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Abstract
We consider how SQL-like query languages over
object-relational schemata can be preserved in the
setting of ontology based data access (OBDA),
thus leveraging wide familiarity with relational
technology. This is enabled by the adoption of the
logic CFDI8�

nc , a member of the CFD family of
description logics (DLs). Of particular note is that
this logic can fully simulate DL-LiteF

core

, a member
of the DL-Lite family commonly used in the OBDA
setting. Our main results present efficient algo-
rithms that allow computation of certain answers
with respect to CFDI8�

nc knowledge bases, facili-
tating direct access to a pre-existing row-based re-
lational encoding of the data without any need for
mappings to triple-based representations.

1 Introduction
Ontology based data access (OBDA) is concerned with com-
puting query answers over (possibly incomplete) data sources
for which background knowledge about the data, commonly
captured in an ontology, is available. The background knowl-
edge provides additional query answers that may not be ex-
plicit in the data itself. To address scalability issues relating to
the volume of data, many current approaches to OBDA focus
on conjunctive queries (CQ) and ontologies based on DL di-
alects for which CQ answering is in AC0/PTIME with respect
to data complexity. Moreover, to leverage advances in query
processing in relational systems, approaches in which query
answering can be reduced to SQL query evaluation over a re-
lational encoding of the data are commonly sought. The two
front-runners in this area are (i) the perfect rewriting-based
approaches in which the given CQ is rewritten with the help
of the ontological knowledge (typically formulated in one of
the DL-Lite family of logics) in such a way that the result-
ing query can be executed over the original data sources to
obtain desired answers [Calvanese et al., 2007], and (ii) the
combined approaches in which the data is completed using
ontological knowledge (formulated in DL-Lite or EL logics)
in such a way that the original query (modulo filtering that
only depends on role hierarchies in the ontology) can then be
executed over the data completion [Kontchakov et al., 2010;
2011; Lutz et al., 2013; 2009]. The closest to our approach is

the approach for Horn-SHIQ with rules [Eiter et al., 2012];
that approach deals with a logic incomparable with CFDI8�

nc .
Moreover, our approach handles keys and functional depen-
dencies that are essential in database applications.

Recently, Toman and Weddell proposed CFDI8�
nc [Toman

and Weddell, 2014], a dialect of the CFD family [Khizder et
al., 2000; Toman and Weddell, 2009; 2013] that has PTIME
complexity for many of the fundamental reasoning tasks, and
can fully simulate DL-LiteF

core

[Toman and Weddell, 2015].
In this paper, we show that CQ answering over CFDI8�

nc
knowledge bases can be reduced to evaluating SQL queries
over (a completion of) the data stored in a relational system.
Our technique is based on a combination of query rewrit-
ing and data completion. Indeed, it is worth noting that, for
CQs over CFDI8�

nc KBs, OBDA cannot be accomplished by
either using (perfect) query rewriting alone, due to PTIME-
completeness of CQ answering, or by exclusive use of the
combined approach, due to the need to realize exponentially
many prototypical anonymous witnesses to represent types
induced by value restrictions. Our main technical contribu-
tions, in the order presented, are as follows:

• We exhibit an ABox completion procedure for a given
logic knowledge base K = (T ,A) with PTIME data
complexity; the completion also serves as a basis for KB
consistency checking;

• We define a query rewriting that produces a union of
conjunctive queries Q

0 from a given conjunctive query
Q and T , and show that evaluating Q

0 as a SQL query
over the above ABox completion, viewed as a relational
database, computes the certain answers of Q over K.

• Finally we show how a standard relational database
schema can be naturally captured as a (fragment of
a) CFDI8�

nc TBox, eliminating the need for additional
mappings between data sources and virtual ABoxes that
are typically utilized at this point, e.g., by [Calvanese et
al., 2015]. We then show how such a rewritten query can
be executed over an underlying relational representation
without the need for object (id) invention.

Moreover, we show that the potential exponential blowup
of the query rewriting cannot be avoided in general, since
the combined complexity for CQ answering in CFDInc
is PSPACE-complete (unless NP=PSPACE). However, the
exponential blowup originating from concept hierarchies is
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Figure 1: UNIV Schema.

eliminated/minimized thanks to the data completion.
Example 1 In the rest of the paper we use an object-
relational UNIV schema depicted in Figure 1 in which sin-
gle arrows denote named features, double arrows inheritance
between classes, and where primary keys are underlined.
We can then query instances of this schema using familiar
SQL/OQL-style syntax for queries, for example:
select distinct s.name as n

from STUDENT s, TAKES t, CLASS c

where s = t.student and
c.time = t.class.time and
c.inst .dept .name = :p1 and c.num = :p2

The remainder of the paper is organized as follows: prelim-
inaries are given next in which we introduce CFDI8�

nc and
conjunctive queries. In Section 3, we present the theoreti-
cal basis of our approach, and in Section 4 discuss practi-
cal matters connected with the use of a relational system. We
then outline some preliminary experimental results and fol-
low with a summary, including some brief comments on di-
rections for future work.

2 Preliminaries
All members of the CFD family of DLs are fragments of FOL
with underlying signatures based on disjoint sets of unary
predicate symbols called primitive concepts, constant sym-
bols called individuals and unary function symbols called fea-
tures. Formally, the logics are defined with respect to the sets
F, PC and IN of (names of) features, primitive concepts, and
individuals, respectively. A path function Pf is a word in F

⇤

with the usual convention that the empty word is denoted by
id and concatenation by “.”. Concept descriptions C and D
are defined by the grammars on the left-hand-side of Figure 2.
A concept “C : Pf1, . . . ,Pfk ! Pf” is called a path func-

SYNTAX SEMANTICS: “(·)I”
C ::=A AI ✓ 4

| 8Pf .C {x | PfI(x) 2 CI}
| 9f�1 {x | 9y 2 4 : fI(y) = x}

D ::=C CI ✓ 4
| ¬C 4 \ CI

| 8Pf .D {x | PfI(x) 2 DI}
| C : Pf1, . . . ,Pfk ! Pf {x | 8y 2 CI :

(
V

k

i=1 Pf
I
i

(x) = Pf

I
i

(y)) ) Pf

I(x) = Pf

I(y)}

Figure 2: CFDInc Concepts.

tional dependency (PFD) and must conform to the following
forms:

1. C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk ! Pf or
2. C : Pf1, . . . ,Pf .f, . . . ,Pfk ! Pf .g

Semantics is defined in the standard way with respect to an
interpretation I = (4, (·)I), where 4 is a domain of “ob-
jects” and (·)I an interpretation function that fixes the inter-
pretation of primitive concepts A to be subsets of 4, features
f 2 F to be total functions on 4 ! 4, and individuals a

to be elements of 4. The interpretation function is extended
to path expressions by interpreting id as the identity function
�x.x, concatenation as function composition, and to derived
concept descriptions C or D as defined in Figure 2.

An interpretation I satisfies an inclusion dependency C v
D if CI ✓ DI , a concept assertion A(a) if aI 2 AI , and
a path function assertion Pf1(a) = Pf2(b) if Pf

I
1 (a

I) =
Pf

I
2 (b

I). I satisfies a knowledge base K if it satisfies each
inclusion dependency and assertion in K.

It is easy to see that for every CFDInc KB (T ,A), there
is a conservative extension (T 0

,A0) in which subsumptions
in T 0 adhere to the following forms:

A v B, A v 8f.B, 8f.A v B, A v 9f�1
, or

A v A0 : Pf1, . . . ,Pfk ! Pf,

where A and A0 are primitive concepts, B is a primitive con-
cept or a negation of a primitive concept, and f 2 F a feature.
Similarly, the ABox A0 contains only assertions of the form
“A(a)”, “a.f = b”, and “a = b”.

For detailed description of CFDInc and its variants see
[Toman and Weddell, 2014]. The following proposition sum-
marizes computational properties of CFDI8�

nc pertinent to
the development in this paper:
Proposition 2 (CFDI8�

nc Properties) Let K = (T ,A) be a
CFDI8�

nc knowledge base, A1, . . . , Ak

primitive concepts,
C a concept description not containing the PFD construc-
tor, and D a concept description. Then logical implication,
T |= C v D, and K consistency can be decided in PTIME.
Moreover, the question of whether or not a conjunction of
concepts C

i

(i  n) interprets as non-empty in every model
of K = (T , {A1(a), . . . , Ak

(a)}) (i.e., when A1, . . . , Ak

forces C1, . . . , Cn

) is PTIME-complete in |K| and PSPACE-
complete in n.

Example 3 Sample constraints for the UNIV schema de-
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picted in Figure 1 can be captured in CFDI8�
nc as follows:

1. PERSON v ¬DEPT,
2. PERSON v 8name.STRING,
3. PERSON v PERSON : name ! id ,
4. PERSON v DEPT : name ! id ,
5. PROF v PERSON,
6. 8reports.CHAIR v PROF,
7. 9head�1 v CHAIR,
8. CLASS v CLASS : dept ,num ! id , etc.

2.1 Conjunctive Queries and Certain Answers
Conjunctive queries are, as usual, formed from atomic queries
(or atoms) of the form “C(x)” and “x.Pf1 = y.Pf2”,
where x and y are variables, using conjunction and existential
quantification. To simplify notation, we conflate conjunctive
queries with the set of its constituent atoms and a set of an-
swer variables:
Definition 4 (Conjunctive Query) Let ' be a set of atoms
C(x

i

) and x

i1 .Pf1 = x

i2 .Pf2, where C is a concept descrip-
tion (defined in Figure 2), Pf

i

are path functions, and x̄ a tu-
ple of variables. We call the expression {x̄ | '} a conjunctive
query (CQ).

A conjunctive query “{x̄ | '}” is therefore a notational vari-
ant of the formula “9ȳ.V

 2'  ” in which ȳ contains all vari-
ables appearing in ' but not in x̄. The usual definition of cer-
tain answers is given by the following:
Definition 5 (Certain Answer) Let K be a CFDI8�

nc
knowledge base and Q = {x̄ | '} a CQ. A certain answer to
Q over K is a substitution of constant symbols ā, [x̄ 7! ā],
such that K |= Q[x̄ 7! ā].

As is the case with TBoxes and ABoxes, a CQ can be repre-
sented in a normal form, a form in which all atoms in the CQ
are of the form “A(x)” or “x.f = y”, where A is a primi-
tive concept and f a feature. This can be easily achieved by
introducing additional non-answer (existentially quantified)
variables.
Example 6 The OQL query from Example 1 above is now
formally captured as the following CQ in normal form:
{hn, p1, p2i |STUDENT(s),TAKES(t),CLASS(c),

n = s.name, p2 = c.num, p1 = d

0
.name,

c

0 = t.class, p

0 = c.inst , d

0 = p

0
.dept ,

s = t.student , t

0 = c.time, t

0 = c

0
.time}.

For the remainder of the paper, we assume CQs are always
connected. (Evaluating disconnected CQs is easily achieved
by considering each component separately.)

3 Query Answering (OBDA)
We begin by introducing OBDA over abstract ABoxes. From
the introduction: we need a first step to obtain an ABox com-
pletion AT depending only on A and T that is polynomial in
both |A| and |T |, and a second step to obtain a query rewrit-
ing QT depending only on Q and T that is polynomial in |T |,
such that ā is a certain answer to Q in K = (T ,A) if and only
if ā is an answer to QT when evaluated over AT .

3.1 Inverse-Induced PFDs
Allowing inverse features affects how PFDs interact with an
ABox. In particular, PFDs in which all path functions have a
common prefix may apply to (pairs of) anonymous individu-
als mandated by the existence of anonymous inverse features
for existing ABox individuals. Consider the following exam-
ple:
Example 7 For an ABox A = {A(a), A(b), a.g = b.g} and
a TBox T = {A v 9f�1

, 8f.A v B,B v B : f.g ! id}, it
is easy to see that both a and b must have an f -predecessor to
which the PFD in T applies and, in combination with func-
tionality of features, yields a = b.

Observe with this example, however, that the TBox logically
implies another PFD, in particular “A v A : g ! id”, and
that this PFD applies to objects explicitly present in A. In gen-
eral, to enforce PFDs on an ABox while avoiding any need to
explicitly create anonymous predecessor objects, we add ad-
ditional logically implied PFDs to a given TBox as follows:
Definition 8 (PFD Enrichment for Inverses) Let T be a
CFDI8�

nc TBox such that A v B : f.Pf1, . . . , f.Pfk !
f.Pf 2 T (A v B : f.Pf1, . . . , f.Pfk ! id 2 T )
where Pf

i

6= id for all 1  i  k. Then we require that
A v 8f.A0, B v 8f.B0, and A0 v B0 : Pf1, . . . , f.Pfk ! Pf

(A0 v B0 : Pf1, . . . , f.Pfk ! id ), where A0 and B0 are fresh
primitive concepts, are also in T .

It is easy to see that the value restrictions and PFDs added
to T logically follow from the original PFD and the neces-
sary existence of f -inverses for A0 and B0 that originate in A
and B, respectively. Thus, we assume that TBoxes satisfy this
condition for the remainder of the paper.

3.2 Abstract ABox Completion
The first step of query answering, ABox completion, is de-
fined by the rules in Figure 3. In particular, the rules extend
a given ABox with all implied concept memberships and fea-
ture agreements. (Note that this step cannot be accomplished
by a FO query since it requires path exploration and is there-
fore hard for NLOGSPACE.)
Definition 9 Let (T ,A) be a CFDI8�

nc knowledge base. We
define an ABox completionT (A) to be the least ABox A0

such that A ✓ A0 and A0 is closed under the rules in Figure 3.

Observe that individuals can only be declared to be mem-
bers of primitive concepts since A is in normal form. Also, if
UNA were to be assumed (or assumed for elements of specific
primitive concepts, such as INT and STRING), the equali-
ties in rules (a) and (c) lead to KB inconsistency (without any
need for additional “firing of rules”). It is also easy to see that
completion terminates since it can add at most |T ||A|2 new
objects, one for every pair of existing objects and a feature
name.

3.3 Query Rewriting
The second step in query answering relies on query refor-
mulation with respect to T . This step is also necessary as
CFDI8�

nc can force exponentially many anonymous objects
with distinct class membership to exist:
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if a = b 2 A then add b = a to A
if a = b,' 2 A then add '[b/a] to A

(a) ABox Equality Interactions

if A(a) 2 A and T |= A v B then add B(a) to A
if {A(a), a.f = b} ✓ A and T |= A v 8f.B then add B(b) to A
if {A(a), b.f = a} ✓ A and T |= 8f.A v B then add B(b) to A

(b) ABox–TBox Interactions

if A(a), B(b) 2 A, a.Pf 0
i

= c

i

, b.Pf

0
i

= c

i

2 A for 0 < i  k, and A v B : Pf1, . . . ,Pfk ! Pf 2 T then
1. if a.Pf = c, b.Pf = d 2 A and c = d 62 A then add c = d to A; or
2. if Pf is of the form Pf

00
.f and a.Pf

00 = c, b.Pf

00 = d and c = d 62 A then add c.f = e, d.f = e to A;
where Pf

0
i

is a prefix of Pf
i

, c and d are A individuals, and e is a new individual.

(c) ABox–PFD Interactions

Figure 3: ABox Completion Rules.

Example 10 Consider a CFDInc TBox
T = {B

i

v 8 f. · · · .f| {z }
i

thprime

.B
i

| i  k}.

Asserting (B0 u . . . u B
k

)(a) would require exponentially
many anonymous objects belonging to distinct concept com-
binations to be created as prototypical witnesses when com-
pleting the ABox along the lines of the combined approach
[Lutz et al., 2009].

To avoid the need for “expensive” ABox completion, our ap-
proach treats matches to anonymous individuals by query re-
formulation along the lines of [Calvanese et al., 2007]:
Definition 11 Let Q = {x̄ | '} be a CQ. We write FoldT (Q)
to denote the set of CQs (implicitly denoting the union of
their results) that is obtained by an exhaustive application of
the following on the initial set {{x̄ | '}}.
For a CQ {ȳ |  } 2 Fold(Q), apply rewrite rules:

1. If {A(x),B(x)} ✓  and T |= A v ¬B then
Fold(Q) := Fold(Q)� {{ȳ |  }}.

2. If {x.f = y, x.f = z} ✓  then
Fold(Q) := Fold(Q)� {{ȳ |  }} [ {{ȳ |  }[z/y]}.

3. If {x.f = z, y.f = z} ✓  then
Fold(Q) := Fold(Q) [ {{ȳ |  }[x/y]}.

4. If {A(x),B(x)} ✓  and T |= A v B then
Fold(Q) := Fold(Q)�{{ȳ |  }}[{{ȳ |  �{A(x)}}}.

5. If {x.f = y,A1(y), . . . ,Ak

(y)} ✓  and y does
not appear elsewhere in  nor in ȳ then Fold(Q) :=
Fold(Q) [ {{ȳ |  

0}} for all  0 =  � {x.f =
y,A1(y), . . . ,Ak

(y)} [ {B1,i1(x), . . . ,Bk,ik(x)} for
which T |= B

i,ij v 8f.A
i

and B
i,ij is maximal w.r.t. v

for each i.
6. If {y.f = x,A1(y), . . . ,Ak

(y)} ✓  and y does
not appear elsewhere in  nor in ȳ then Fold(Q) :=
Fold(Q) [ {{ȳ |  

0}}, for all  0 =  � {y.f =
x,A1(y), . . . ,Ak

(y)} [ {B1,i1(x), . . . ,Bk,ik(x)} such
that T |= 8f.B

i,ij v A
i

, where, for each i, B
i,ij is

maximal w.r.t. v, and for which T |= B
i,ij v 9f�1

some 1  i  k.

The key idea underlying this definition is that, to find query
answers, it is now sufficient to match queries in FoldT (Q)
explicitly against the (extended) ABox; matches outside the
ABox are captured by query reformulation: removed parts of
the query are implied by T .
Lemma 12 Let Q be a CQ with at least one answer variable.
Then ā is a certain answer to Q over K = (T ,A) if and only
if ā is an answer for some {x̄ |  } 2 FoldT (Q) over AT .

Proof (sketch): Observing that the extended ABox AT is
essentially a part of the minimal model of K (since K is Horn)
and that every element of FoldT (Q) implies Q, it is easy to
see that whenever (1-6) are satisfied, there is a match of Q
in the minimal model and thus ā is an answer. Conversely,
if a match of Q in a minimal model exists yielding ā as an
answer, then part of the match will be realized in the ABox
(since at least the answer variables must be bound to ABox
individuals) and the reminder of the match must be forest-
like. Hence, one of the queries in FoldT (Q) matches in the
ABox since the remaining conjuncts must be implied by T .
2

Example 13 FoldT (Q), where Q is the normal form query
in Example 6, will contain the following CQ
{hn, p1, p2i |STUDENT(s),TAKES(t),CLASS(c),

n = s.name, p2 = c.num, p1 = d

0
.name,

c = t.class, p

0 = c.inst , d

0 = p

0
.dept ,

s = t.student},
which is obtained from Q by applying rules (3) and (5).

For CQ without answer variables, we need an additional
step that checks if the query (when equivalent to a concept)
matches in the tree part of every interpretation of K. We there-
fore extend the query rewriting in Definition 11 as follows:

7. If x̄ = hi in Q = {x̄ | '} and ' is equivalent to a
conjunction of concepts C1, . . . ,Cn

. Then Fold(Q) :=
Fold(Q) [ {hi | A1(x) ^ . . . ^ A

k

(x)} for every com-
bination of primitive concepts A1, . . . ,Ak

that force
C1, . . . ,Cn

in T .
This construction accounts for matches in the anonymous part
of the minimal model of K, and yields the following Lemma:
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Lemma 14 Let Q be a CQ without answer variables. Then
K |= Q if and only if at least one {hi |  } 2 FoldT (Q)
evaluates to true over AT .

3.4 Anonymous Object Invention
To handle equalities generated by PFDs, ABox completion, in
particular completion rule (c.2) in Figure 3, requires inventing
new ABox individuals (denoted e in the figure). These indi-
viduals then allow agreement in queries to be resolved within
the extended ABox. However, in many situations, individual
invention (which, in turn leads to primary key invention as we
will see in Section 4) may not be possible in many practical
applications (indeed, Section 4 will rely on this).

Here, we explore an alternative based on query reformula-
tion. Unfortunately, it is easy to see for the PFDs of the second
form (those that lead to individual invention), that this is not
possible. In particular, consider the following case:
Example 15 Assume T = {A v 8f.A,A v A : f.h, g !
h} and consider the CQ {hx, yi | A(x),A(y), x.h =
z0, y.h = z0}. Then a rewriting of the query must con-
tain “{hx, yi | A(x),A(y), x.g = z0, y.g = z0, x.f =
x1, y.f = y1,A(x1),A(y1), x1.h = z1, y1.h = z1}”, and
“{hx, yi | A(x),A(y), x.g = z0, y.g = z0, x.f = x1, y.f =
y1,A(x1),A(y1), x1.g = z1, y1.g = z1, x1.f = x2, y1.f =
y2,A(x2),A(y2), x2.h = z2, y2.h = z2}”, and so on, which
yields a rewriting that is necessarily infinite.1

However, if the second form of PFDs is restricted to standard
relational FDs of the form “A v A : f1, . . . , fn ! f”, then
rewriting becomes possible:

8. If {x.f = z, y.f = z,A1(z), . . . ,Ak

(z)} ✓  and
A v B : f1, . . . , fn ! f 2 T then Fold(Q) :=
Fold(Q)[ {{ȳ |  0}} for all  0 of the form  � {x.f =
z, y.f = z,A1(z), . . . ,Ak

(z)} [ {Ax(x),Ay(y)} [
{Bx

1,i1(x), . . . ,B
x

k,ik
(x)} [ {By

1,i1
(y), . . . ,By

k,ik
(y)} [

{x.f1 = z1, y.f1 = z1, . . . , x, fn = z

n

, y.f

n

= z

n

}},
where (a) (Ax = A and Ay = B) or (Ax = B and
Ay = A), and (b) (Bx

i,ji
= B

i,ji and By

i,ji
= >) or

(Bx

i,ji
= > and By

i,ji
= B

i,ji ), for all i and for all com-
binations of B

i,ij for which T |= 8f.B
i,ij v A

i

and
B

i,ij is maximal w.r.t. v.
A similar adjustment must be performed on the key PFDs to
account for equalities implied by FDs and in turn correctly
identify ABox individuals (or signal KB inconsistency). All-
together, we have:
Lemma 16 Let Q = {x̄ | '} be a CQ over K = (T ,A)
with standard relational FDs and keys. Then ā is a certain
answer to Q over K if and only if ā is in the result of at least
one {x̄ |  } 2 FoldT (Q) using reformulations (1-8) over
an A completion using only rules (a,b) and (c.1) in Figure 3
(modified as described above).

3.5 Concrete Classes and Data Types
Although one can treat all primitive concepts uniformly in
our approach, in practice one may want to distinguish those

1This, without resorting to regular path functions as in [Toman
and Weddell, 2005] which, however, would preclude the consequent
use of an SQL engine.

that correspond to primitive data types, such as INT and
STRING in our running example, since computing a com-
pletion for these concepts results in collecting all integers or
strings occurring in the KB, which is undesirable. To avoid
the need for completing these concepts, there are two op-
tions, with the first restricting user queries to disallow asking
directly about these concepts.2 Otherwise, to avoid the need
for data completion for these concepts, consider that concepts
corresponding to data types should not have outgoing fea-
tures, and can therefore be handled using query rewriting:

9. If A(x) 2  , A a data type, and T |= B v 8f.A then
Fold(Q) := Fold(Q)[{{ȳ |  �{A(x)}[{B(y), y.f =
x}}}, where y is a fresh variable.

This additional rule makes it safe to omit completion rules
from Figure 3(b) when concepts corresponding to data types
are involved.
Example 17 Consider the query Q = {hxi | STRING(x)}.
We get reformulations {hxi | PERSON(y), y.name = x}
and {hxi | DEPT(y), y.name = x} in Fold(Q), which in
turn retrieve all STRINGS recorded in the KB.

The constructions used in Lemmas 12 and 14 (and optionally
Lemma 16 and Section 3.5(9)) also yield the upper bounds.
In all cases, computing certain answers reduces to evaluat-
ing an union of conjunctive queries over a polynomially-
sized completion of an ABox. Lower bounds follow from
reductions from graph reachability, Horn-SAT, and the DFA
intersection problem [Kozen, 1977], respectively. Note that
PSPACE-hardness holds even for very simple CQs of the
form 9x.(A1(x) ^ . . . ^A

k

(x)).

Corollary 18 Data complexity for CQ query answering over
CFDInc KB is in PTIME. CQ query answering over
CFDInc KB is NLOGSPACE-hard for data complexity (in
|A|), PTIME-hard in |T + A|, and PSPACE-hard for com-
bined complexity.

4 Relational Back-end
Hereon, we assume any non-key PFD occurring in a knowl-
edge base K is a key or conforms to a standard relational FD.
(Recall that this enables our framework to avoid anonymous
object invention.) Our objective in this section is to show that
this leads to a very practical front-end to existing relational
engines in which K consists of a TBox T that embeds a re-
lational schema S , and a virtual ABox A that is given by the
tuples occurring in relational tables. W.l.o.g., we assume the
correspondence is as follows:

1. Primitive concepts (save concepts capturing concrete
values such as INT and STRING in Figure 1), hereon
called abstract, correspond to tables, and identities of
objects belonging to such concepts are captured by pri-
mary key values in the tables;

2. Features between abstract concepts, hereon also called
abstract, are captured by foreign keys between the cor-
responding tables. Note that a single such feature may
correspond to a multi-arity foreign key;

2This is the approach SQL and OQL have taken.
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3. Features between abstract concepts and concepts cap-
turing concrete values, hereon called concrete, corre-
spond to attributes in the table corresponding to the ab-
stract concept with an appropriate concrete data type, for
which UNA is assumed (as is common in SQL).

Note also that non primary key attributes may contain SQL’s
null values to account for data incompleteness.

In our running example, S consists of “create table” com-
mands that include declarations for primary and foreign keys,
such as the following in the case of the CLASS primitive con-
cept for our UNIV TBox:
create table CLASS-TAB (dname, num, iname, room, time,

primary key (dname, num),
foreign key (dname) to DEPT-TAB,
foreign key (iname) to PROF-TAB ).

We write TAB(CLASS), ATTR(CLASS) and PK(CLASS) to
respectively denote table CLASS-TAB, its set of attributes
(dname, etc.) and the sequence of its primary key attributes
(dname, num). For abstract features, such as dept , we use
DOMATTR(dept), DOMTAB(dept), and RANTAB(dept) to
denote the list of source attributes (dname), the originating
table (CLASS-TAB), and the target table (DEPT-TAB), re-
spectively, in order to describe the associated foreign key.

We assume that A v ¬B 2 T whenever PK(A) 6= PK(B)
and that ATTR(B) ✓ ATTR(A) whenever T |= A v B.3

With these assumptions, ABox completion for a consistent
knowledge base will only be required for ABox-TBox inter-
actions (see Figure 3), and is accomplished by repeatedly ex-
ecuting the following updates until no changes occur:4

• (when T |= A v B)
TAB(A) := TAB(A) [ (TAB(A) ./PK(A)=PK(B) TAB(B))
TAB(B) := TAB(B) [ ⇡ATTR(B)(TAB(A))

• (when T |= A v 8f.B and f is abstract)
TAB(B) := TAB(B)

[ ⇡ATTR(B)(TAB(A) ./DOMATTR(f)=PK(B) RANTAB(f))

• (when T |= 8f.B v A and f is abstract)
TAB(A) := TAB(A)

[ ⇡ATTR(A)(DOMTAB(f) ./DOMATTR(f)=PK(B) TAB(B))

As a consequence, this approach effectively equates object
identity with primary key values already occurring in a rela-
tional data source, and therefore entirely avoids any need to
create Skolem constants that would otherwise be needed for
an explicit ABox realization. The final step consists of con-
verting Fold(Q) to SQL. This is rather clerical task and the
main steps consist of replacing

1. concept descriptions by the associated tables;
2. object references by primary keys; and
3. abstract features by corresponding foreign keys.

3This reflects a “structural inheritance” approach to sub-typing in
relational schema design that is not strictly necessary since values of
inherited attributes for tuples can be computed with additional joins.

4We appeal to the relational algebra to express right-hand-sides.
Note that attributes in projection operations are assumed to be ini-
tialized to null values when missing from argument subexpressions.

Finally, to obtain well-formed SQL query, we need to sep-
arate the conjuncts to the SELECT, FROM, and WHERE
clauses as dictated by the (rather rigid) SQL syntax.

5 Experiments
To confirm practicality, we applied our framework to a modi-
fied version of the LUBM benchmark in which we introduce
a relational schema. We then defined a knowledge base TBox
that embeds this schema and supplied various virtual ABoxes
according to a number of configurations of generated data for
the LUBM benchmark [Guo et al., 2005]. We performed the
tests on MacBook Pro with 3ghz Core i7 CPU, 16gb RAM
(OSX 10.11.1), and Postgres 9.4. Figure 4 reports the time
needed to load the raw data, to index it, and to compute the
ABox completion. The results show that the completion is
comparable to raw data loading (a factor of about 2).

LUBM scale 10 50 100 200 500 1000
raw data load 14.9 117.4 234.4 518.1 1341 3034
indexing 10.2 69.7 167.9 377.6 1063 2308
completion 5.9 134.2 286.6 769.5 2452 6853

Figure 4: Experimental Results (in seconds).

Due to space constraints we do not report the individual run-
ning times for the LUBM queries. However, all the queries
complete within few seconds (typically under a second), even
on the largest instances (except for queries 2 and 9 that
took 73s and 65s, respectively, on the LUBM 1000 instance).
These results are not surprising for reasonably indexed rela-
tional instances and can be considered representative of the
approach.

6 Summary
The paper presents a novel approach to OBDA over knowl-
edge bases formulated in CFDI8�

nc , a DL that has been de-
signed to capture relational and object-relational schemata in
a natural way. Indeed, there are additional benefits to using
CFDI8�

nc as the underlying DL:
Example 19 Consider the two queries generated in Exam-
ple 17. Since the CFDI8�

nc TBox allows us to reason about
keys and concept disjointness, we can deduce that neither of
the two queries needs the distinct duplicate elimination
in their SQL select clauses (since name is a key for both
PERSON and DEPT) and, moreover, the union of these two
queries can use the union all operator (since the two sub-
queries are disjoint), thus completely avoiding duplicate elim-
ination in the final query.

For more complete development and benefits of these opti-
mizations see [Khizder et al., 2000; Liu et al., 2002; Toman
and Weddell, 2011]. There are two additional avenues for ex-
tending this proposal: first, the data completion could be per-
formed incrementally and second, the restrictions on concept
compatibility based on the primary keys of the underlying ta-
bles could be relaxed using techniques based on referring ex-
pressions recently proposed in [Borgida et al., 2016].
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