Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

Forgetting Concept and Role Symbols in
ALCOIH (v, M)-Ontologies

Yizheng Zhao and Renate A. Schmidt
The University of Manchester, UK

Abstract

Forgetting is a non-standard reasoning problem
concerned with creating restricted views for on-
tologies relative to subsets of their initial signa-
tures while preserving all logical consequences
up to the symbols in the restricted views. In
this paper, we present an Ackermann-based ap-
proach for forgetting of concept and role symbols
in ontologies expressible in the description logic
ALCOIHpt(v,M). The method is one of only
few approaches that can eliminate role symbols,
that can handle role inverse, ABox statements, and
is the only approach so far providing support for
forgetting in description logics with nominals. De-
spite the inherent difficulty of forgetting for this
level of expressivity, performance results with a
prototypical implementation have shown very good
success rates on real-world ontologies.

1 Introduction

This paper presents a practical forgetting method for creat-
ing restricted views of ontologies expressed in the language
of the description logic ALCOZHut(V,M). The work is
motivated by the high demand for advanced techniques for
ontology-based knowledge processing. Research of forget-
ting, often referred to as uniform interpolation (also known
as variable elimination, projection or second-order quanti-
fier elimination) has gained significant momentum since the
work of various groups developing forgetting methods for
the description logic ALC and logics weaker than ALC,
e.g., [Konev et al., 2009b; Lutz et al., 2012; Ludwig and
Konev, 2014; Nikitina and Rudolph, 2014; Wang et al., 2009;
20141, and the foundational studies of the properties of for-
getting for description logics by, e.g., [Wang et al., 2008;
Konev et al., 2009a; Lutz and Wolter, 2011; Lutz et al., 2012;
Konev et al., 2013]. These works give arguments for the im-
portant role of forgetting in realizing various tasks crucial for
effective processing and management of ontologies. For ex-
ample, forgetting can be used for ontology analysis, for creat-
ing ontology summaries, for ontology reuse, for information
hiding, for computing the logical difference between ontolo-
gies, for ontology debugging and repair, and for query an-
swering.

1345

Early work in the area primarily focused on forgetting con-
cept symbols, as role forgetting was realized to be signifi-
cantly harder than forgetting of concept symbols [Wang et
al., 2008], because the result of forgetting role symbols of-
ten requires more expressivity than is available in the tar-
get logic. Although the earliest work did study concept
and role forgetting, e.g. [Wang er al., 2009], most subse-
quent work considered only concept forgetting with the ex-
ception of [Koopmann and Schmidt, 2013a; 2013b; 2014;
2015]. Their method can perform both concept and role for-
getting for description logics extending ALC up to and in-
cluding description logics with the expressiveness of SH,
SZF and SHQ. In addition they have extended their method
to forgetting for description logics with ABoxes for logics
between ALC and SHZ.

The work on forgetting for description logics is predated
by work on second-order quantifier elimination [Gabbay and
Ohlbach, 1992; Szatas, 1993; Nonnengart and Szatas, 1999;
Doherty et al., 1997; Gabbay et al., 2008], which can be
traced to questions posed by Boole and seminal work of [Ack-
ermann, 1935]. These works triggered and influenced work
in knowledge representation [Lin and Reiter, 1994; Wern-
hard, 20111, but also led to striking results in the automa-
tion of correspondence theory of modal logics [Gabbay and
Ohlbach, 1992; Conradie et al., 2006; Schmidt, 2012]. Be-
cause of the close relationship between description logics and
modal logics, besides the work on modal correspondence the-
ory, investigations of uniform interpolation for modal logics
and the p-calculus [Visser, 1996; Herzig and Mengin, 2008;
D’Agostino and Hollenberg, 2000] are relevant. These are
related to concept forgetting, but not to role forgetting.

The contribution of this paper is an approach for forgetting
of concept and role symbols in expressive description logics
not considered so far. The method accommodates ontologies
expressible in the description logic ALCOZH and the exten-
sion allowing positive occurrences of the least fixpoint oper-
ator u, the top role V and role conjunction M. This means
the method is one of only few approaches that can eliminate
role symbols, while also handling role inverse, ABox state-
ments, and the only approach so far providing support for
forgetting in description logics with nominals. The added ex-
pressivity has the advantage that it reduces information loss;
for instance, the solution of forgetting the role symbol r in the
ontology {A C Ir.B,3r.BC B}is{A C 3v.B, A C B},

whereas in a description logic without the top role (or ABox
axioms or nominals) the uniform interpolant is {A T B},
which is weaker.

Being based on the Ackermann approach to second-order
quantifier elimination [Doherty et al., 1997; Szatas, 2006;
Schmidt, 2012; Zhao and Schmidt, 2015] the method termi-
nates always. We have shown that the method is correct, i.e.,
the forgetting solution computed is equivalent to the origi-
nal ontology up to the symbols that have been forgotten. A
general problem of forgetting is marking out a language ex-
pressive enough to allow for solutions to be given by finitely
many formulas, while being not too expressive so that the for-
getting solutions returned can be further processed by avail-
able tools. For example, including second-order quantifiers
of concept and role symbols in the language solves the forget-
ting problem trivially, but tool support would be absent. Even
though concept forgetting becomes possible with fixpoint op-
erators, at present mainstream tools do not support fixpoints.
We avoid this problem by restricting occurrences of fixpoints
in our logic to cases that can be simulated without them. De-
spite our method not being complete, performance results of
an evaluation with a prototypical implementation have shown
very good success rates on real-world ontologies.

2 The Description Logic ACCOZH ™ (v, M)

Let Ng, Ng and Np be mutually disjoint sets of concept
symbols (names), role symbols (names) and individuals, re-
spectively, and let N, be a set of concept variables disjoint
with N¢, Ng and No. Roles in ALCOZH(V,M) can be the
top role V, a role symbol r € Np, the inverse ~ of a role
symbol 7 (an inverted role symbol), or can be formed with
conjunction. Concepts in ALCOZH(V,M) have one of the
following forms: a | T | A| =C | C U D | VR.C, where
a € Npo, A € Ng, C and D are any concepts, and R is any
role in ALCOTZH(V,M). We assume w.l.o.g. that concept
and role expressions are equivalent relative to associativity
and commutativity of M and LI, - and ~ are involutions, and
T and V are units w.r.t. .

We assume that a TBox 7 is a set of concept axioms of the
form C' C D, where C and D are closed concepts, i.e., con-
tain no concept variable not in the scope of a y operator. An
RBox R is a set of role axioms of the form R T S, where R
and S are role symbols or inverted role symbols. An ABox is
a set of concept assertions of the form C(a) and role asser-
tions of the form R(a,b). In description logics with nominals
ABox assertions are superfluous, since they can be equiva-
lently expressed as TBox axioms, namely, C'(a) as a C C
and R(a,b) as a C JR.b. Hence, we assume an ontology is
the union of a TBox and an RBox.

The language of ALCOIHput(V,M) extends that of
ALCOTH(V,M) with atomic least fixpoint expressions of
the form ;1 X.C[X], where X € N, and C[X] is a concept
expression in which X occurs only positively (under an even
number of explicit and implicit negations) in place of a regu-
lar concept symbol. Moreover, p-expressions may occur only
positively. Because of this restriction, u-expressions can be
simulated in ALCOZH(V,M) with auxiliary concept sym-
bols as in [Koopmann and Schmidt, 2013b].

1346

The semantics of ALCOZHput (v,M) is defined in terms
of an interpretation T = (AZ,.T), where AT is any non-
empty set, and -Z assigns to every nominal a € Ng a single-
ton set aX C A7, to every concept symbol A € Ng a sub-
set AT of AT, and to every role symbol » € Ng a subset 1~
of AT x AZ. The interpretation function -Z is inductively ex-
tended to concept and role expressions as follows:

TE=AT vI=ATx AT (-O)F =A"\C*
(cubp)y*=c*up* (RNS)F=R'ns*
(VR.O)" = {z € AT |Vy.(z,y) € RT -y € C"}
(R) ={(y,») € AT x A" | (z,y) € R"}

The semantics of least fixpoint expressions takes addition-
ally an assignment function -, mapping concept variables to
subsets of AZ, which is defined by: (uX.C)TY = N{€ C
AT | CTVIX/EL C €1, where YIX/€] denotes an assignment
function identical to -V except that XY = &£. C%V is the in-
terpretation CZ of C' that adopts the assignment function -V,
and CTY = C% when -V is defined for all variables in C.

A concept axiom C' C D is true in an interpretation Z iff
CT C DZ, and arole axiom R C S is true in Z iff RZ C SZ.
7 is a model of an ontology O iff every axiom in O is true. In
this case we write Z = O.

Theorem 1 Reasoning in ACCOTHut (v, M) is decidable.

This follows, e.g., from the decidability of guarded fixpoint
logic [Gridel and Walukiewicz, 1999] or the description logic
ALBOY [Schmidt and Tishkovsky, 2014] (because positive
occurrences of u-expressions can be encoded). Reasoning in
ALCOTHut(v,M) can be performed with MetTeL, which

decides ALBO' [Tishkovsky ef al., 2012].

The normal form of our method are axioms in clausal nor-
mal form. A TBox clause is a disjunction of a finite number of
ALCOTHpt (v, M)-concepts. A role literal is atole symbol,
an inverted role symbol, or formed with negation. An RBox
clause is a disjunction of exactly two role literals of comple-
mentary polarity. TBox and RBox clauses are obtained by
clausification of the TBox and RBox axioms, where in the
case of role axioms role negation is introduced. Nominals are
treated like regular concept symbols in our method, except
that they cannot be specified as symbols to be forgotten.

A clause that contains a designated concept (role) sym-
bol § is called an S-clause. Given an S-clause C, an oc-
currence of S is positive in C'if it is under an even number of
explicit and implicit negations, otherwise it is negative. For
instance, an occurrence of r is assumed to be negative in Vr. A
and r C s, and positive in —=Vr.A and s C r. C' is positive
(negative) w.r.t. S if every occurrence of S in C' is positive
(negative). A set N of clauses is positive (negative) w.r.t. S
if every occurrence of S in AV is positive (negative).

We now formalize our notion of forgetting. By sig(E) we
denote the concept and role symbols occurring in E excluding
nominals, where F ranges over all concepts, axioms, clauses,
a set of clauses and ontologies. Let S be any concept or role
symbol and let Z and Z’ be interpretations. We say Z and Z'
are equivalent up to S, or S-equivalent, if Z and Z' coincide
but differ possibly in the interpretations of S. More gener-
ally, Z and I’ are equivalent up to a set ., or YS-equivalent,

if Z and Z' are the same but differ possibly in the interpreta-
tions of the symbols in Y. In this paper, X is assumed to be
the set of the concept and role symbols to be forgotten.

Definition 1 (Forgetting for ACCOZHyu+(v,M)) Let O
and O be ALCOIHu™(v,M)-ontologies and let 3 be
any subset of sig(O). (O’ is the solution of forgetting
the X-symbols in O, if the following conditions hold:
(i) sig(O’) C sig(O) and sig(O') N'L = 0, and (ii) for
any interpretation T: T O if 7' = O, for some
interpretation T' Y-equivalent to T.

This states that the given ontology O and the forgetting so-
lution O’ are equivalent up to the interpretations of the sym-
bols in X.. Forgetting solutions are unique up to equivalence.

3 Overview of the Forgetting Method

The forgetting process in our method consists of three main
phases: the reduction to a set of ALCOZHpu™ (v, M)-clauses,
the forgetting phase and the definer elimination phase (see
Figure 1). In the forgetting phase, an analyzer may be used
to generate forgetting orderings, = and =", of the concept
symbols and role symbols in 2.

Transform to
r-reduced form

b

I
|
I
} Ackermann
I
|
I
I

Ontology O

to forget r

Transform to
A-reduced form

B {Sl’ “.782} .
D —

Ackermann
to forget A

Forgetting
X ,
solution O

Elimination of
definer symbols

Figure 1: Overview of the forgetting method

The input to the method is an ontology O of TBox and
RBox axioms expressible in ALCOZHpu™(V,M), and a set
with the concept and role symbols to be forgotten. The -
symbols are entirely determined by the user and their appli-
cation demands; X can thus be any subset of the signature of
the initial ontology as the user wishes. The first phase trans-
forms the input ontology O into a set N of clauses.

The forgetting phase is an iteration of several rounds in
which individual concept and role symbols are eliminated.
An important feature of the method is that concept symbols
and role symbols are forgotten in a focused way, i.e., the rules
for concept forgetting and the rules for role forgetting are mu-
tually independent; concept and role symbols can therefore be
forgotten in any order. In the forgetting phase, if S € X is a
symbol to be forgotten, the idea is to transform the S-clauses
into S-reduced form, so that the forgetting rules, specifically

1347

the Ackermann rules, can be applied to eliminate S. Thus,
whether the X-symbols are eliminable depends entirely upon
whether the current set of clauses can be transformed into
corresponding reduced forms. For A a concept symbol, the
conversion to A-reduced form is performed using the rewrite
rules in the calculus for concept forgetting, while for r a role
symbol, the conversion to r-reduced form is realized using
the rewrite rules in the calculus for role forgetting. The cal-
culi are described in the next sections. To provide crucial
control and flexibility in how the steps are performed, auxil-
iary concept symbols, called definer symbols, are introduced
in the role forgetting rounds. The final phase in the method
attempts to eliminate these using concept forgetting.

Previous research has shown that the success rates of
forgetting depend very much upon the order in which the
Y-symbols are forgotten [Gabbay and Ohlbach, 1992; Do-
herty et al., 1997; Conradie et al., 2006; Schmidt, 2012;
Koopmann and Schmidt, 2014], even when forgetting only
concept symbols, e.g., [Ludwig and Konev, 2014; Zhao and
Schmidt, 2015]. An important challenge therefore is to
find appropriate orderings for eliminating >-symbols. Our
method either follows the user-specified ordering, or it uses
a heuristic analysis based on frequency counts of the -
symbols, where concept symbols and role symbols are ana-
lyzed separately.

We refer to the maximal symbol of 3 w.r.t. the forgetting
ordering > as the pivot in our method. Following > (and
starting with the pivot), the method forgets the X-symbols
one by one. If the pivot is successfully eliminated from N,
we attempt to forget the next symbol in the ordering >, which
has become the new pivot. Otherwise the pivot is flagged as
a currently non-forgettable symbol and remains in ¥. The
next symbol in > then becomes the pivot. When the end of
the ordering > has been reached, the calculus is applied to the
flagged symbols, attempting again to eliminate them. Success
will always be pursued until a forgetting solution is found.
Though the ordering > provides useful guidance during the
forgetting process, it does not generally guarantee success of
forgetting. On the symbols not eliminated, a different order-
ing not attempted before, will be used. When all possible
orderings have been attempted and there are still ¥-symbols
remaining, our method has been unable to find a forgetting
solution (because it is unable to find a suitable reduced-form
for the non-forgettable symbols).

Inexpensive equivalence-preserving simplification rules
are applied throughout the forgetting process, ensuring that
the current clauses are always simple representations for effi-
ciency. Our experimental results suggest that the simplifica-
tion rules are also crucial to the success of concept forgetting,
as they can help conversion of clauses to reduced form, when
the pivot is a concept symbol. What the method returns, if
forgetting is successful, is an ontology O’ that does not con-
tain the symbols in X.

Theorem 2 For any ALCOZHut(V,M)-ontology O and
any set ¥ C sig(O) of symbols to be forgotten, the method
always terminates and returns a set O' of clauses. If O’
does not contain any X-symbols, the method was successful.
O' is then a solution of forgetting the symbols in X from O.

If neither O nor O’ uses fixpoints, O' is Y-equivalent to O
in ACCOTH(V,N). Otherwise, it is Y-equivalent to O in
ALCOTHpt(v,N).

4 Calculus for Concept Forgetting

This section presents the calculus for forgetting concept sym-
bols from ontologies expressible in ALCOZHp ™ (V,1M). The
calculus extends the calculus of [Zhao and Schmidt, 2015] for
concept forgetting in ALCOZ-ontologies by accommodating
the top role in the calculus and allowing the least fixpoint op-
erator to occur in the forgetting solutions for problems that
contain cyclic dependencies. Since concept symbols occur
only in TBox axioms, only the TBox needs to be processed
for concept forgetting. The RBox remains unchanged.

Non-Cyclic Ackermann®

N,CiUA,...,.CLbUuA

A
N—‘Clu...l_’—‘cn

provided: (i) A does not occur in the C;, and (ii) N is
negative w.r.t. A.

Cyclic Ackermann®

N,Ci[AJUA, ..., Co[AJUA

A
'/V;LX.(‘\C1|_|.--U“Cn)[X]

provided: (i) the C; are negative w.r.t. A, and (i) N is
negative w.r.t. A.

Purify®
N

NA provided: N is positive (negative) w.r.t. A.
(=T

Figure 2: Rules for forgetting pivot A € N¢

Definition 2 (A-Reduced Form) Suppose A is a concept
symbol. A clause is in A-reduced form if it is negative w.r.t. A,
or it has the form AU C, where C is an ALCOTHu™(v,1N)-
concept that (i) does not have any occurrences of A, or (ii) is
negative w.r.t. A. A set N of clauses is in A-reduced form if
every A-clause in N is in A-reduced form.

The AckermannC rules and the Purify® rule, given in Fig-
ure 2, are the forgetting rules that lead to the elimination of
concept symbols in a set of clauses. For A € Ng the pivot
and C a concept expression, /\/'é4 denotes the set obtained
from A by replacing every occurrence of A by C. We refer
to the clauses of the form C; U A and C;[A]UA (1 <i<mn)
as positive premises of the Non-Cyclic Ackermann€ rule and
the Cyclic Ackermann® rule, respectively. The Ackermann®
rules are applicable to forget A in A/ only if N is in A-
reduced form.

Theorem 3 (Ackermann Lemma, Concept Forgetting)

Let T be any ALCOTHu™ (v, N)-interpretation. For A the
pivot, when the Non-Cyclic AckermannC rule is applicable,
the conclusion of the rule is true in I iff for some interpreta-
tion T' A-equivalent to I, the premises are true in I'. The

1348

N, CU=(DyU...UDy,)

Concept Clausify N.CU-Ds.....CLU-D,

provided: A occurs positively in =(Dq U ... D,,).
CUVR.D

Concept Surfacing /\/'/,\[(’V RO\ LD

provided: (i) A does not occur positively in C', and (ii)
A occurs positively in VR.D.

N,=aU-VR.C
N,=alU=VYR.=b,-bL -~C

provided: (i) A occurs positively in =V R.C, and (ii) b is
a fresh nominal.

Skolemization”

N,CU-Vv.D
N,=bu-DUVY.C

provided: (i) A occurs positively in =VV.D, and (ii) b is
a fresh nominal.

Skolemization"

N,—=aUC U...UuC,
N,—alCy | |ﬁaI_IC’n
provided: A occurs positively in C; U ... U C,,.

Case Splitting

N
Sign Switchin, -
’ S
provided: (i) NV is closed w.r.t. the other rewrite rules,
and (ii) Sign Switching has not been performed on A.

Figure 3: The rewrite rules for finding A-reduced form

same is true for the Cyclic Ackermann® and the Purify©
rules.

This states that eliminating the pivot symbol with the
Ackermann® and PurifyC rules preserves equivalence up to
the pivot. Given a pivot A € N¢ and a set N of clauses
in A-reduced form, the Ackermann® and Purifyc rules are
applied in different situations. Specifically, the Non-Cyclic
Ackermann® rule is applied when A does not occur in the
concepts C}; of the positive premises (1 < ¢ < n). The Cyclic
Ackermann® rule is applied when A occurs in the C; but only
negatively (e.g., A in the cyclic clause A LI=Vr.A). Fixpoints
are introduced in this case in order to facilitate finite repre-
sentation of the forgetting solution, where every occurrence
of Ain =Cy U ... U —=C, is replaced by X, a fresh con-
cept variable, and every occurrence of A in N is replaced by
pX.(=Cy U ... U =C,)[X]. The Purify® rule can be applied
any time provided that A is pure in N, i.e., N is positive (or
negative) w.r.t. A.

Figure 3 lists a set of rewrite rules for finding the pivot-
reduced form of a clause for the pivot a concept symbol. New
compared to [Zhao and Schmidt, 2015], besides the Cyclic
Ackermann® rule, is the SkolemizationV rule that rewrites
existential restrictions over the top role by the introduction
of fresh nominals. The Case Splitting rule splits the deriva-
tion into several branches. The intermediate result returned
at the end of a symbol elimination round is the disjunction
of the solutions of each branch in the derivation. Crucial to
the practicality of our method are a number of equivalence-

preserving simplification rules, not described here.

It follows from [Schmidt, 2012; Zhao and Schmidt, 2015],
which this work extends, that our method for concept forget-
ting succeeds on problems corresponding to the modal classes
of C and C~ [Schmidt, 2012], which subsume the class of
Sahlqvist formulas [Sahlqvist, 1975] and the class of monadic
inductive formulas [Goranko and Vakarelov, 2006].

S Calculus for Role Forgetting

The main contribution of this paper is a calculus for goal-
oriented forgetting of role symbols in ontologies expressible
in ACCOTHp (v,). Since role symbols also occur in the
RBox, both the TBox and the RBox need to be processed
when role symbols are to be forgotten.

Role Surfacing to TBox clauses
N,Cuvr—.D
N,Duvr.C
provided: r does not occur in C' and D.
Role Surfacing to RBox clauses
N,=Sur™ N,SU—-r~
N,=S—Ur N,S—U-r
provided: S is a role symbol or an inverted role symbol.

Figure 4: The rewrite rules for finding r-reduced form

Definition 3 (r-Reduced Form) Suppose r is a role symbol.
A clause is in r-reduced form if it has the form C UNr.D or
C U—Vr N Q.D, where C and D are ALCOTHu™(v,M)-
concepts that do not contain any occurrence of r and Q is a
role that does not contain any occurrence of r; or it has the
form =S UrorSU-r, where S € {s,s"}ands (#r)isa
role symbol. A set N of clauses is in r-reduced form if every
r-clause in N is in r-reduced form.

As in concept forgetting, the pivot-clauses are first trans-
formed into pivot-reduced form, so that the Ackermann
rule for role forgetting becomes applicable (to eliminate the
pivot). Finding the pivot-reduced form of a clause is how-
ever not always possible unless definer symbols are intro-
duced. Definer symbols are specialized concept symbols
that do not occur in the present ontology [Koopmann and
Schmidt, 2013b], and are introduced as follows: given a
clause of the form C U Vr(=).D or C U —=vr(=).D, with r
being the pivot and occurring in @ € {C, D}, the definer
symbols are used as substitutes, incrementally replacing C
and D until neither contains any occurrences of r. A new
clause =D U Q is added to the clause set for each replaced
subconcept Q, where D is a fresh definer symbol. For exam-
ple, introducing a definer symbol D, leads to A U =Vr.Vr.B
being rewritten with A L =Vr.D; and =D; U Vr.B, where A
and B are concept symbols. The definer symbols are elim-
inated (if they were introduced in the conversion of clauses
to the pivot-reduced form) using the rules for concept forget-
ting once all role symbols in X have been forgotten. It is for
this reason that our implementation defaults to forgetting role

1349

symbols first so that the definer symbols can be eliminated as
part of subsequent concept forgetting.

Ackermann™

N,

,,,,,,,,,,,,,,, 3
|
)

i -

Cl UVT.Dh .. ~7Cm UVT.Dm,
-rusSy, ..., rusS,

N,‘ T-Block™(1,m), ..., T-Block™(k,m) ‘,

provided: (i) r does not occur in A, and (ii) A is in
r-reduced form.

Purify”
= provided: N is positive (negative) w.r.t. r.
(=)v
Notation in the Ackermann™ rule (1 < j < k, 1 <[< w):
T-Block™(j, m) denotes the set
{C7uCc” u-vH! (D’ UDY)|Y C [m]}, where

=T ifY =0 -1 ifY =0
oY = o DY = ~

L] Ci otherwise, Ll =D; otherwise,

i€y i€y

. i ifps
and 20 — Si1M... M8, NQ 1f79R?é®
vne’ otherwise.
R-Block® (1, m) denotes the set
{CLUVT".Dy,...,Com UNT" Dy}

R-Block™(1,n) denotes the set {~T" LI S1,..., =T U S,}.

Figure 5: Rules for forgetting pivot r € Ny

Since the underlying language accommodates role inverse,
the calculus includes two Role Surfacing rules (shown in Fig-
ure 4) to reformulate expressions without occurrences of in-
verses of the pivot in the TBox and RBox clauses, and to free
the other rules in the calculus from needing to cater for role
inverse. The Role Surfacing rules are applied after definer
symbols have been introduced (if necessary), and before the
application of the forgetting rules.

Theorem 4 (Ackermann Lemma, Role Forgetting) Ler 7
be any ALCOIHu™ (V,N)-interpretation. For v the pivot,
when the Ackermann™ or Purify™ rule is applicable, the con-
clusion of the rule is true in L iff for some interpretation T'
r-equivalent to T, the premises are true in T'.

Given a set N of clauses with r € Ng being the pivot,
once N has been transformed into r-reduced form, we apply
the Ackermann™ rule given in Figure 5 to eliminate r. The
Purify™ rule can be applied any time provided that r is pure.
By definition, clauses in r-reduced form have four distinct
forms. We refer to the clauses of the form C7 L —Vr M Q7. D7
(1 < j < k) as positive TBox premises (denoted by 79}')

and clauses of the form C; U Vr.D; (1 < i < m) as neg-
ative TBox premises (denoted by Pr) of the rule. We refer
to the clauses of the form —=7% U r (1 < I < w) as posi-
tive RBox premises (denoted by P7) and clauses of the form
-r U S; (1 <14 < n) as negative RBox premises (denoted
by Pz) of the rule. Since it is possible for r to occur in any
of these premises (and the premises do not necessarily all ex-
ist), there are several situations where the Ackermann™ rule
is applicable. For different P+ and Py, the Ackermann” rule
is performed as follows.

Case (I): If P # () and P, # (), then P and Py (the
negative premises) are combined with every clause in P;t
aif P;Z # ()) and every clause in 737{ aif 77% # ()), which
leads to the elimination of r, and a forgetting solution O’
such that ¢ sig(O’). Specifically, combining P and Py
with one of the positive TBox premises (P;E) yields a set
of TBox clauses (denoted by 7-Block™(j, m)), where H’
is the conjunction of @7 and the S; (1 < i < n) in Pxr
(H? = @’nSyM...ns,), and m denotes the number of neg-
ative TBox premises (|P-|), and j refers to the positive TBox
premise with which P- and P combine. [m] denotes the set
{1,...,m},and {C7 U CY U~VHI.(D L DY)|Y C [m]}
is the set that contains all clauses corresponding to every as-
signment of Y. The following example illustrates this case.

Example 1 Given ¥~ = {r} and a set N' of clauses in
r-reduced form with Py = {A; U Vr.Bi, Ay U Vr.By},
Pr = {-rUs1,~rUs; }, and ~aU-Vr.B € P, combining
P7 and Py with —~a U =Vr.B leads to T-Block™(j,m) =
{=a U CY U-VY(s; Msy).(BUDY)|Y C [2]} that consists
of the following clauses:

—al =T U=V(s1Msy).(BUST) ifY =0
cYy DY
—all A; U—\V(Sl I_Isg).(BI_I—\B1) ifY = {1}
cYy DY
—a U A2 u—\V(Sl M S;)(B L —|BQ) lfY = {2}
cYy DY
—all A U As U—\V(Sl M S;)(B U-B1 U —|B2) ifY = {17 2}.

cY DY

Combining P with one of the positive RBox premises
yields a set of TBox clauses (denoted by R-Block® (I, m)),
where m ranges over the negative TBox premises and [refers
to the positive RBox premise with which P7- combines; com-
bining P with one of the positive RBox premises yields a
set of RBox clauses (denoted by R-Block™(l,n)), where n
ranges over the negative RBox premises and [refers to the
positive RBox premise with which P combines.

Case (II): If P # () and Py = (), then combining P,
with one of the positive TBox premises yields the same re-
sult as in Case (I) (7-Block™(j,m)), only that V replaces
S1M...MS,inH,ie,H =vn@Q/ (1 <j<k). Com-
bining P~ with one of the positive RBox premises yields the
same result as in Case (I), i.e., R-Block®(l,m) (1 < 1 < u).
Case (II): If P = () and Py, # (), then combining Py with
one of the positive TBox premises and with one of the pos-

1350

itive RBox premises yields the same results as in Case (I),
i, T-Block™(j,m) (1 < j < k) and R-Block™(l,n)
(1 <1 < w), respectively. Case (IV): The case 737? =0
and Pz = () can be seen as an instance of the case where is
pure and then eliminated using the Purify” rule.

The pivot is forgotten in the ontology once every premise
in P;C and every premise in 79;5, i.e., the positive premises,
have been combined with P (if P # 0) and Py (if
Pr # 0). Given a set of clauses in pivot-reduced form and
m negative TBox premises (|P-| = m), n negative RBox
premises (|Pg | = n), k positive TBox premises (|PF| = k),
and v positive RBox premises (|73;;\ = u), combining P~
and P with all positive TBox premises yields k2" clauses
(exponential growth); combining P~ and Py with all pos-
itive RBox premises yields um 4 un clauses (polynomial
growth). The size of the forgetting solution therefore depends
largely upon the number of the negative TBox premises (m).

6 Evaluation and Empirical Results

We have implemented a prototype of the forgetting method
in Java using the OWL-API! and conducted two series of
experiments on real-world ontologies to evaluate the practi-
cality of the method. The experiments were run on a desk-
top with an Intel® Core™ i7-4790 processor, and four cores
running at up to 3.60 GHz and 8 GB of DDR3-1600 MHz
RAM. The ontologies used for our evaluation were taken
from the NCBO BioPortal® and Oxford Ontology? reposito-
ries and were restricted to the ALCOZH(V,MN)-fragments;
any subconcepts beyond the scope of ALCOZH(V, M) were
replaced by T. Consequently, 180 and 200 ontologies of vari-
ous sizes were selected from the NCBO BioPortal and Oxford
Ontology repositories, respectively. We repeated the experi-
ments 100 times on each ontology and averaged the results to
verify the accuracy of our findings.

To fit in with real-world applications such as comput-
ing logical difference between ontologies and predicate hid-
ing, where forgetting a small number of symbols is in de-
mand, we set up a series of experiments where we forgot
10% and 30% of concept and role symbols in each ontol-
ogy. There are also situations where it would be of interest
to forget a large number of symbols; ontology reuse is such
an example [Koopmann and Schmidt, 2013a; 2013b; 2014;
2015]. We therefore set up another series of experiments
where we forgot 80% of the concept symbols and 50% of the
role symbols in each ontology. The symbols to be forgotten
were randomly selected in the experiments. The heuristic for
determining the orders of eliminating concept and role sym-
bols (>-¢ and >%) was also tested. When the heuristic was
not applied, the -symbols were eliminated in the order as
returned by the OWL-API function that gets all concept and
role symbols in the ontology. We started the evaluation with
concept forgetting, where a timeout of 15 minutes was used.

The results obtained from forgetting 10%, 30% and 80%

"http://owlapi.sourceforge.net/
Zhttp://bioportal .bioontology.org/
3http://www.cs.ox.ac.uk/isg/ontologies/

Input Setting Results
Ontology [X[(%) [>c | Time (sec.) | Timeout [SuccessR. | Fixp.
X 4890 | 00% 100.0% | 0.0%
20010%) 7 3.260 0.0% 100.0% | 0.0%
. X 18.672 1.4% 94.49 7 2%
mioporl | cocos) |5 GRE [T S8 | G
(35‘;%‘0;’“ 160(80%) |_X_| 70416 | 138% | 833% | 133%
on AvE: 17 29340 5.6% 917% | 17.2%
50 Av X | 31326 | 63% | 926% | 68%
& T/ 13979 2.4% 9%.7% | 83%
X | 44392 | 30% | 970% | 05%

0

36 (0% =71 27945 15% 985% | 05%
X | 193106 | 170% | 7195% | 115%
(87(;’i£‘)’(riqu 108 30%) =7 go461 9.5% 88.5% | 14.5%
AVO)‘ 288 (80%) |_X_| 412852 | 345% | 615% | 190%
on Ave. 97 166270 17.5% 785% | 26.5%
144 A X | 216783 | 182% | 793% | 103%
& T/ 91492 9.5% 88.5% | 13.8%

Figure 6: Evaluation results for concept forgetting

of the concept symbols from the respective BioPortal and Ox-
ford ontologies are shown in Figure 6, which is revealing in
several ways. The most notable observation to emerge from
the results is that, with the heuristically determined forget-
ting ordering (indicated by v/), our implementation was suc-
cessful (forgot all the concept symbols in X)) in 96.7% of the
BioPortal-cases within a short period of time, with 8.3% of
them using fixpoints in the result. In the experiments of 10%
of the concept symbols specified to be forgotten, the success
rate rose to 100%. Even when not using the heuristic (X),
the forgetting solution could be found in 92.6% of the cases.
Since the Oxford ontologies were more than twice as large as
the BioPortal ontologies and a larger set of concept symbols
was specified to be forgotten, a reduction in the performance
was expected. The implementation was unable to compute
the solution in 11.5% of the Oxford-cases, and in 13.8% of
the solved ones fixpoints occurred in the result. The use of
the heuristic boosted the overall success rate by 4% and 9.2%,
and improved the time efficiency by 124.1% and 136.9% in
the BioPortal and Oxford ontologies, respectively.

Setting Results
[2| (%) | > | Definerin | Time (sec.) | Success R. | D. Left | Clause
X 1.1/onto. | 2.120 sec. 100.0% 0 4.1%
4(10%) v 10 onto. 2.101 sec. 100.0% 0 4.1%
X 1.9/onto. \ 8.658 sec. 100.0% 0 14.5%
1260%) =7 130nt0. 831dsec. | 100.0% 0 | 145%
X 3.0/onto. \ 20.913 sec. 100.0% 0 26.5%
0]

20 (50%) v 16 onto. 20.566 sec. 100.0% 0 26.5%
Av X 2.0/onto. \ 10.564 sec. 100.0% 0 15.0%
& v 13 onto. = 10.327 sec. 100.0% 0 15.0%
5(10%) X 2.4/onto. ‘ 3.187 sec. 100.0% 0 2.2%
¢ v 25 onto. 3.072 sec. 100.0% 0 2.2%
X 3.7/onto. \ 18.537 sec. 100.0% 0 6.9%
15 (30%) v 28 onto. 17.998 sec. 100.0% 0 6.9%
X 5.7/onto. \ 36.292 sec. 100.0% 0 14.6%
25 (50%) v 39 onto. 34.117 sec. 100.0% 0 14.6%
Av X 3.9/onto. \ 19.339 sec. 100.0% 0 7.9%
& v 30 onto. = 18.396 sec. 100.0% 0 7.9 %

Figure 7: Evaluation results for role forgetting

We evaluated the performance of forgetting different num-
bers of role symbols with the same ontologies used for the

1351

evaluation of concept forgetting (using a timeout of 5 min-
utes). The results are shown in Figure 7, from which it can
be seen that our implementation was successful (forgot all the
role symbols in X)) in all cases. The time used for forgetting
role symbols (including the time for the elimination of definer
symbols), as expected, was significantly longer than forget-
ting the same number of concept symbols, despite the 100%
success rate. Because of the nature of the Ackermann™ rule,
role forgetting leads to growth of clauses in the forgetting so-
lution, which was however modest (see Clause 1) compared
to the theoretical worst case. Definer symbols were intro-
duced only in a small proportion of the ontologies to help con-
version to reduced form. This indicates that most clauses in
the ontologies were flat. By m/onto, we mean there were on
average m definer symbols introduced in each ontology, and
by n onto, we mean that n of all ontologies introduced definer
symbols. These definer symbols were successfully eliminated
in the subsequent definer elimination phase (D. Left).

Suppose that » € Npg is the pivot and a set of clauses
is in r-reduced form with [PF| > 1 (since role conjunc-
tion can only occur in the positive TBox premises). Role
forgetting can lead to role conjunctions occurring in forget-
ting solutions in these situations: (i) Role conjunction al-
ready occurs in at least one of the positive TBox premises,
ie,CU-VrnQ.D € PE, where Q is arole. (ii) If none
of the positive TBox premises includes role conjunction, then
having at least two negative RBox premises (|Py | > 2) yields
a forgetting solution including role conjunction. In our eval-
uation it was however found that neither of these cases hap-
pened often; in most cases, rather the opposite occurred: the
positive TBox premises were in the simple form C' U —Vr.D
and often |Px| < 1. Only in 8.9% of the tested cases role
conjunction occurred in the forgetting solutions.

7 Conclusion and Future Work

In this paper we have developed a method of concept and
role forgetting for expressive description logics with nomi-
nals, non-empty TBoxes and ABoxes, and a rich language
for expressing properties of roles. The method can handle
role inclusion statements, role conjunctions and role inverses.
This is extremely useful from the perspective of ontology en-
gineering as it increases the arsenal of tools available to create
restricted views of ontologies. The results of the evaluation
on real-world ontologies have shown that often fixpoints and
role conjunction are not needed to express forgetting solu-
tions, and overall the performance results are very positive.
Currently beyond the scope of our method are forgetting
transitive roles. We can extend the method to eliminate con-
cept symbols in the presence of transitive roles, but when for-
getting role symbols the interaction between transitive roles
and role inclusion statements can lead to results where it is not
clear how to represent them finitely; see [Koopmann, 2015]
for an example. The problem of extending the method to
handle role functionality and numerical quantifier restrictions
remains completely open; possibly the techniques of [Koop-
mann and Schmidt, 2014; 2015] can help extend the method.

Acknowledgments
We thank the anonymous reviewers for useful comments.

References

[Ackermann, 1935] W. Ackermann. Untersuchungen iiber das
Eliminationsproblem der mathematischen Logik. Mathematische
Annalen, 110(1):390-413, 1935.

[Conradie et al., 2006] W. Conradie, V. Goranko, and D. Vakarelov.
Algorithmic correspondence and completeness in modal logic.
I. The core algorithm SQEMA. Logical Methods in Computer
Science, 2(1), 2006.

[D’ Agostino and Hollenberg, 2000] G. D’Agostino and M. Hollen-
berg. Logical questions concerning the u-Calculus: Interpo-
lation, Lyndon and Los-Tarski. Journal of Symbolic Logic,
65(1):310-332, 2000.

[Doherty et al., 1997] P. Doherty, W. Lukaszewicz, and A. Szatas.
Computing circumscription revisited: A reduction algorithm.
Journal of Automated Reasoning, 18(3):297-336, 1997.

[Gabbay and Ohlbach, 1992] D. M. Gabbay and H. J. Ohlbach.
Quantifier elimination in second—order predicate logic. In Proc.
KR’92, pp. 425-435. Morgan Kaufmann, 1992.

[Gabbay er al., 2008] D. M. Gabbay, R. A. Schmidt, and A. Szatas.
Second Order Quantifier Elimination. College Publ., 2008.

[Goranko and Vakarelov, 2006] V. Goranko and D. Vakarelov. Ele-
mentary canonical formulae: extending Sahlqvist’s theorem. An-
nals of Pure and Applied Logic, 141(1-2):180-217, 2006.

[Gridel and Walukiewicz, 1999] E. Gridel and 1. Walukiewicz.
Guarded fixed point logic. In Proc. LICS’99, pp. 45-54. IEEE
Computer Society, 1999.

[Herzig and Mengin, 2008] A. Herzig and J. Mengin. Uniform in-
terpolation by resolution in modal logic. In Proc. JELIA 08, vol.
5293 of LNCS, pp. 219-231. Springer, 2008.

[Konev et al., 2009a] B. Koneyv, C. Lutz, D. Walther, and F. Wolter.
Formal properties of modularisation. In Modular Ontologies, vol.
5445 of LNCS, pp. 25-66. Springer, 2009.

[Konev er al., 2009b] B. Konev, D. Walther, and F. Wolter. Forget-
ting and uniform interpolation in extensions of the description
logic £L. In Proc. DL’09, vol. 477 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2009.

[Konev et al., 2013] B. Konev, C. Lutz, D. Walther, and F. Wolter.
Model-theoretic inseparability and modularity of description
logic ontologies. Artificial Intelligence, 203:66-103, 2013.

[Koopmann and Schmidt, 2013a] P. Koopmann and R. A. Schmidt.
Forgetting concept and role symbols in ALCH-ontologies. In
Proc. LPAR’13, vol. 8312 of LNCS, pp. 552-567. Springer, 2013.

[Koopmann and Schmidt, 2013b] P. Koopmann and R. A. Schmidt.
Uniform interpolation of .ALC-ontologies using fixpoints. In
Proc. FroCoS’13, vol. 8152 of LNCS, pp. 87-102. Springer, 2013.

[Koopmann and Schmidt, 2014] P. Koopmann and R. A. Schmidt.
Count and forget: Uniform interpolation of SH Q-ontologies.
In Proc. IJCAR’14, vol. 8562 of LNCS, pp. 434-448. Springer,
2014.

[Koopmann and Schmidt, 2015] P. Koopmann and R. A. Schmidt.
Saturated-based forgetting in the description logic SZF. In
Proc. DL’15, vol. 1350 of CEUR Workshop Proceedings. CEUR-
WS.org, 2015.

[Koopmann, 2015] P. Koopmann. Practical uniform interpolation
for expressive description logics. PhD thesis, University of
Manchester, 2015.

[Lin and Reiter, 1994] F. Lin and R. Reiter. Forget it! In Proc.
AAAI Fall Symposium on Relevance, pp. 154-159, 1994.

1352

[Ludwig and Konev, 2014] M. Ludwig and B. Konev. Practical uni-
form interpolation and forgetting for ALC TBoxes with applica-
tions to logical difference. In Proc. KR’14. AAAI Press, 2014.

[Lutz and Wolter, 2011] C. Lutz and F. Wolter. Foundations for uni-
form interpolation and forgetting in expressive description logics.
In Proc. IJCAI'11, pp. 989-995. ICAI/AAAL 2011.

[Lutz et al., 2012] C. Lutz, 1. Seylan, and F. Wolter. An automata-
theoretic approach to uniform interpolation and approximation in
the description logic ££. In Proc. KR’12, pp. 286-297. AAAI
Press, 2012.

[Nikitina and Rudolph, 2014] N. Nikitina and S. Rudolph.
(Non-)Succinctness of Uniform Interpolants of General Termi-
nologies in the Description Logic £L. Artificial Intelligence,
215:120-140, 2014.

[Nonnengart and Szatas, 1999] A. Nonnengart and A. Szatas. A
fixpoint approach to second-order quantifier elimination with ap-
plications to correspondence theory. In E. Orlowska, editor,
Logic at Work, pp. 307-328. Springer, 1999.

[Sahlqvist, 1975] H. Sahlqvist. Completeness and correspondence
in the first and second order semantics for modal logics. In Proc.
3rd Scandinavian Logic Symposium, 1973, pp. 110-143. North-
Holland, 1975.

[Schmidt and Tishkovsky, 2014] R. A. Schmidt and D. Tishkovsky.
Using tableau to decide description logics with full role nega-
tion and identity. ACM Transactions of Computational Logic,
15(1):7:1-7:31, 2014.

[Schmidt, 2012] R. A. Schmidt. The Ackermann approach for
modal logic, correspondence theory and second-order reduction.
Journal of Applied Logic, 10(1):52-74, 2012.

[Szatas, 1993] A. Szatas. On the correspondence between modal
and classical logic: An automated approach. Journal of Logic
and Computation, 3:605-620, 1993.

[Szatas, 2006] A. Szatas. Second-order reasoning in description
logics. Journal of Applied Non-Classical Logics, 16(3-4):517—
530, 2006.

[Tishkovsky et al., 2012] D. Tishkovsky, R. A. Schmidt, and
M. Khodadadi. The tableau prover generator MetTeL2. In Proc.
JELIA’12, vol. 7519 of LNCS, pp. 492-495. Springer, 2012.

[Visser, 1996] A. Visser. Bisimulations, Model Descriptions and
Propositional Quantifiers. Logic Group Preprint Series. Depart-
ment of Philosophy, Utrecht Univ., 1996.

[Wang er al., 2008] Z. Wang, K. Wang, R. W. Topor, and J. Z. Pan.
Forgetting concepts in DL-Lite. In Proc. ESWC’08, vol. 5021 of
LNCS, pp. 245-257. Springer, 2008.

[Wang er al., 2009] K. Wang, Z. Wang, R. Topor, J. Z. Pan, and
G. Antoniou. Concept and role forgetting in .ALC ontologies. In
Proc. ISWC’09, vol. 5823 of LNCS, pp. 666—681. Springer, 2009.

[Wang er al., 2014] K. Wang, Z. Wang, R. Topor, J. Z. Pan, and
G. Antoniou. Eliminating concepts and roles from ontologies

in expressive description logics. Computational Intelligence,
30(2):205-232, 2014.
[Wernhard, 2011] C. Wernhard. Computing with logic as operator

elimination: The ToyElim system. In Proc. INAP/WLP’11, vol.
7773 of LNCS, pp. 289-296. Springer, 2011.

[Zhao and Schmidt, 2015] Y. Zhao and R. A. Schmidt. Concept
Forgetting in ALCOZ-Ontologies Using an Ackermann Ap-
proach. In Proc. ISWC’15, vol. 9366 of LNCS, pp. 587-602.
Springer, 2015.

