
From One Point to a Manifold:
Knowledge Graph Embedding for Precise Link Prediction

Han Xiao, Minlie Huang, Xiaoyan Zhu
State Key Lab. of Intelligent Technology and Systems,
National Lab. for Information Science and Technology,

Dept. of Computer Science and Technology, Tsinghua University, Beijing 100084, PR China
bookman@vip.163.com; {aihuang,zxy-dcs}@tsinghua.edu.cn

Abstract
Knowledge graph embedding aims at offering a
numerical knowledge representation paradigm by
transforming the entities and relations into con-
tinuous vector space. However, existing methods
could not characterize the knowledge graph in a
fine degree to make a precise link prediction. There
are two reasons for this issue: being an ill-posed
algebraic system and adopting an overstrict geo-
metric form. As precise link prediction is criti-
cal for knowledge graph embedding, we propose a
manifold-based embedding principle (ManifoldE)
which could be treated as a well-posed algebraic
system that expands point-wise modeling in current
models to manifold-wise modeling. Extensive ex-
periments show that the proposed models achieve
substantial improvements against the state-of-the-
art baselines, particularly for the precise prediction
task, and yet maintain high efficiency.

1 Introduction
Knowledge is critical to artificial intelligence, and the embed-
ded representation of knowledge offers an efficient basis of
computing over symbolic knowledge facts. More specifically,
knowledge graph embedding projects entities and relations
into a continuous high-dimension vector space by optimiz-
ing well-defined objective functions. A variety of methods
have been proposed for this task, including TransE [Bordes et
al., 2013], PTransE [Lin et al., 2015a] and KG2E [He et al.,
2015].

A fact of knowledge graph is usually represented by a triple
(h, r, t), where h, r, t indicate the head entity, the relation and
the tail entity, respectively. The goal of knowledge graph em-
bedding is to obtain the vectorial representations of triples,
i.e., (h, r, t), with some well-defined objective functions. As
a key branch of embedding methods, translation-based meth-
ods, such as TransE [Bordes et al., 2013], PTransE [Lin et
al., 2015a] and KG2E [He et al., 2015], treat the triple as
a relation-specific translation from the head entity to the tail
entity, or formally as h+ r = t.

Despite the success of previous methods, none of previ-
ous studies has addressed the issue of precise link prediction,

which finds the exact entity given another entity and the rela-
tion. For a specific query fact, most existing methods would
extract a few candidate entities that may contain correct an-
swers, but there is no mechanism to ensure that the correct
answers rank ahead the candidate list.

Generally speaking, precise link prediction would im-
prove the feasibility of knowledge completion, the effective-
ness of knowledge reasoning, and the performance of many
knowledge-related tasks. Taking knowledge completion as
example, when we want to know about the birth place of Mar-
tin R.R., what we expect is the exact answer “U.S.”, while a
few other candidates do not make any sense.

The issue of precise link prediction is caused by two rea-
sons: the ill-posed algebraic system and the over-strict geo-
metric form. First, from the algebraic perspective, each fact
can be treated as an equation of hr + r = tr1 if following
the translation-based principle, embedding could be treated
as a solution to the equation group. In current embedding
methods, the number of equations is more than that of free
variables, which is called an ill-posed algebraic problem as
defined in [Tikhonov and Arsenin, 1978]. More specifically,
hr + r = tr indicates d equations as hi + ri = ti where d is
the dimension of embedding vector and i denotes each di-
mension. Therefore, there are T ⇤ d equations where T is the
number of facts, while the number of variables are (E+R)⇤d,
where E,R are the number of entities and relations, respec-
tively. As is the case that triples are much more than the sum
of entities and relations, the number of variables are much
less than the number of equations, which is typically an ill-
posed algebraic system. Mathematically, an ill-posed alge-
braic system would commonly make the solutions imprecise
and unstable. In this paper, we propose to address this issue
by replacing the translation-based principle hr + r = tr by a
manifold-based principle M(h, r, t) = D2

r

where M is the
manifold function. With the manifold-based principle, our
model can make a nearly well-posed algebraic system by tak-
ing d � T

E+R

so that the number of equations (T ) is no more
than that of the free parameters ((E +R) ⇤ d).

Second, from the geometric perspective, the position of the
golden facts in existing methods is almost one point, which is
too strict for all relations and is more insufficient for complex

1More generally speaking, hr and tr are embedding vectors pro-
jected w.r.t the relation space, and r is the relation embedding vector.
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Figure 1: The visualization comparison of TransE and ManifoldE (Sphere). For ManifoldE, the manifold collapses to a solid
circle by dimension reduction. The data are selected from Wordnet and Freebase. The blue crosses mean the correctly matched
entities while the red crosses indicate the unmatched ones. The upper block corresponds to TransE where more near to the
center , more plausible the triple is. It is clear that the true and false triples near the golden position is chaotically distributed.
The below block is ManifoldE (Sphere) where the triples inside the solid circle are matched and those outside are unmatched.
We can see that there are relatively less errors in ManifoldE than TransE.

relations such as many-to-many relations. For example, for
entity American Revolution, there exist many triples such as
(American Revolution, Has Part, Battle Bunker Hill), (Amer-
ican Revolution, Has Part, Battle Cowpens). When many tail
entities compete for only one point, there would be a ma-
jor loss of objective function. Some previous work such as
TransH [Wang et al., 2014] and TransR [Lin et al., 2015b]
address this problem by projecting entities and relations into
some relation-specific subspaces. However, in each subspace,
the golden position is also one point and the over-strict ge-
ometric form is still existing. As can be seen from Fig.1,
the translation-based geometric principle involves too much
noise. However, ManifoldE alleviates this issue by expand-
ing the position of golden triples from one point to a manifold
such as a high-dimensional sphere. By this mean, ManifoldE
avoids much noise to distinguish the true facts from the most
possible false ones, and improves the precision of knowledge
embedding as Fig.1 shows.

To summarize, our contributions are two-fold: (1)We have
addressed the issue of precise link prediction and uncover the
two reasons: the ill-posed algebraic system and the over-strict
geometric form. To our best knowledge, this is the first time
to address this issue formally. (2)We propose a manifold-
based principle to alleviate this issue and design a new model,
ManifoldE, which achieves remarkable improvements over
the state-of-the-art baselines in experiments, particularly for
precise link prediction. Besides, our methods are also very
efficient.

2 Related Work
2.1 Translation-Based Methods
As a pioneering work of knowledge graph embedding,
TransE [Bordes et al., 2013] opens a line of translation-based
methods. TransE treats a triple (h, r, t) as a relation-specific

translation from a head entity to a tail entity, say h+ r = t
and the score function has a form of ||h+ r� t||22. Follow-
ing this principle, a number of models have been proposed.
For instance, TransH [Wang et al., 2014] adopts a projection
transformation, say hr = h�w>

r hwr, tr = t�w>
r twr,

while TransR [Lin et al., 2015b] applies a rotation trans-
formation, say hr = Mrh,tr = Mrt. Similar work also in-
cludes TransD [Ji et al., ] and TransM [Fan et al., 2014].
Other approaches take into consideration extra information
such as relation-type [Wang et al., 2015], paths with different
confidence levels (PTransE) [Lin et al., 2015a], and seman-
tic smoothness of the embedding space [Guo et al., 2015].
KG2E [He et al., 2015] is a probabilistic embedding method
for modeling the uncertainty in knowledge base. Notably,
translation-based models demonstrate the state-of-the-art per-
formance.

2.2 Other Methods
The Unstructured Model (UM) [Bordes et al., 2012] is
a simplified version of TransE, which ignores relation in-
formation and the score function is reduced to f

r

(h, t) =
||h� t||22. The Structured Embedding (SE) model [Bordes
et al., 2011] transforms the entity space with the head-specific
and tail-specific matrices and the score function is defined
as f

r

(h, t) = ||Mh,rh�Mt,rt||. The Semantic Match-
ing Energy (SME) model [Bordes et al., 2012] [Bordes et
al., 2014] can enhance SE by considering the correlations be-
tween entities and relations with different matrix operators,
as follows:

f
r

(h, t) = (M1h+M2r+ b1)
>(M3t+M4r+ b2)

f
r

(h, t) = (M1h⌦M2r+ b1)
>(M3t⌦M4r+ b2)

where M1,M2,M3 and M4 are weight matrices, ⌦ is the
Hadamard product, b1 and b2 are bias vectors. The Sin-
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gle Layer Model (SLM) applies neural network to knowl-
edge graph embedding and the score function is defined
as f

r

(h, t) = u>
r g(Mr,1h+Mr,2t) where Mr,1,Mr,2

are relation-specific weight matrices. The Latent Fac-
tor Model (LFM) [Jenatton et al., 2012], [Sutskever et
al., 2009] makes use of the second-order correlations be-
tween entities by a quadratic form and the score func-
tion is as f

r

(h, t) = h>Wrt. The Neural Tensor Net-
work (NTN) model [Socher et al., 2013] defines a very
expressive score function to combine the SLM and LFM:
f
r

(h, t) = u>
r g(h

>W··rt+Mr,1h+Mr,2t+ br), where
ur is a relation-specific linear layer, g(·) is the tanh func-
tion, W 2 Rd⇥d⇥k is a 3-way tensor. Besides, RESCAL is a
collective matrix factorization model which is also a common
method in knowledge graph embedding [Nickel et al., 2011],
[Nickel et al., 2012].

3 Methods
In this section, we introduce the novel manifold-based prin-
ciple and then we analyze these methods from the algebraic
and geometric perspectives.

3.1 ManifoldE : a Manifold-Based Embedding
Model

Instead of adopting the translation-based principle h+ r = t,
we apply the manifold-based principle M(h, r, t) = D2

r

for
a specific triple (h, r, t). When a head entity and a relation
are given, the tail entities lay in a high-dimensional manifold.
Intuitively, our score function is designed by measuring the
distance of the triple away from the manifold:

f
r

(h, t) = ||M(h, r, t)�D2
r

||2 (1)

where D
r

is a relation-specific manifold parameter. M : E⇥
L⇥E �! R is the manifold function, where E, L are the entity
set and relation set and R is the real number field.

Sphere. Sphere is a very typical manifold. In this setting,
all the tail (or head) entities for a specific fact such as (h, r, ⇤)
are supposed to lay in a high-dimensional sphere where h+ r
is the center and D

r

is the radius, formally stated as below:

M(h, r, t) = ||h+ r� t||22
Obviously, this is a straight-forward extension of

translation-based models in which D
r

is zero. From the geo-
metric perspective, the manifold collapses into a point when
applying the translation-based principle.

Reproducing Kernel Hilbert Space (RKHS) usually pro-
vides a more expressive approach to represent the manifolds,
which motivates us to apply the manifold-based principle
with kernels. To this point, kernels are involved to lay the
sphere in a Hilbert space (an implicit high-dimensional space)
as below:

M(h, r, t) = ||'(h) + '(r)� '(t)||2

= K(h, h) +K(t, t) +K(r, r) (2)
�2K(h, t)� 2K(r, t) + 2K(r, h)

where ' is the mapping from the original space to the Hilbert
space, and K is the induced kernel by '. Commonly, K

Table 1: Statistics of datasets
Data WN18 FB15K WN11 FB13
#Rel 18 1,345 11 13
#Ent 40,943 14,951 38,696 75,043

#Train 141,442 483,142 112,581 316,232
#Valid 5,000 50,000 2,609 5,908
#Test 5,000 59,071 10,544 23,733

Figure 2: Visualization of embedding for Manifold-based
models. (a) corresponds to the Sphere setting where all the
tail entities are supposed to lay in the sphere. As Clock Dial
is matched by the two facts, it should lay in both spheres.
(b) corresponds to the Hyperplane setting where Clock Dial
should lay and does lay in both hyperplanes, making embed-
ding more precise.

could be Linear kernel (K(a, b) = a>b), Gaussian ker-

nel (K(a, b) = e�
||a�b||22

�2 ), Polynomial Kernel (K(a, b) =
(a>b + d)p, and so on. Obviously, if applying the linear
kernel, the above function is reduced to the original sphere
manifold.

Hyperplane. As shown in Fig.2, we could see that when
two manifolds are not intersected, there may be a loss in em-
bedding. Two spheres would intersect only under some strict
conditions, while two hyperplanes would intersect if their
normal vectors are not in parallel. Motivated by this fact, we
apply a hyperplane to enhance our model as below:

M(h, r, t) = (h+ rhead)
>(t+ rtail)

where rhead and rtail are two specific relation embeddings.
From the geometric perspective, given the head entity and the
relation, the tail entities lay in the hyperplane whose direc-
tion is h+ rhead and the bias corresponds to D2

r

. In practical
cases, since the two vectors e1 + r1,head and e2 + r2,head
are not likely to be parallel, there would be more chance
to lead two intersected hyperplanes than two intersected
spheres. Therefore, there would be more solutions provided
by the intersection of hyperplanes.

Motivated by enlarging the number of precisely predicted
tail entities for the same head and relation, we apply the abso-
lute operators as M(h, r, t) = |h+ rhead|>|t+ rtail| where
|w| .

= (|w1|, |w2|, |w3|, ..., |wn

|). For an instance of one-
dimensional case that |h+r

head

||t+r
tail

| = D2
r

, the absolute
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Table 2: Evaluation results on link prediction
Datasets WN18 FB15K

Metric HITS@10(%) HITS@1(%) Time(s) HITS@10(%) HITS@1(%) Time(s)
Raw Filter Filter One Epos Raw Filter Filter One Epos

SE[Bordes et al., 2011] 68.5 80.5 - - 28.8 39.8 - -
TransE [Bordes et al., 2013] 75.4 89.2 29.5 0.4 34.9 47.1 24.4 0.7
TransH [Wang et al., 2014] 73.0 82.3 31.3 1.4 48.2 64.4 24.8 4.8
TransR [Lin et al., 2015b] 79.8 92.0 33.5 9.8 48.4 68.7 20.0 29.1
PTransE [Lin et al., 2015a] - - - - 51.4 84.6 63.3 266.0

KG2E [He et al., 2015] 80.2 92.8 54.1 10.7 48.9 74.0 40.4 44.2
ManifoldE Sphere 80.7 92.8 55.8 0.4 55.7 86.2 64.1 0.7

ManifoldE Hyperplane 84.2 94.9 93.2 0.5 55.2 88.1 70.5 0.8

operator would double the solution number of t, meaning that
two tail entities rather than one could be matched precisely to
this head for this relation. For this reason, the absolute oper-
ator would promote the flexibility of embedding.

We also apply the kernel trick to the Hyperplane setting, as
below:

M(h, r, t) = K(h+ rhead, t+ rtail)

3.2 Algebraic Perspective
The ill-posed equation system that posses more equations
than free variables always leads to some undesired prop-
erties such as instability, which may be the reason why
the translation-based principle performs not so well in pre-
cise link prediction. To alleviate this issue, manifold-based
methods model embedding within a nearly well-posed al-
gebraic framework, since our principle indicates only one
equation for one fact triple. Taking an example of sphere
as

P
d

i=1(hi

+ r
i

� t
i

)2 = D2
r

, we could conclude that if
d � #Equation

E+R

= T

E+R

, our embedding system would be
more algebraically stable and this condition is easy to achieve
by just enlarging the embedding dimension to a suitable de-
gree. In theory, larger embedding dimension provides more
solutions to embedding equations, which makes embedding
more flexible. When the suitable condition is satisfied, the
stable algebraic solution would lead the embedding to a fine
characterization, therefore the precise link prediction would
be promoted.

3.3 Geometric Perspective
The translation-based principle allocates just one position for
a golden triple. We extend one point to a whole manifold such
as a high dimensional sphere. For instance, all tail entities for
a 1-N relation could lay on a sphere, which applies h+ r as
the center and D

r

as the radius. Obversely, it would be more
suitable in a manifold setting than in a point setting.

3.4 Training
We train our model with the rank-based hinge loss, which
means to maximize the discriminative margin between the
golden triples and the false ones.

L =
X

(h,r,t)2�

X

(h0
,r

0
,t

0)2�0

[f
r

0(h0, t0)� f
r

(h, t) + �]+ (3)

where L is the loss function which should be minimized, � is
the margin, and [·]+

.
= max(0, ·) is the hinge loss. The false

triples are sampled with the Bernoulli Sampling Method as
introduced in [Wang et al., 2014]. We initialize the embed-
ding vectors by the similar methods used in deep neural net-
work [Glorot and Bengio, 2010]. Stochastic gradient descent
(SGD) is applied to solve this problem.

In theory, our computation complexity relative to TransE
is bounded by a very small constant, as O(� ⇥ O(TransE))
where � � 1. This small constant � is caused by manifold-
based operations and kernelization. Commonly, TransE is
the most efficient among all the translation-based methods,
while ManifoldE could be comparable to TransE in effi-
ciency, hence faster than other translation-based methods.

4 Experiments
Our experiments are conducted on four public benchmark
datasets that are the subsets of Wordnet [Miller, 1995] and
Freebase [Bollacker et al., 2008]. The statistics of these
datasets are listed in Tab.1. Experiments are conducted on
two tasks : Link Prediction and Triple Classification. To
further demonstrate how the proposed model performs the
manifold-based principle, we present the visualization com-
parison between translation-based and manifold-based mod-
els in the section 4.3. Finally, we conduct error analysis to
further understand the benefit and limits of our models.

4.1 Link Prediction
Reasoning is the focus of knowledge computation. To verify
the reasoning performance of embedding, link prediction task
is conducted. This task aims to predict the missing entities.
An alternative of the entities and the relation are given when
the embedding methods infer the other missing entity. More
specifically, in this task, we predict t given (h, r, ⇤), or pre-
dict h given (⇤, r, t) . The WN18 and FB15K are two bench-
mark datasets for this task. Notably, many AI tasks could
be enhanced by “Link Prediction”, such as relation extraction
[Hoffmann et al., 2011].

Evaluation Protocol. We adopt the same protocol used
in previous studies. Firstly, for each testing triple (h, r, t),
we corrupt it by replacing the tail t (or the head h) with ev-
ery entity e in the knowledge graph. Secondly, we calculate a
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Table 3: Evaluation results on FB15K by mapping properties of relations(%)
Tasks Predicting Head(HITS@10) Predicting Tail(HITS@10)

Relation Category 1-1 1-N N-1 N-N 1-1 1-N N-1 N-N
TransE [Bordes et al., 2013] 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0
TransH [Wang et al., 2014] 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2
TransR [Lin et al., 2015b] 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1
PTransE [Lin et al., 2015a] 90.1 92.0 58.7 86.1 90.1 70.7 87.5 88.7

KG2E [He et al., 2015] 92.3 93.7 66.0 69.6 92.6 67.9 94.4 73.4
ManifoldE Sphere 92.4 95.5 53.2 84.4 92.8 68.7 94.8 86.8

ManifoldE Hyperplane 92.5 97.0 59.9 88.2 93.4 70.8 94.9 90.0

Table 4: Evaluation results for precise prediction on FB15K by mapping properties of relations(%)
Tasks Predicting Head(HITS@1) Predicting Tail(HITS@1)

Relation Category 1-1 1-N N-1 N-N 1-1 1-N N-1 N-N
TransE [Bordes et al., 2013] 35.4 50.7 8.6 18.1 34.5 10.6 56.1 20.3
TransH [Wang et al., 2014] 35.3 48.7 8.4 16.9 35.5 10.4 57.5 19.3
TransR [Lin et al., 2015b] 29.5 42.8 6.1 14.5 28.0 7.7 44.1 16.2
PTransE [Lin et al., 2015a] 57.5 83.0 46.2 60.3 58.1 58.4 73.9 61.7

KG2E [He et al., 2015] 62.3 73.9 39.4 30.4 62.3 33.9 76.2 33.8
ManifoldE Sphere 62.7 78.0 30.8 63.0 64.8 38.8 76.4 63.0

ManifoldE Hyperplane 66.6 89.4 46.6 66.5 65.0 54.2 83.4 70.3

probabilistic score of this corrupted triple with the score func-
tion f

r

(h, t). By ranking these scores in descending order, we
then obtain the rank of the original triple. The evaluation met-
ric is the proportion of testing triple whose rank is not larger
than N (HITS@N). HITS@10 is applied for common rea-
soning ability and HITS@1 concerns the precise embedding
performance. This is called “Raw” setting. When we filter
out the corrupted triples that exist in the training, validation,
or test datasets, this is the“Filter” setting. If a corrupted triple
exists in the knowledge graph, ranking it ahead the original
triple is also acceptable. To eliminate this case, the “Filter”
setting is more preferred. In both settings, a higher HITS@N
means better performance. Note that we do not report the re-
sults of “raw” setting for HITS@1, because they are too small
to make a sense. Notably, we actually run each baseline in the
same setting for five times, and average the running time as
the results.

Implementation. As the datasets are the same, we di-
rectly reproduce the experimental results of several baselines
from the literature for HITS@10. As to HITS@1, we re-
quest the results from the authors of PTransE and KG2E. We
acknowledge these authors Yankai Lin and Shizhu He. We
have attempted several settings on the validation dataset to
get the best configuration. Under the “bern.” sampling strat-
egy, the optimal configurations of ManifoldE are as follows.
For sphere, ↵ = 0.001, k = 100, � = 3.0, Linear kernel,
on WN18; ↵ = 0.0005, k = 800, � = 1.0, Polynomial
kernel(p = 2, d = 2) on FB15K. For hyperplane, learn-
ing rate ↵ = 0.01, embedding dimension k = 800, margin
� = 0.2, Linear kernel, on WN18; ↵ = 0.01, k = 1000,
� = 0.2, Linear kernel, on FB15K. The experimental envi-
ronment is a common PC with i7-4790 CPU, 16G Memory

and Windows 10. Note that all the symbols are introduced in
“Methods”.

Results. Evaluation results on WN18 and FB15K are re-
ported in Tab.2 and Tab.3. We observe that:

1. ManifoldE beats all the baselines in all the sub-tasks,
yielding the effectiveness and efficiency of the manifold-
based principle.

2. From the algebraic perspective, it’s reasonable to mea-
sure the algebraic ill-posed degree with the radio
T/(E + R) because with the translation-based princi-
ple, Td is the number of equations and (E + R)d is
the number of free variables, a larger radio means more
ill-posed. Since the manifold-based principle alleviates
this issue, ManifoldE(Sphere) would make a more pro-
motion relatively to the comparable baselines (TransE)
under a larger radio. As to the metric HITS@1, on
WN18, the radio is 3.5 while TransE achieves 29.5%
and ManifoldE(Sphere) achieves 55%, leading to a rela-
tive improvement of 85.1%. On FB15K the radio is 30.2
while TransE achieves 24.4% and ManifoldE(Sphere)
achieves 64.1%, leading to a relative improvement of
162.7%. This comparison illustrates manifold-based
methods could stabilize the algebraic property of em-
bedding system, by which means, the precise embedding
could be approached much better.

3. From the geometric perspective, traditional models at-
tempt to express all the matched entities into one posi-
tion, which leads to unsatisfactory performance on com-
plex relations. Meanwhile, manifold-based model could
perform much better for these complex relations as we
discussed. As to the metric HITS@1, the simple relation
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Table 5: Triple classification: accuracy(%) for different em-
bedding methods.

Methods WN11 FB13 AVG.
SE 53.0 75.2 64.1

NTN 70.4 87.1 78.8
TransE 75.9 81.5 78.7
TransH 78.8 83.3 81.1
TransR 85.9 82.5 84.2
KG2E 85.4 85.3 85.4

ManifoldE Sphere 87.5 87.2 87.4
ManifoldE Hyperplane 86.9 87.3 87.1

1-1 improves relatively by 87.8% by ManifoldE(Sphere)
than TransE while the complex relations such as 1-N,
N-1, N-N improve relatively by 266.5%, 36.2% and
215.7% respectively. This comparison demonstrates
manifold-based method that extends the golden position
from one point to a manifold could better characterize
the true facts, especially for complex relations.

4.2 Triple Classification
In order to present the discriminative capability of our method
between true and false facts, triple classification is conducted.
This is a classical task in knowledge base embedding, which
aims at predicting whether a given triple (h, r, t) is correct or
not. WN11 and FB13 are the benchmark datasets for this task.
Note that evaluation of classification needs negative samples,
and the datasets have already been built with negative triples.

Evaluation Protocol. The decision process is very simple
as follows: for a triple (h, r, t), if f

r

(h, t) is below a threshold
�
r

, then positive; otherwise negative. The thresholds {�
r

}
are determined on the validation dataset. This task is some-
how a triple binary classification.

Implementation. As all methods use the same datasets,
we directly re-use the results of different methods from the
literature. We have attempted several settings on the valida-
tion dataset to find the best configuration. The optimal con-
figurations of ManifoldE are as follows with “bern” sampling.
For sphere, ↵ = 0.001, k = 100, � = 10.0, Linear kernel on
WN18; ↵ = 0.00005, k = 1000, � = 0.3, Gaussian kernel
(� = 1.0) on FB13. For hyperplane, learning rate ↵ = 0.01,
embedding dimension k = 500, margin � = 1.0, Linear ker-
nel, on WN18; ↵ = 0.001, k = 1000, � = 3.0, Polynomial
kernel (p = 2, d = 2), on FB13.

Results. Accuracies are reported in Tab.5. We observe
that:

1. Overall, ManifoldE yields the best performance. This
illustrates our method could improve the embedding.

2. More specifically, on WN11, the relation “Type Of” that
is a complex one, improves from 71.4% of TransE to
86.3% of ManifoldE(Sphere) while on FB13, the re-
lation “Gender” that is an extreme N-1 relation, im-
proves from 95.1% to 99.5%. This comparison shows
manifold-based methods could handle complex relations
better.

4.3 Visualization Comparison between
Translation-Based and Manifold-Based
Principle

As the Fig.1 shows, the translation-based principle involves
too much noise near the center where is supposed to lay the
true facts. We attribute such issues to the precise link predic-
tion issue as introduced previously, However, manifold-based
principle alleviates this issue to enhance precise knowledge
embedding, which could be seen from the visualization re-
sults.

4.4 Error Analysis
To analyze the errors in Link Prediction, we randomly sam-
ple 100 testing triples that could not rank at the top positions
by ManifoldE (Hyperplane) and three categories of errors are
summarized. Notably, we call the predicted top rank triple,
which is not the golden one, as “top rank triple”.

1. True Facts (29%): The top rank triple is cor-
rect though it is not contained in the knowledge
graph, thus ranking it before the golden one is ac-
ceptable. This category is caused by incomplete-
ness of the dataset. For example, reflexive seman-
tics as (Hot, Similar To,Hot), general expression as
(Animal Scientist,Type Of, Individual), professional
knowledge as (Crescentia,Type Of,Plant) and so on.

2. Related Concepts (63%): The top rank triple is
a related concept, but the corresponding fact is
not exactly correct. This category is caused by
the relatively simple manifolds applied by Mani-
foldE. For example, puzzled place membership as
(Afghanistan,Has Part,Hyderabad), similar men-
tions as (New Haven,Part Of,One Star State), simi-
lar concepts as (Sea,Has Instance,Aleutian Islands),
possible knowledge as (Accent,Type Of, Individual)
and so on. We could further exploit complex manifolds
to enhance the discriminative ability.

3. Others (8%): There are always some top rank triples
that are difficult to interpret.

5 Conclusions
In this paper, we study the precise link prediction prob-
lem and reveal two reasons to the problem: the ill-posed
algebraic system and the over-restricted geometric form.
To alleviate these issues, we propose a novel manifold-
based principle and the corresponding ManifoldE mod-
els (Sphere/Hyperplane) inspired by the principle. From
the algebraic perspective, ManifoldE is a nearly well-posed
equation system and from the geometric perspective, it ex-
pands point-wise modeling in the translation-based principle
to manifold-wise modeling. Extensive experiments show our
method achieves substantial improvements against the state-
of-the-art baselines.
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