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Abstract
Model-Based Diagnosis is a principled approach
to identify the possible causes when a system un-
der observation behaves unexpectedly. In case the
number of possible explanations for the unexpected
behavior is large, sequential diagnosis approaches
can be applied. The strategy of such approaches is
to iteratively take additional measurements to nar-
row down the set of alternatives in order to find the
true cause of the problem.

In this paper we propose a sound and complete
sequential diagnosis approach which does not re-
quire any information about the structure of the di-
agnosed system. The method is based on the new
concept of “partial” diagnoses, which can be effi-
ciently computed given a small number of minimal
conflicts. As a result, the overall time needed for
determining the best next measurement point can
be significantly reduced. An experimental evalu-
ation on different benchmark problems shows that
our sequential diagnosis approach needs consider-
ably less computation time when compared with an
existing domain-independent approach.

1 Introduction
Model-Based Diagnosis (MBD) techniques aim at determin-
ing the possible causes of an unexpected behavior of an ob-
served system based on knowledge about the system’s ex-
pected behavior when all of its components work correctly.
The basic MBD principles were developed in the late 1980s
[Davis, 1984; Reiter, 1987; de Kleer and Williams, 1987] and
have since then been applied to various problem settings in-
cluding electronic circuits and various sorts of software ar-
tifacts like knowledge bases, logic programs, ontologies, or
spreadsheets.

One challenge when applying MBD is that the number of
possible diagnoses can sometimes be large, making it infea-
sible for the user to check each diagnosis individually. There
are, e.g., 6,944 diagnoses for the system c432 (scenario 0)
of the DX 2011 diagnosis competition benchmark even when
we limit the maximum cardinality of the diagnoses to five.

Different approaches to deal with the problem exist. One
option is to rank the diagnoses based on fault probabilities so

that the chance increases that the user finds the true diagnosis
earlier. Or, we can focus the diagnostic process itself on the
most probable diagnoses [de Kleer, 1992] and compute only
a subset of all diagnoses, which comes at the price of incom-
pleteness. Finally, we can take additional measurements to
discriminate between fault causes, e.g., based on information-
theoretic considerations [de Kleer and Williams, 1987].

[Shchekotykhin et al., 2012] more recently compared two
different strategies for taking the next measurement, applied
to the problem of ontology debugging. These strategies are
part of a sequential diagnosis process in which the ontology
engineer is interactively queried about the correctness of cer-
tain axioms inferred by the faulty ontology. The answers are
then used to reduce the space of the remaining diagnoses.
Compared to heuristic or approximate approaches, the advan-
tage of their method is that it is complete, i.e., that the true er-
ror will be identified at the end, which can be a requirement in
different MBD-application domains like software debugging.

One limitation of the work of [Shchekotykhin et al., 2012]
is that for hard problem instances the computation of a query
can be computationally expensive. In their approach, they
therefore first search for a few leading diagnoses given the
current state of the sequential debugging process and then de-
termine the optimal query to the user, i.e., the one that parti-
tions this set of diagnoses in the best possible way. However,
for some real-world cases the computation of even a few lead-
ing diagnoses is challenging [Shchekotykhin et al., 2014].

In our work we address the same problem setting and
aim to reduce the time of the sequential diagnosis sessions.
Specifically, the technical contribution of our work is the no-
tion of “partial” diagnoses, which can be efficiently computed
using a subset of the minimal conflicts. As usual, we then de-
termine the best possible partitioning of the partial diagnoses,
which however typically form a smaller search space than in
the original problem setting. Moreover, we prove that our se-
quential method remains complete, i.e., it is guaranteed that
the true problem cause – called preferred diagnosis – will be
found. An experimental evaluation on different benchmarks
shows significant reductions of the diagnosis time compared
to previous works. Our method furthermore is not dependent
on the availability of application-specific problem decompo-
sition methods and can therefore be applied to efficiently di-
agnose complex ontologies or electronic circuits without ex-
ploiting problem-specific structural characteristics.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

1251



2 Sequential diagnosis
Before we describe our technical approach we will briefly
summarize the ideas of sequential (interactive) diagnosis
based on the definitions by [Reiter, 1987].
Definition 1 (Diagnosable system). Let COMPS be a set of
components represented as a finite set of constants, and SD be
a system description represented by a finite set of first-order
sentences, then (SD, COMPS) defines a diagnosable system.

The pair (SD, COMPS) captures the normal behavior of the
system when we assume that all components work properly.
The latter can be expressed by a set {¬AB(c) | c 2 COMPS},
where the “abnormal” AB/1 predicate is used in SD to model
the expected behavior of the components. Consequently, the
set of sentences SD [ {¬AB(c) | c 2 COMPS} describing the
normal behavior of the diagnosable system must be consis-
tent. A diagnosis problem arises when the observed behavior
of the system – represented as a finite set of consistent first-
order sentences OBS – differs from the expected one.

Furthermore, information about a fault can be obtained by
means of measurements. Following the proposals of [Reiter,
1987; de Kleer and Williams, 1987; Felfernig et al., 2004] we
allow a user to provide positive and negative measurements.
Definition 2 (Diagnosis). Let (SD, COMPS) be a diagnos-
able system and OBS be a set of observations such that
SD[{¬AB(c) | c 2 COMPS} is consistent and SD[{¬AB(c) |
c 2 COMPS} [ OBS is inconsistent. In addition, let P and N
be consistent sets of first-order sentences, called positive and
negative measurements resp., such that 8n 2 N : P 6|= n.

Then, a diagnosis for (SD, COMPS, OBS, P,N) is a subset-
minimal set � ✓ COMPS for which a knowledge base

• KB [�] := SD [ OBS [ {AB(c) | c 2 �} [ {¬AB(c) |
c 2 COMPS \�} is consistent,

• KB [�] [ P is consistent, and

• 8n 2 N : KB [�] [ P 6|= n.
Any diagnosis � corresponds to a set of components that,

if assumed to be faulty, explain the observed misbehavior. If
there are more diagnoses than can be manually inspected,
additional measurements are taken in sequential MBD ap-
proaches to find the so-called preferred diagnosis �⇤, which
corresponds to the set of actually faulty components.
Definition 3 (Preferred diagnosis). Let �⇤ be a diagnosis
for (SD, COMPS, OBS, P,N). �⇤ is the preferred diagnosis
iff �⇤ = {c | c 2 COMPS, c is faulty}.

In our approach – as in many others – the computation of
diagnoses is based on the concept of conflicts.
Definition 4 (Conflict). A set of components CS ✓ COMPS
is a conflict for (SD, COMPS, OBS, P,N) iff (a) SD [ OBS [
P [ {¬AB(c) | c 2 CS} is inconsistent or (b) 9n 2 N :
SD [ OBS [ P [ {¬AB(c) | c 2 CS} |= n. A conflict CS is
minimal iff there is no CS 0 ⇢ CS such that CS 0 is a conflict.

Informally speaking a conflict is a set of components that
cannot all work correctly at the same time given the observa-
tions and measurements. To resolve a minimal conflict every
diagnosis therefore needs to comprise at least one of its com-
ponents. Given a method for computing minimal conflicts

for (SD, COMPS, OBS, P,N) such as QUICKXPLAIN [Junker,
2004] or PROGRESSION [Marques-Silva et al., 2013], algo-
rithms like HS-Tree [Reiter, 1987] find all diagnoses D by
enumerating all subset-minimal hitting sets of the set of all
minimal conflicts CS.

In sequential diagnosis settings, we are interested in the
true cause of the error. This preferred diagnosis is found
through additional information about the correctness of com-
ponents which is obtained through measurements.
Property 1. �⇤ is the preferred diagnosis for
(SD, COMPS, OBS, P,N) iff �⇤ is a diagnosis for
(SD, COMPS, OBS, P ⇤, N⇤), where P ⇤ := {¬AB(c) |
c 2 COMPS, c is correct} and N⇤ := {¬AB(c) | c 2
COMPS, c is faulty}.

According to Definition 2 only one diagnosis ex-
ists for (SD, COMPS, OBS, P ⇤, N⇤) and, consequently, by
Property 1 only one preferred diagnosis �⇤ for any
(SD, COMPS, OBS, P,N). However, in many cases the sets P
and N do not comprise sufficient measurements to uniquely
determine �⇤. In order to find �⇤, sequential methods ex-
tend the sets P and N by asking a user or some oracle to
perform additional measurements allowing the algorithm to
rule out irrelevant diagnoses [de Kleer and Williams, 1987;
Shchekotykhin et al., 2012]. The problem in this context is to
determine “good” measurement points and correspondingly
construct a set of first-order sentences Q, called query. An
oracle must evaluate the correctness of the sentences in Q,
thereby providing the required additional measurements.

Given a set of diagnoses D for (SD, COMPS, OBS, P,N),
queries are designed such that they induce two non-empty
disjoint sets of diagnoses D1, D2 ✓ D for which: (i) If the
elements of Q are stated to be correct by some oracle – such
as an MBD user or some automated system1 – then all el-
ements of D2 are not diagnoses for (SD, COMPS, OBS, P [
Q,N). (ii) Otherwise, if the elements of Q are considered
to be incorrect, all elements of D1 are not diagnoses for
(SD, COMPS, OBS, P,N [Q).
Definition 5 (Query). Let D be a set of diagnoses for
(SD, COMPS, OBS, P,N) and Q be a set of first-order sen-
tences. Then Q is a query iff the sets DP := {�i 2 D |
KB [�i] [ P |= Q} and DN := {�j 2 D | KB [�j ] [ P [
Q is inconsistent} are not empty.

A query Q induces a triple (DP , DN , D;) of pairwise dis-
joint subsets of the set D, where D; = D \ (DP [DN ).

The overall goal is to use a series of queries to narrow down
the set of diagnoses D and to finally find the preferred diagno-
sis �⇤. To select the best query we can use different strategies
such as split-in-half, entropy, or risk-optimization [de Kleer
and Williams, 1987; Rodler et al., 2013].

3 Query Computation with Partial Diagnoses
3.1 Algorithm Details
Algorithm 1 summarizes our approach, which in contrast to
previous works can operate on the basis of “partial” diag-
noses. In its main loop the algorithm repeatedly searches

1As in previous works we assume the oracle to answer correctly.
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Algorithm 1: FINDDIAGNOSIS

Input: A tuple I := (SD, COMPS, OBS, P,N), k:
number of minimal conflicts, n: number of
diagnoses

Output: A preferred diagnosis �⇤

1 �⇤  ;;
2 while true do
3 C  FINDCONFLICTS(I,�⇤, k);
4 if C = ; then return �⇤;
5 �⇤  �⇤ [ GETPREFERREDPD(I, C, ;, n);

function GETPREFERREDPD (I , C, PD , n)
6 PD  PD [ FINDPDS(C, n� |PD |);
7 if |PD | = 1 then return �⇤ : �⇤ 2 PD ;
8 Q GETQUERY(I,PD);
9 (P 0, N 0) ASKQUERY(Q);

10 I  UPDATEMEASUREMENTS(I, P 0, N 0);
11 C  UPDATECONFLICTS(I, C);
12 PD  UPDATEPD(I,PD);
13 return GETPREFERREDPD(I, C,PD , n);

for such preferred partial diagnoses and thereby incremen-
tally identifies the preferred diagnosis �⇤. The idea of partial
diagnoses is that we do not compute all conflicts and diag-
noses for a given problem in each iteration, but only deter-
mine a subset of the minimal conflicts. Finding such a subset
of the existing minimal conflicts can be done e.g. with the re-
cently proposed MERGEXPLAIN method [Shchekotykhin et
al., 2015]. Then, we find a set of minimal hitting sets for this
subset of the conflicts, which correspond to partial diagnoses.
Definition 6 (Partial Diagnosis). � ✓ COMPS is a partial di-
agnosis for a set of minimal conflicts C ✓ CS iff 8CS 2 C :
� \ CS 6= ; and there is no �0 ⇢ � such that �0 is a partial
diagnosis.2

Algorithm 1 starts with the computation of at most k min-
imal conflicts C (FINDCONFLICTS) such that 8CS 2 C :
CS \�⇤ = ;. In case the returned set is empty, i.e., the pro-
vided system description is consistent with all observations
and measurements, the algorithm returns �⇤ = ; as a diag-
nosis. Otherwise, it calls GETPREFERREDPD to interactively
find a preferred partial diagnosis for the minimal conflicts C.

GETPREFERREDPD calls FINDPDS which returns at most
n leading partial diagnoses of C called PD . Depending on C,
these partial diagnoses might have different properties. We
consider two cases:

1. FINDCONFLICTS returned all minimal conflicts of the
original problem (C = CS). In this case all partial di-
agnoses computed by FINDPDS are diagnoses. Existing
methods, e.g. [de Kleer and Williams, 1987], guarantee
that GETPREFERREDPD finds the preferred diagnosis.

2. Only some of the minimal conflicts are returned in the
set C. Therefore, the partial diagnoses returned by
FINDPDS are not necessarily diagnoses.

2Note that our definition of a partial diagnosis is different from
the one in [de Kleer et al., 1992].

If PD comprises only one partial diagnosis, then its only
element �⇤ is returned as the preferred partial diagnosis. Oth-
erwise, Algorithm 1 calls GETQUERY which computes a
query Q to discriminate between the elements of PD . Inside
GETQUERY, existing methods, e.g., entropy- and probability-
based ones, can be used to determine the “best” query. These
methods internally use the underlying problem-specific rea-
soning engine to derive the consequences of the different an-
swers to possible queries. This engine can for example be
a Description Logic reasoner in case of ontology debugging
problems [Horridge et al., 2008; Shchekotykhin et al., 2012]
or a constraint solver when the problem is to diagnose digital
circuits [de Kleer and Williams, 1987].

Next, Algorithm 1 asks an external oracle (ASKQUERY)
for a classification of the query sentences into positive and
negative ones (P 0 and N 0). If the oracle for example answers
that a queried component c works correctly, ¬AB(c) or any
other set of logically equivalent first-order sentences is added
to P 0, and to N 0, otherwise. In general, queries are not limited
to atoms over the AB predicate. An MBD system can for
example use problem-specific knowledge to convert Q into a
logically equivalent set of first-order sentences that are easier
to answer for users. We can, e.g., ask users about the specific
observed outcomes of a set of gates in a faulty circuit based on
knowledge about the expected behavior of the gates [Reiter,
1987; de Kleer and Williams, 1987].

These sentences are then added to the corresponding sets
of positive P and negative N measurements of the updated
problem description I (UPDATEMEASUREMENTS). The up-
date requires the set C to be reviewed because some of its
elements might not be minimal conflicts given the new mea-
surements. UPDATECONFLICTS therefore internally imple-
ments a minimization method to ensure the minimality of the
conflicts in C. A trivial method would be to test for every
ci 2 CS whether CS 0 = CS \ {ci} is inconsistent. If this is
the case, CS is replaced by CS 0. Then, UPDATEPD removes
all elements of PD that are not partial diagnoses for this up-
dated set of minimal conflicts C. We do this because these
removed partial diagnoses comprise components that are not
elements of any updated minimal conflict anymore. Finally,
we recursively call GETPREFERREDPD to continue to search.

When GETPREFERREDPD returns, its result is added to
�⇤. Algorithm 1 then continues with the outermost while
loop to check if additional conflicts exist given the updated
measurements in I and the partial preferred diagnosis �⇤.

3.2 Illustrating Example
Let us consider the system 74L85, Scenario 10, from the DX
Competition 2011 Synthetic Track. There are three minimal
conflicts: CS ={{o1}, {o2, z2, z22}, {o2, o3, z7, z9, z10,
z11, z12, z13, z14, z17, z18, z19, z22, z27}}. These conflicts
are not known in advance. The number of minimal hitting
sets (diagnoses) for CS is 14, i.e., |D|=14. The preferred
diagnosis �⇤ as specified in the benchmark is {o1, z22}.

The proposed interactive diagnosis process starts with the
computation of a subset C of the existing minimal conflicts
using MERGEXPLAIN, e.g., C={{o1}, {o2, z2, z22}} for
any k > 1. We then compute the minimal hitting sets of
C, leading to the partial diagnoses PD={{o1, o2}, {o1, z2},
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{o1, z22}}, which are all subsets of diagnoses of the original
problem. Based on this outcome, we compute the query Q
that partitions the elements in PD in the best possible way
using, e.g., an entropy-based strategy. The goal is to remove
as many non-preferred diagnoses as possible through the ad-
ditional measurement.

Let us assume that Q={¬AB(o2)}, i.e., we ask the user if
component o2 is working correctly. Since o2 is not actually
faulty, the user answers that o2 is correct, which means that
we can add o2 to P and remove it from the conflicts in C, i.e.,
C={{o1}, {z2, z22}}. Next, we update PD and remove all
elements that are no partial diagnoses for the updated set of
C resulting in PD={{o1, z2}, {o1, z22}}. Within the next
recursive call of GETPREFERREDPD we first search for new
partial diagnoses, but as we have already found all partial di-
agnoses for the conflicts in C, PD remains unchanged. As
PD still contains more than one element, the function contin-
ues to search for the preferred partial diagnosis.

In a next step we compute {z22} as the optimal query Q.
Because the user correctly answers that z22 is not working
normally, we again update the measurements with the new
knowledge by adding z22 to N . This means that the pre-
ferred diagnosis must be a superset of {z22} and we can re-
move all elements of PD that do not contain z22, resulting in
PD={{o1, z22}}. Furthermore, we can ignore all conflicts
that contain z22 in the next steps. The next recursive call of
GETPREFERREDPD will directly return {o1, z22} as the pre-
ferred partial diagnosis �⇤, because again no additional partial
diagnosis can be found.

Back in the main algorithm, within the while loop we try
to find new conflicts with the updated measurements in I and
the partial preferred diagnosis stored in �⇤. As �⇤ already
resolves all conflicts of the original diagnosis problem, we do
not have to search for the third conflict in CS and can return
�⇤={o1, z22} as the preferred diagnosis. As a result, in the
example only two user interactions were required to narrow
down the set of diagnoses to the true diagnosis.

3.3 Algorithm Properties
In this section we show that Algorithm 1 always terminates
and returns the preferred diagnosis �⇤. First, we show that
on every iteration GETPREFERREDPD finds a query that dis-
criminates between the partial diagnoses in the set PD .
Proposition 1. Let C be an arbitrary set of minimal conflicts
for (SD, COMPS, OBS, P,N) and PD be a set of partial diag-
noses for C, such that |PD | > 1. Then, a set of first-order
sentences Q exists which is a query (Definition 5) for the set
of diagnoses D = {� 2 D | 9� 2 PD : � ✓ �}.

Proof. Consider two arbitrary partial diagnoses �0, �00 2 PD .
By Definition 6, at least one minimal conflict set CS 2 C
exists for �0 and �00 which is hit in different ways. I.e., there
exists at least one constant c 2 CS such that c 2 �0 and
c /2 �00. The component c can be used to generate a query Q
discriminating between the hitting sets.

Since c is an element of some minimal conflict, there exists
at least one diagnosis �i such that c 2 �i and, by Defini-
tion 2, KB [�i] comprises a sentence AB(c). Similarly, there
exists at least one diagnosis �j such that c /2 �j and KB [�j ]

comprises ¬AB(c). Consequently, KB [�i] |= AB(c) and
KB [�j ] |= ¬AB(c). The set Q = {AB(c)} is a query,
since DP = {�i 2 D | �0 ✓ �i} and DN = {�j 2
D | �00 ✓ �j} are not empty. Any other partial diagnosis
� 2 PD \ {�0, �00} can then be classified w.r.t. c into one of
the sets DP (if c ✓ �) and DN (if � \ (CS \ c) 6= ;).
Corollary 1. GETPREFERREDPD always terminates and re-
turns a preferred partial diagnosis �⇤.

Proof. By Proposition 1, a query exists for an arbitrary set of
partial diagnoses PD . Consider a minimal conflict CS 2 C
and a query Q = {AB(c)} where c 2 CS . If GETQUERY
returns P 0 such that ¬AB(c) 2 P after UPDATEMEASURE-
MENTS, then UPDATECONFLICTS must replace CS with CS 0

such that c /2 CS 0 by Definition 4 (a). Otherwise, ¬AB(c) 2
N and UPDATECONFLICTS replaces CS with CS 0 = {c},
since by Definition 4 (b) CS 0 is a minimal conflict, i.e.,
SD [ OBS [ P [ {¬AB(c)} |= ¬AB(c). Therefore, given
any answer of an oracle at least one element of PD must con-
tain a component, which is not in any of the updated minimal
conflicts. Such partial diagnoses are removed in line 12 and
cannot be re-computed in further iterations.

Consequently, GETPREFERREDPD terminates and returns
the only remaining partial diagnosis �⇤, which is consistent
with all positive and negative measurements.

Theorem 1. FINDDIAGNOSIS always terminates and returns
a preferred diagnosis �⇤ given correct answers of an oracle.

Proof. First we show that a set of components �⇤ hits every
conflict in CS and then that �⇤ is subset-minimal.

For any set of minimal conflicts C returned by FIND-
CONFLICTS the function GETPREFERREDPD always re-
turns the preferred partial diagnosis �⇤ for an updated
(SD, COMPS, OBS, P,N). The addition of �⇤ to �⇤ (line 5)
ensures that none of the minimal conflicts C will be returned
by FINDCONFLICTS in the next iteration. Consequently, Al-
gorithm 1 terminates as soon as �⇤ hits every CS 2 CS.

Furthermore, �⇤ is subset-minimal since (a) �⇤ com-
prises only components of some minimal conflict CS 2
CS (by definition of GETPREFERREDPD) and (b) every
CS 2 CS is hit by �⇤ only once. The latter is due to
fact that GETPREFERREDPD returns only if �⇤ is the only
diagnosis for the updated set of minimal conflicts C and
(SD, COMPS, OBS, P,N). Consequently, |CS | = 1 for every
CS 2 C. Otherwise, there would be another partial diagnosis
in PD and GETPREFERREDPD would continue.

4 Experimental Evaluation
We evaluated our method on two sets of benchmark prob-
lems: (a) the ontologies of the OAEI Conference benchmark
as used in [Shchekotykhin et al., 2014], (b) the systems of the
DX Competition (DXC) 2011 Synthetic Track. As the main
performance measure we use the wall clock time to find the
preferred diagnosis. The oracle’s deliberation time to answer
a query was assumed to be independent of the query as done
in [Shchekotykhin et al., 2014]. In addition, we report how
many queries (#Q) were required to find the preferred diag-
nosis and how many statements (#S) were queried.
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We compared the following strategies:

1. INV-HS-DFS: The Inverse-HS-Tree method proposed
in [Shchekotykhin et al., 2014] which computes diag-
noses using Inverse QuickXplain and builds a search tree
in depth-first manner to find additional diagnoses.

2. MXP-HS-DFS: Our proposed method which uses
MERGEXPLAIN to find a set of conflicts (FIND-
CONFLICTS) and a depth-first variant of Reiter’s
Hitting-Set-Tree algorithm [Reiter, 1987] to find partial
diagnoses based on the found conflicts (FINDPDS).

For both strategies, we set the number of diagnoses n that are
used to determine the optimal query to 9 as done in [Shcheko-
tykhin et al., 2014], and used the best-performing Entropy
strategy for query selection (GETQUERY). We did not set a
limit k on the number of conflicts to search for during a sin-
gle call of MERGEXPLAIN. For the ontology benchmark, the
failure probabilities used by the Entropy strategy are prede-
fined. For the DXC problems, we used random probabilities
and added a small bias for the actually faulty components to
simulate partial user knowledge about the faulty components.
The components were ordered according to the probabilities,
which is advantageous for the conflict detection process for
both tested algorithms.3 To simulate the oracle, we imple-
mented a software agent that knew the preferred diagnosis in
advance and answered all queries accordingly. All tests were
performed on a modern laptop computer. The algorithms
were implemented in Java. Choco was used as a constraint
solver and HermiT as Description Logic reasoner.

Problem Characteristics: Table 1 shows the characteris-
tics of the ontology benchmarks. This evaluation scenario is
designed to verify whether our method is applicable to prob-
lems for which the consistency checking is beyond NP. There-
fore, we selected a set of hard cases for which the problem of
consistency checking is at least EXPTIME-complete.

Since no pre-defined preferred diagnoses exist for this
benchmark, we randomly selected one of the diagnoses as
the preferred one and repeated the process 100 times – each
time with a randomly chosen preferred diagnosis – to factor
out random effects. In Table 1 we report the description logic
(DL) used to formulate the ontology, the number of axioms
(#A) in the knowledge base that were used as the possibly
faulty components in the diagnosis process, and the average
size of the preferred diagnoses (|�⇤|).

The characteristics of the DX Competition problems are
given in Table 2. For each system 20 scenarios are given, each
with a pre-specified injected fault consisting of several com-
ponents. These faults correspond to our preferred diagnoses.
Each of the 20 diagnosis scenarios was run 5 times to factor
out possible effects resulting from the randomized fault prob-
abilities. Overall, we therefore performed 100 runs for each
tested system.4 We encoded the scenarios as CSP problems
and report the number of constraints (#C) and variables (#V)

3Without these slightly higher probabilities for the actually faulty
components the absolute running times are higher for all algorithms.
The relative improvements however remain very similar.

4The system c6288 could not be tested because the used Choco
solver did not return a result for any single instance of this system.

Ontology DL #A |�⇤|
ldoa-sof-ctool SHIN (D) 402 16.8
ldoa-cmt-ekaw SHIN (D) 338 22.4
mpso-ctool-ekaw SHIN (D) 458 17.3
opt-sof-ekaw SHIN (D) 467 22.9
opt-ctool-ekaw SHIN (D) 340 16.9
ldoa-sof-ekaw SHIN (D) 487 15.3
csa-sof-ekaw SHIN (D) 491 16.1
mpso-sof-ekaw SHIN (D) 491 22.3
ldoa-cmt-edas ALCOIN (D) 434 1.5
csa-sof-edas ALCHOIN (D) 860 1.0
csa-edas-iasted ALCOIN (D) 885 8.3
ldoa-ekaw-iasted SHIN (D) 629 9.7
mpso-edas-iasted ALCOIN (D) 1,152 16.4

Table 1: Characteristics of the ontology benchmarks.

System #C #V #F |�⇤|
74182 19 28 4 - 5 4 - 5
74L85 33 44 1 - 3 1 - 3
74283 36 45 2 - 4 2 - 4
74181 65 79 3 - 6 3 - 6
c432 160 196 2 - 5 2 - 5
c499 202 243 10 - 15 10 - 15
c880 383 443 20 - 25 20 - 25
c1355 546 587 12 - 17 12 - 17
c1908 880 913 22 - 63 9 - 34
c2670 1,193 1,502 79 - 107 4 - 23
c3540 1,669 1,719 9 - 14 9 - 14
c5315 2,307 2,485 79 - 155 19 - 64
c7552 3,515 3,720 57 - 113 13 - 40

Table 2: Characteristics of the DXC benchmarks.

in Table 2. Furthermore, we list the range of the sizes of the
injected faults (#F) per system and the corresponding average
size of the found preferred diagnoses (|�⇤|). For some sys-
tems |�⇤| can be smaller than the size of #F because some
predefined injected faults were non-minimal.

Results – Ontologies: The results for the ontologies are
shown in Table 3. In terms of the computation times MXP-
HS-DFS leads to a substantial speedup in all tests. The run-
time improvements range from 51% for the two simplest on-
tologies to 98% for the most complex one, for which the cal-
culation time could be reduced from 16 minutes to 23 sec-
onds. On average the improvements are as high as 83%.

Looking at the number of required interactions and queried
statements, we can observe that in particular for the most
complex problems our method is advantageous as well, i.e.,
we ask fewer queries which involve fewer statements. For
some ontologies, however, using partial diagnoses requires
the user to answer more questions. The computation time to
determine these questions is significantly lower though.

Results – DXC Benchmarks: Table 4 shows the results
for the DXC problems. The results corroborate the observa-
tions made for the ontologies. Except for the tiny problems
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Ontology INV-HS-DFS MXP-HS-DFS
Time #Q #S Time #Q #S

ldoa-sof-ctool 21.6 7.4 12.1 4.2 8.7 12.6
ldoa-cmt-ekaw 32.0 12.2 14.3 4.0 9.6 14.8
mpso-ctool-ekaw 32.5 10.6 13.2 2.9 7.1 10.9
opt-sof-ekaw 47.6 11.3 15.5 7.1 14.9 14.9
opt-ctool-ekaw 13.1 6.9 8.2 2.5 7.0 7.0
ldoa-sof-ekaw 39.0 10.3 13.8 4.2 8.5 14.2
csa-sof-ekaw 44.6 9.6 16.2 4.5 14.4 15.7
mpso-sof-ekaw 88.1 14.7 22.0 6.1 10.7 19.0
ldoa-cmt-edas 0.9 1.0 1.0 0.4 1.0 1.0
csa-sof-edas 1.6 1.5 2.5 0.8 1.5 2.5
csa-edas-iasted 138 6.7 10.4 20.5 5.5 10.2
ldoa-ekaw-iasted 96.7 9.5 16.0 11.0 8.6 13.5
mpso-edas-iasted 963 12.2 18.8 23.4 8.9 16.6

Table 3: Results for ontologies. Time is given in seconds.
#Q: Avg. nb. of queries. #S: Avg. nb. of queried statements.

System INV-HS-DFS MXP-HS-DFS
Time #Q #S Time #Q #S

74182 0.3 4.0 6.8 0.3 3.9 7.8
74L85 0.1 2.2 4.6 0.1 2.2 5.0
74283 0.3 4.1 8.4 0.2 4.2 11.4
74181 0.8 7.0 13.1 0.4 5.9 16.7
c432 1.6 9.1 18.0 0.5 6.2 18.5
c499 9.3 25.8 49.6 1.8 16.9 50.3
c880 36.5 36.4 70.7 9.1 28.0 84.0
c1355 71.9 79.8 167 12.7 31.5 116
c1908 146 106 230 46.4 44.7 163
c2670 31.8 7.7 15.7 7.2 7.0 18.8
c3540 1,081 247 458 239 41.6 159
c5315 1,528 87.9 181 217 44.4 143
c7552 - - - 2,446 72.5 283

Table 4: DXC results. Time is given in seconds. #Q: Avg.
number of queries. #S: Avg. number of queried statements.

which can be solved in fractions of a second in either case,
significant improvements in terms of the running times could
be achieved with our method. The strongest relative improve-
ment is at 86%; on average, the performance improvement is
at 57%. For the systems that took longer than a second with
INV-HS-DFS the average improvement is as high as 77%.
For the most complex system c7552 INV-HS-DFS could not
find the preferred diagnosis in 24 hours, because the computa-
tion of diagnoses took too long. Again, in terms of the num-
ber of required queries and queried statements, our method
becomes advantageous when the problems are more complex.

Results – Alternative Strategies: As the performance of
diagnosis algorithms depends on the problem characteristics,
we tested two alternative ways of computing the diagnoses in
addition to INV-HS-DFS and MXP-HS-DFS: (a) a breadth-
first variant of INV-HS-DFS, and (b) a depth-first variant of
Reiter’s Hitting-Set-Tree [Reiter, 1987], which always com-
putes all required conflicts to determine the diagnoses. For
some of the ontology problems these variants worked slightly
better than the original INV-HS-DFS method, but in all test

cases our MXP-HS-DFS approach was substantially faster
than all other strategies. For the DXC benchmarks the depth-
first variant of Reiter’s HS-Tree performed worse than all
other tested algorithms. The most complex system that it
could solve in 24 hours was c1908 for which it already needed
1,845 seconds. In contrast our method MXP-HS-DFS only
needed 46 seconds.

5 Related Works
The idea of using measurements in MBD has its roots in
the landmark works of [Reiter, 1987] and [de Kleer and
Williams, 1987]. The latter additionally suggest a query se-
lection and generation method that was used and improved in
numerous subsequent works including [Feldman et al., 2010;
Pietersma et al., 2005; Gonzalez-Sanchez et al., 2011; Sid-
diqi and Huang, 2011; Shchekotykhin et al., 2012].

To generate such queries, typical sequential algorithms de-
termine a set of diagnoses as a first step. In practical situa-
tions, however, this often cannot be done efficiently without
additional knowledge. A number of sequential approaches
were therefore proposed in the literature that rely on addi-
tionally available information about the underlying system.
One option, for example, is to find a hierarchical abstrac-
tion of the diagnosed system [Chittaro and Ranon, 2004;
Feldman and Van Gemund, 2006; Siddiqi and Huang, 2011]
and then use specific methods to locate the possibly faulty
components [Stumptner and Wotawa, 2001; Darwiche, 2003;
Marques-Silva et al., 2015; Metodi et al., 2014]. Alterna-
tively, in cases where many test cases are available, spectrum-
based techniques can be applied to assess whether a compo-
nent is faulty or not [Gonzalez-Sanchez et al., 2011].

In contrast to these approaches, our method is domain-
independent, does not depend on the presence of multiple
test cases, and uses a problem decomposition approach in-
side MERGEXPLAIN that is not dependent on the existence
of structural information about the system. Of course, if the
structure is known, the performance of MERGEXPLAIN can
be further increased by adapting the splitting strategy.

In more recent works, several researchers approached
the diagnosis task by solving the dual problem. Different
domain-independent methods were proposed for example in
[Felfernig et al., 2012; Stern et al., 2012; Shchekotykhin et
al., 2014], which calculate diagnoses “directly”, i.e., without
computing conflict sets. This property allows dual algorithms
(like INV-HS-DFS) to find a diagnosis in a polynomial num-
ber of calls to a theorem prover. However, our results show
that our method can outperform dual methods in both do-
mains despite the need of computing minimal conflicts.

6 Conclusion
Interactive diagnosis approaches can be particularly useful in
cases when many diagnoses exist. In our work we presented a
novel approach to significantly speed up the process of deter-
mining the next best question to ask to the user by introducing
the concept of partial diagnoses.

As a part of our future work we will investigate the value of
incorporating additional information, e.g., the system’s struc-
ture or prior fault probabilities of the components, when de-

1256



termining the set of leading diagnoses and will explore if such
information can help us to generate more informative queries.
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Janota, and Anton Belov. Minimal Sets over Monotone
Predicates in Boolean Formulae. In CAV ’13, pages 592–
607, 2013.

[Marques-Silva et al., 2015] João Marques-Silva, Mikoláš
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