu et al. [2010], hence we focus on ESD.
The first result is easy, so we omit the proof (simply recall
from Section 3 that ? and D have unique reduced ESDs).
Proposition 9. Given a formula F in either EDNF, EBDD or
ESD, it can be decided in polynomial time whether F is sat-
isfiable, and whether it is satisfied by a structure M given in
extension (i.e., as a set of propositional assignments).
Proposition 10. Given a satisfiable formula in EDNF, EBDD,
or ESD, a structure satisfying it can be computed in polytime
(in particular, a polysize model always exists).

Proof. For EDNF (resp. EBDD), we choose a satisfiable term
Kj ^

V
i¬Kyi, and we build M by taking one model of j ^

¬yi for each i, which is polytime since j is in DNF and yi in
CNF (resp. since both are OBDDs). For ESD, at each subnode
we select a satisfiable child, and at each node spl(x,F1,F2),
we build M from M|x and M|x, obtained recursively.

We now turn to validity and entailment checking:
Proposition 11. Given a formula F in ESD, it is coNP-hard
to decide whether F is tautological, and to decide whether
Ky |= F holds for y in NNF or OBDD.

Proof. Let f =
V

i2I ci be a propositional CNF, where each
ci is a clause, and let F be the ESD D_

W
i2I Fi, where Fi is

equivalent to ¬Kci. Since F can be built in polytime (Prop. 6),
and it can be shown that F is tautological if and only if f is
unsatisfiable, we get the first statement. For the second one,
remark that F is tautological if and only if K> entails F.

Proposition 12. For any fixed k, given an explicitly ordered
ESD F and a disjunction Y of at most k atoms Kji or ¬Kji,
where all ji’s are OBDDs, it is polytime to decide F |= Y.

Proof. Since it is polytime to compute the negation of the
atoms in Y (Prop. 6), and since bounded conjunction and sat-
isfiability are polytime on ESD (Prop. 14, 9), we can decide
efficiently whether F^¬Y is unsatisfiable.

However, we conjecture that unbounded clausal entailment
(CE) is hard on ESD. Note that EBDD supports bounded CE
(similar proof as Prop. 12); EDNF supports unbounded CE for
another representation of atoms [Bienvenu et al., 2010].

We finally consider combinations and transformations.
Proposition 13. Given k ESDs F1, . . . ,Fk, an ESD equiva-
lent to

Wk
i=1 Fi can be computed in linear time, but an ESD

of size polynomial in Âk
i=1|Fi| and equivalent to

Vk
i=1 Fi does

not always exist. Also, given an ESD F, an ESD equivalent to
¬F and of size polynomial in |F| does not always exist.

Proof sketch. This is clear for disjunction: ESD allows the _
connective. For conjunction, let Fi be an ESD equivalent to
K(xi = yi)_K(xi 6= yi). Clearly, Âk

i=1|Fi| is linear in k; yet it
can be shown that the smallest ESD equivalent to

Vk
i=1 Fi has

size exponential in k. Finally, since
Vk

i=1 Fi ⌘ ¬
Wk

i=1¬Fi, if
negation were polysize, conjunction also would.

However, bounded conjunction can be computed effi-
ciently on ESDs that are explicitly ordered:

1226

Proposition 14. Given two explicitly ordered ESDs F1,F2,
an explicitly ordered ESD for F1 ^F2 can be computed in
quadratic time.

Proof sketch. One can design an algorithm akin to “apply” on
OBDDs [Bryant, 1986], relying on rules (i) (Y1 _Y2)^Y ⌘
(Y1^Y)_(Y2^Y) and (ii) spl(x,Y1,Y2)^spl(x,Y3,Y4)⌘
spl(x,Y1^Y3,Y2^Y4) (explicit ordering guarantees that the
current split atom is the same).

We finally consider forgetting. Given a variable x and a
structure M, Fo(x,M) is defined to be the structure M|x[M|x.
For a subjective formula F, Fo(x,F) is any formula Y satis-
fying Mod(Y) = {Fo(x,M) | M 2 Mod(F)}; this is naturally
extended to forgetting sets of variables. Forgetting turns out
to be polytime for explicitly ordered ESD, but only when re-
stricted to a bounded number of variables.
Proposition 15. Given an explicitly ordered ESD F and a
propositional variable x, an ESD for Fo(x,F) can be com-
puted in polytime. However, given a set Y of variables, it is
not guaranteed that there is a polysize ESD for Fo(Y,F).

Proof. Clearly, forgetting distributes over _. Now let F =
spl(y,F1,F2). If x > y, then spl(y,Fo(x,F1),Fo(x,F2)) is ap-
propriate, and x < y cannot occur because F is explicitly or-
dered, so let F = spl(x,F1,F2). It follows from the defini-
tions that Fo(x,F) is equivalent to Y = F1 ✏ F2 defined by
Mod(Y) = {M1[M2 | M1 |= F1,M2 |= F2}. Finally, it can be
shown that binary ✏ can be applied efficiently on explicitly
ordered ESDs, using an algorithm similar to the one sketched
above for binary ^. Now the negative result can be lifted from
OBDD, by considering the case Fo(Y,Kj)⌘ K(Fo(Y,j)).

6 Succinctness
We now turn to the comparison of the three languages with
respect to their ability to represent S5 formulas compactly.
Definition 16. A language L1 is at least as succinct as an-
other language L2, denoted by L1 s L2, if and only if there
exists a polynomial P verifying that for any formula F2 in L2,
there exists an equivalent F1 in L1 such that |F1| P(|F2|).

The succinctness relation is a preorder; we write L1 6?s L2 if
both L1 ⇥s L2 and L1 ⇤s L2 hold, that is, if the two languages
are incomparable with respect to succinctness. The following
proposition shows that it is the case for two pairs of our three
languages when restricted to positive epistemic formulas (we
denote by L+ the language L restricted to positive formulas).
Proposition 17. EDNF+ 6?s EBDD

+ and EDNF+ 6?s ESD
+ hold.

Proof. We first show EBDD+ ⇥s EDNF
+. Let (jn)n be a family

of DNFs such that for no polynomial P does there exist a
family of OBDDs (yn)n with 8n,yn ⌘ jn and |yn| P(|fn|)
(such a family exists since OBDD 6?s DNF, see Darwiche and
Marquis [2002]). Consider the family (Kjn)n of formulas in
EDNF+ (actually, of epistemic atoms). It can be shown that the
smallest representations of Kjn in EBDD are of the form Kyn
for some OBDD yn ⌘ jn. Since by assumption such yn is
exponentially larger than jn, we indeed get EBDD+ ⇥s EDNF

+.

We can show EDNF+ ⇥s EBDD
+ similarly, using OBDDs

which have no equivalent polysize DNFs. Now, for ESD, using
the construction of Prop. 6 we can show that a smallest ESD
for Kj (j 2 OBDD) has essentially the same size as j , hence
the proof of EDNF+ 6?s EBDD

+ works for EDNF+ 6?s ESD
+.

As a corollary, we get ESD 6?s EDNF (since if any ESD could
be turned into a polysize EDNF, it would be the case in par-
ticular for positive formulas, and conversely), and we recover
EBDD 6?s EDNF [Bienvenu et al., 2010, Prop. 17].

We are thus left with comparing ESD and EBDD. We show
that they are incomparable in general, but that ESD is strictly
more succinct on positive formulas.
Proposition 18. It holds that ESD⇥s EBDD.

Proof sketch. Let F be the EBDD
Vn

i=1¬K(ji), with ji an
OBDD for x $ xi, and assume 8i,x < xi. The smallest ESD
equivalent to F is

W
I✓{1,...,n} spl(x,

V
i2I ¬Kxi,

V
i/2I ¬Kxi) (not

proven here for space reasons), which is exponentially larger
than F.

Proposition 19. ESD+ is strictly more succinct than EBDD+

(and, as a corollary, it holds that EBDD 6?s ESD).

Proof. A formula in EBDD+ is simply a disjunction of positive
atoms Kfi, with each fi an OBDD. From Proposition 6 and
the fact that _ is a connective in ESD, we get ESD+ s EBDD

+.
Now consider the family of formulas (Fn)n, with Fn =Vn

i=1(Kxi _Kxi). It can be seen that the only EBDD equiv-
alent to Fn is

W
t(Kt), where t ranges over all 2n terms on

x1, . . . ,xn (represented as OBDDs). Now, it can also be seen
that the ESD of Figure 1 (middle) is equivalent to Fn and has
size linear in n; hence ESD+ ⇤s EBDD

+. This in turn entails
ESD⇤s EBDD, and EBDD 6?s ESD with Proposition 18.

Interestingly, note that representing in s-S5-DNFL,L0 the
family (Fn)n used in the previous proof requires exponen-
tial space for any choice of L,L0, since the proof works at the
epistemic level. This shows that even the language built as the
union of all s-S5-DNFL,L0 languages (over all languages L,L0)
is not at least as succinct as ESD for representing positive epis-
temic formulas. This spatial efficiency of ESD does not hold
only for positive epistemic formulas: as seen in the previous
section, ESD can succinctly represent atoms of the form Oj ,
while s-S5-DNFL,L0 cannot (whatever L,L0). This gives an ex-
ample of formulas which are not positive and on which ESD
is more succinct than s-S5-DNFL,L0 as a whole.

Finally, the following result intuitively shows that while
transforming a positive ESD into an equivalent EBDD can
require exponential space, it is not actually difficult.
Proposition 20. There exist a polynomial P and an algorithm
transforming any formula F in ESD+ into the (unique) equiv-
alent formula Y in EBDD+ in time bounded by P(|F|, |Y|).

Proof. The algorithm simply consists in “pushing the dis-
junctions upwards” in the ESD, i.e., replacing bottom-up each
node spl(x,F1 _ F2,F3) by spl(x,F1,F3) _ spl(x,F2,F3)
(and symmetrically for disjunctions in the other child).
Clearly, this process converges to an equivalent ESD which
is structurally equal to Y. Since the size of the ESD only in-
creases at each step, the process is output-polynomial.

1227

10 12 14 16 18

0

2,000

4,000

m

#n
od

es

10 12 14 16 18

0

0.5

1

1.5
·104

m
10 12 14 16 18

0

0.2

0.4

0.6

0.8

m

tim
e

(s
ec

.)

10 12 14 16 18

0

0.5

1

1.5

m
ESD/1 EBDD/1 EDNF/1 ESD/3 EBDD/3 EDNF/3 ESD/7 EBDD/7 EDNF/7

Figure 2: Results for positive feedbacks. From left to right: size for n = 15; size for n = 30; time for n = 15; time for n = 30.
Each curve corresponds to a pair language/term size. We do not report time for EDNF with t = 7, which was very bad.

This gives an interesting perspective about the relation be-
tween the two languages: while EBDD+ can support queries
that ESD+ does not support, this proposition guarantees that
ESD+ will only perform polynomially worse than EBDD+ on
these queries. All in all, positive formulas are generally more
compact in ESD, and in the worst case we can always “un-
compress” the formula and fall back on EBDD.

7 Experiments
To investigate the languages in practice, we ran experiments
on randomly drawn scenarios inspired from planning. Our
first set of experiments focused on positive formulas, by run-
ning offline progressions of belief states by actions test(ji).
For each run, we drew m actions of the form test(ji) (i =
1, . . . ,m), with ji a random (uniform, satisfiable) term of a
given size t. Then, starting from F0 =>, we iteratively com-
puted the belief state Fi, i = 1, . . . ,m, by progressing Fi�1
through test(ji), that is, by computing Fi�1 ^ (Kji _K¬ji).
For instance, with t = 3, a possible term was x4 ^ x1 ^ x2,
yielding progression by K(x4 ^ x1 ^ x2)_K(x4 _ x1 _ x2).

We ran experiments with a moderate and a larger number
of variables (n= 15 and n = 30; recall that there are 22n struc-
tures over n atoms!) with term sizes t = 1,3,7, and numbers
of actions m = 1, . . . ,18. For each tuple (n, t,m), we averaged
the results over 100 runs. Figure 2 plots the size of the fi-
nal belief state Fm, and the time taken for computing it iter-
atively from F0. It can be seen that ESD provides the most
compact representations, especially for small terms: as terms
get larger (e.g., t = 7), feedbacks Kji are most constrained
and the set of belief states shrinks, masking the differences
between ESDs and EBDDs. On the other hand, it can be seen
that in practice, EDNF does not provide compact representa-
tions. For running time, the advantage of ESD over EBDD and
EDNF is not so clear; the gain in compactness in ESD comes
with some computational overhead in practice (notably, re-
duction operations).

We also experimented on entailment: at the end of each

run, we decided Fm |= (Kxi _K¬xi) for all atoms xi. The re-
sults (not reported here for lack of space) show that all three
languages are very efficient at this, even when Fm is large.

We performed a second set of experiments, with the same
setup except that for each feedback Kji and K¬ji, a polarity
was drawn uniformly: for instance, the i-th action could yield
an epistemic progression by Kji_¬K¬ji. Results (again not
reported in detail) show that for this setting the most interest-
ing language is EBDD, both in succinctness and computation
time. Both EDNF and ESD are clearly worse, and EDNFs tend
to be more compact but not more efficient than ESDs.

Finally, we experimented interleaving progression by
test(ji)’s (with positive feedbacks) and progression by on-
tic actions similar to conditional STRIPS actions, such as
y = (x1 ^ x02 ^ x03)_ (x1 ^ x01 ^ x03), which sets x2,x3 to > in
states satisfying x1, and x1 to > and x3 to ? in other states.
Progressing a belief state Fi�1 by an ontic action y essen-
tially consists in computing Fi�1 ^ Ky and forgetting all
nonprimed atoms in the result. We thus aimed at measuring
the efficiency of forgetting in all three languages. The results
show that forgetting is cheap for all languages, and we ob-
served the same trends as in the first set of experiments.

8 Conclusion
We introduced the language ESD of epistemic splitting di-
agrams for representing subjective S5 formulas. We inves-
tigated ESD and the known languages s-S5-DNFDNF,CNF and
s-S5-DNFOBDD,OBDD (called EDNF and EBDD here), both from the
viewpoint of knowledge compilation and with experiments
on random scenarios inspired from contingent planning. This
is to our knowledge the first empirical study on effective S5
representations, although work in planning addressed specific
issues of representation [e.g. Hoffmann and Brafman, 2005].

Our theoretical and empirical results complement each
other. On positive formulas, ESD is more succinct than EBDD,
while supporting mostly the same queries and transforma-
tions; this was confirmed by the experiments. On the other

1228

hand, both are incomparable to EDNF for succinctness, yet in
practice EDNFs are clearly less compact. Experiments also
show that computations are heavier on ESD, partly balancing
succinctness. The picture is different on general formulas, for
which EBDD turns out to be very succinct and efficient.

A short-term perspective of this work is to revisit with effi-
cient representations, and notably EBDD and ESD, the standard
planning approaches that (explicitly or not) use S5 reasoning.

References
[Bienvenu et al., 2010] Meghyn Bienvenu, Hélène Fargier,

and Pierre Marquis. Knowledge compilation in the modal
logic S5. In Proc. 24th AAAI Conference on Artificial In-
telligence (AAAI 2010), 2010.

[Bonet and Geffner, 2014] Blai Bonet and Hector Geffner.
Belief tracking for planning with sensing: Width, com-
plexity and approximations. J. Artificial Intelligence Re-
search, 2014.

[Bryant, 1986] Randal E. Bryant. Graph-based algorithms
for Boolean function manipulation. IEEE Transactions on
Computers, 35(8):677–691, 1986.

[Bryant, 1992] Randal E. Bryant. Symbolic boolean manip-
ulation with ordered binary decision diagrams. ACM Com-
put. Surv., 24(3):293–318, 1992.

[Darwiche and Marquis, 2002] Adnan Darwiche and Pierre
Marquis. A knowledge compilation map. J. Artificial In-
telligence Research, 17:229–264, 2002.

[Fagin et al., 1995] Ronald Fagin, Joseph Y. Halpern, Yoram
Moses, and Moshe Y. Vardi. Reasoning about Knowledge.
MIT Press, 1995.

[Herzig et al., 2003] Andreas Herzig, Jérôme Lang, and
Pierre Marquis. Action representation and partially ob-
servable planning using epistemic logic. In Proc. 18th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI 2003), pages 1067–1072, 2003.

[Hoffmann and Brafman, 2005] Jörg Hoffmann and Ronen I.
Brafman. Contingent planning via heuristic forward
search with implicit belief states. In Proc. 15th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2005), pages 71–80, 2005.

[Huang and Darwiche, 2005] Jinbo Huang and Adnan Dar-
wiche. DPLL with a trace: From SAT to knowledge com-
pilation. In Proc. 19th International Joint Conference on
Artificial Intelligence (IJCAI 2005), pages 156–162, 2005.

[Iocchi et al., 2004] Luca Iocchi, Thomas Lukasiewicz,
Daniele Nardi, and Riccardo Rosati. Reasoning about
actions with sensing under qualitative and probabilistic
uncertainty. In Proc. 16th European Conference on
Artificial Intelligence (ECAI 2004), pages 818–822. IOS
Press, 2004.

[Levesque, 1990] Hector J. Levesque. All I know: A study in
autoepistemic logic. Artificial Intelligence, 42(2-3):263–
309, 1990.

[Marquis, 2015] Pierre Marquis. Compile! In Proc. 29th
AAAI Conference on Artificial Intelligence (AAAI 2015),
pages 4112–4118, 2015.

[Meinel and Theobald, 1998] Christoph Meinel and
Thorsten Theobald. Algorithms and Data Structures
in VLSI Design: OBDD — Foundations and Applications.
Springer, 1998.

[Petrick and Bacchus, 2004] Ronald P. A. Petrick and
Fahiem Bacchus. Extending the knowledge-based ap-
proach to planning with incomplete information and
sensing. In Proc. 14th International Conference on
Automated Planning and Scheduling (ICAPS 2004), pages
2–11, 2004.

1229

