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Abstract

We present a method for detecting driver frustra-
tion from both video and audio streams captured
during the driver’s interaction with an in-vehicle
voice-based navigation system. The video is of the
driver’s face when the machine is speaking, and
the audio is of the driver’s voice when he or she
is speaking. We analyze a dataset of 20 drivers that
contains 596 audio epochs (audio clips, with du-
ration from 1 sec to 15 sec) and 615 video epochs
(video clips, with duration from 1 sec to 45 sec).
The dataset is balanced across 2 age groups, 2 ve-
hicle systems, and both genders. The model was
subject-independently trained and tested using 4-
fold cross-validation. We achieve an accuracy of
77.4 % for detecting frustration from a single audio
epoch and 81.2 % for detecting frustration from a
single video epoch. We then treat the video and au-
dio epochs as a sequence of interactions and use de-
cision fusion to characterize the trade-off between
decision time and classification accuracy, which
improved the prediction accuracy to 88.5 % after 9
epochs.

1 Introduction

The question of how to design an interface in order to max-
imize driver safety has been extensively studied over the
past two decades [Stevens et al., 2002]. Numerous publi-
cations seek to aid designers in the creation of in-vehicle in-
terfaces that limit demands placed upon the driver [NHTSA,
2013]. As such, these efforts aim to improve the likelihood
of driver’s to multi-task safely. Evaluation questions usually
take the form of “Is HCI system A better than HCI system B,
and why?”. Rarely do applied evaluations of vehicle systems
consider the emotional state of the driver as a component of
demand that is quantified during system prove out, despite
of numerous studies that show the importance of affect and
emotions in hedonics and aestetics to improve user experi-
ence [Mahlke, 2005].

The work in this paper is motivated by a vision for an adap-
tive system that is able to detect the emotional response of
the driver and adapt, in order to aid driving performance. The
critical component of this vision is the detection of emotion

(a) Class 1: Satisfied with Voice-Based Interaction

(b) Class 2: Frustrated with Voice-Based Interaction

Figure 1: Representative video snapshots from voice navi-
gation interface interaction for two subjects. The subject (a)
self-reported as not frustrated with the interaction and the (b)
subject self-reported as frustrated. In this paper, we refer to
subjects in the former category as “satisfied” and the latter
category as “frustrated.” As seen in the images, the “satisfied”
interaction is relatively emotionless, and the “frustrated” in-
teraction is full of affective facial actions.

in the interaction of the human driver with the driver vehi-
cle interface (DVI) system. We focus on the specific affective
state of “frustration” as self-reported by the driver in response
to voice-based navigation tasks (both entry and cancellation
of the route) completed while underway. We then propose a
method for detecting frustration from the video of the driver’s
face when he or she is listening to system feedback and the
audio of the driver’s voice when he or she is speaking to the
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system.
We consider the binary classification problem of a “frus-

trated” driver versus a “satisfied” driver annotated based on a
self-reported answer to the following question: “To what ex-
tent did you feel frustrated using the car voice navigation in-
terface?” The answers were on a scale of 1 to 10 and naturally
clustered into two partitions as discussed in §3.2. Represen-
tative examples from a “satisfied” and a “frustrated” driver
are shown in Fig. 1. As the question suggests, these affec-
tive categories refer not to the general emotional state of the
driver but to their opinion of the interaction with an in-vehicle
technology. It is interesting to note that smiling was a com-
mon response for a “frustrated” driver. This is consistent with
previous research that found smiles can appear in situations
when people are genuinely frustrated [Hoque et al., 2012].
The reason for these smiles may be that the voice-based inter-
action was “lost-in-translation” and this was in part entertain-
ing. Without contextual understanding, an observer of short
clip might label the emotional state as momentarily happy.
However, over the context of an entire interaction the obvi-
ous label becomes one of “frustrated”. Thus, detecting driver
frustration is challenging because it is expressed through a
complex combination of actions and reactions as observed
throughout facial expressions and qualities in one’s speech.

2 Related Work

Affective computing, or the detection and consideration of
human affective states to improve HCI, was introduced two
decades ago [Picard, 1997]. Context-sensitive intelligent sys-
tems have increasingly become a part of our lives in, and out-
side, of the driving context [Pantic et al., 2005]. And while
detection of emotion from audio and video has been exten-
sively studied [Zeng et al., 2009], it has not received much
attention in the context of driving where research has focused
to a large extent on characterization and detection of distrac-
tion and drowsiness. Our work takes steps toward bridging
the gap between affective computing research and applied
driving research for DVI evaluation and real-time advanced
driver assistance systems (ADAS) development.

The first automated system for detecting frustration via
multiple signals were proposed by [Fernandez and Picard,
1998]. Most of the subsequent studies over the past decade
have been examining affect and emotion in HCI with an
aim to reduce the user’s frustration while interacting with
the computer. In many cases “violent and abusive” behav-
ior toward computers has been reported [Kappas and Krämer,
2011]. Affective computing is relevant to HCI in a num-
ber of ways. Four broad areas of interest are: (1) reducing
user frustration; (2) enabling comfortable communication of
user emotion; (3) developing infrastructure and applications
to handle affective information; and, (4) building tools that
help develop social-emotional skills [Picard, 1999]. It has
been emphasized that for the successful design of future HCI
systems the “emotional design” has to explore the interplay
of cognition and emotion, rather than dismissing cognition
entirely [Hassenzahl, 2004].

The face is one of the richest channels for communicating
information about one’s internal state. The facial action cod-

ing system (FACS) [Ekman and Friesen, 1977] is the most
widely used and comprehensive taxonomy of facial behav-
ior. Automated software provides a consistent and scalable
method of coding FACS. The facial actions, and combina-
tions of actions, have associations with different emotional
states and levels of emotional valence. For example, lip de-
pressing (AU15 - frowning) typically is associated with neg-
ative valence and states such as sadness or fear.

The audio stream is a rich source of information and the
literature shows its importance in the domain of in-car affect
recognition [Eyben et al., 2010]. In fact, for the recognition
of driver states like anger, irritation, or nervousness, the audio
stream is particularly valuable [Grimm et al., 2007]. This is
not surprising considering how strongly anger is correlated to
simple speech features like volume (and energy respectively)
or pitch.

The task of detecting drivers’ frustration has been re-
searched in the past [Boril et al., 2010]. Boril et al. ex-
ploited the audio stream of the drivers’ speech and discrim-
inated “neutral” and “negative” emotions with 81.3 % accu-
racy (measured in Equal Accuracy Rate – EAR) across 68
subjects. This work used SVMs to discriminate between
classes. The ground truth came from one annotation se-
quence. A “humored” state was presented as one of the 5
“neutral” (non-negative) emotions. This partitioning of emo-
tion contradicts our findings that smiling and humor are often
part of the response by frustrated subject. Therefore, an exter-
nal annotator may be tempted to label a smiling subject as not
frustrated, when in fact, the smile may be one of the strongest
indicators of frustration, especially in the driving context.

Contributions We extend this prior work by (1) leverag-
ing audiovisual data collected under real driving conditions,
(2) using self-reported rating of the frustration for data an-
notation, (3) fusing audio and video as complimentary data
sources, and (4) fusing audio and video streams across time
in order to characterize the trade-off between decision time
and classification accuracy. We believe that this work is the
first to address the task of detecting self-reported frustration
under real driving conditions.

3 Dataset Collection and Analysis

3.1 Data Collection

The dataset used for frustration detection was collected as
part of a study for multi-modal assessment of on-road demand
of voice and manual phone calling and voice navigation entry
across two embedded vehicle systems [Mehler et al., 2015].
Participants drove one of two standard production vehicles, a
2013 Chevrolet Equinox (Chevy) equipped with the MyLink
system and a 2013 Volvo XC60 (Volvo) equipped with the
Sensus system.

The full study dataset is composed of 80 subjects that fully
met the selection criteria as detailed in [Mehler et al., 2015],
equally balanced across two vehicles by gender (male, fe-
male) and four age groups (18–24, 25–39, 40–54, 55 and
older). In the original study, each subject had to accomplish
three tasks: (1) entering an address into the navigation sys-
tem, (2) making a call via manual control, (3) making a call
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via voice control. It is important to note that all subjects drove
the same route and all tasks from Table 1 were performed
while driving. For this paper, we focused in on the navigation
task, but mention the other tasks to provide a broader context
for the dataset used in this work. After each task, subjects
completed a short written survey in which they self-reported
the workload and rated an accomplished task, including their
frustration level on a scale from 1 to 10, with 1 being “not
at all” and 10 “very”. The question that the subjects were
asked to answer is as follows: “To what extent did you feel
frustrated using the car voice navigation system?”.

3.2 Dataset for Detecting Frustration

We found that the navigation system task had a clustering of
responses for self-reported frustration that naturally fell into
two obvious classes, after removing the minority of “neutral”
responses with self-reported frustration level from 4 to 6. The
“frustrated” class contained all subjects with self-reported
frustration level between 7 and 9, and “satisfied” class con-
tained all subjects with self-reported frustration level from 1
to 3.

For the frustration detection task we selected 20 subjects
from the initial dataset of 80 such that our selection spanned
both vehicles and different demographics profiles. This prun-
ing step was made for two reasons. First, a significant amount
of videos had poor lighting conditions where extraction of fa-
cial expressions was not possible or was very difficult. To ad-
dress this issue, we discarded subjects where less than 80 %
of video frames contained a successfully detected face. We
applied the face detector described in [Fridman et al., 2016
In Press] that uses a Histogram of Oriented Gradients (HOG)
combined with a linear SVM classifier, an image pyramid,
and a sliding window detection scheme. Second, a substan-
tially higher proportion of subjects self-reported low frustra-
tion level (class “satisfied”), thus we had to select our subjects
viligantly to keep the dataset balanced and have both classes
represented equally. Although we balanced the dataset in
terms of meta data (demographics and number of subjects per
class), the number of audio and video clips that represent the
HCI (epochs) may vary significantly for both classes through-
out all subtasks. There are two obvious reasons that explain
this phenomenon: (1) the data has been collected over two
different vehicles that offer two distinctive human-computer
interfaces, with different number of steps to accomplish the
task, and (2) the complexity of subtasks (Table 1) in combi-
nation with the familiarity and competence of subjects to use
voice-control systems varies significantly, which then conse-
quently determines the number of epochs.

ID Subtask Name

1 177 Massachusetts Avenue, Cambridge, MA
2 Cancel navigation
3 293 Beacon Street, Boston, MA
4 Cancel navigation
5 Enter home address
6 Cancel navigation

Table 1: Subtask name per subtask id.

Figure 2: Number of epochs for each subtask for drivers in
the “frustrated” and “satisfied” classes.

Fig. 2 visualizes the distribution of classes throughout sub-
tasks (Table 1), where epochs relate to the number of audio
and video clips. Additionally, it shows that for the majority
of subtasks there are more epochs labeled as “frustrated” than
“satisfied”, which originates from the fact that “frustrated”
subjects produced more failed attempts while accomplishing
subtasks. It also visualizes a trend of declining epochs as the
subtask id increases. This is especially visible when consider-
ing subtasks 2, 4, and 6 which are the navigation cancelation
subtasks that are similar in terms of difficulty. The average
number of epoch required to accomplish these tasks decreases
as the subtask id increases. This trend indicates that both the
“satisfied” and the “frustrated” subjects were becoming more
efficient at using the voice-based system with time.

There are two different types of epochs: (1) audio epochs,
where subjects are dictating commands to the machine, and
(2) video epochs, where subjects are listening to a response
from the machine and signaling frustration through various
facial movements. The Fig. 3 visualizes the number of epochs
by duration (in seconds).

4 Methods

4.1 Audio Features

In contrast to large scale brute-force feature sets [Schuller et
al., 2013], a smaller, expert-knowledge based feature set has
been applied. In fact, a minimalistic standard parameter set
reduces the risk of over-fitting in the training phase as com-
pared to brute-forced large features sets, which in our task
is of great interest. Recently, a recommended minimalistic
standard parameter set for the acoustic analysis of speaker
states and traits has been proposed in [Eyben et al., 2015].
The proposed feature set is the so-called Geneva Minimalis-
tic Acoustic Parameter Set (GeMAPS). Features were mainly
selected based on their potential to index affective physiolog-
ical changes in voice production, for their proven value in
former studies, and for their theoretical definition. Acous-
tic low-level descriptors (LLD) were automatically extracted
from the speech waveform on a per-chunk level by using the
open-source openSMILE feature extractor in its 2.1 release
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(a) Duration of audio epochs.

(b) Duration of video epochs.

Figure 3: Histogram for the distribution of duration of audio
and video epochs.

[Eyben et al., 2013]. A detailed list of the LLD is provided in
Table 2.

4.2 Video Features

We used automated facial coding software to extract features
from the videos. The software (Affdex - Affectiva, Inc.) has
three main components. First, the face is detected using the
Viola-Jones method [Viola and Jones, 2004] (OpenCV im-
plementation). Thirty-four facial landmarks are then detected
using a supervised descent based landmark detector and an
image region of interest (ROI) is segmented. The ROI in-
cludes the eyes, eyebrows, nose and mouth. The region of
interest is normalized using rotation and scaling to 96x96 pix-
els. Second, histogram of oriented gradient (HOG) features
are extracted from the ROI within each frame. Third, support
vector machine classifiers are used to detect the presence of
each facial action. Details of how the classifiers were trained
and validated can be found in [Senechal et al., 2015]. The fa-
cial action classifiers return a confidence score from 0 to 100.
The software provided scores for 14 facial actions (see Ta-
ble 3). In addition to facial actions we used the three axes of
head pose and position of the face (left and right eye corners
and center of top lip) as observations from which to extract
features. For each epoch the mean, standard deviation, min-
imum and maximum values for each action, head pose and

6 frequency related LLD Group

F0 (linear & semi-tone) Prosodic
Jitter (local), Formant 1 (bandwidth) Voice qual.
Formants 1, 2, 3 (frequency) Vowel qual.
Formant 2, 3 (bandwidth) (eGeMAPS) Voice qual.
3 energy/amplitude related LLD Group

Sum of auditory spectrum (loudness) Prosodic
log. HNR, shimmer (local) Voice qual.
9 spectral LLD Group

Alpha ratio (50–1000 Hz / 1–5 kHz) Spectral
Hammarberg index Spectral
Spectral slope (0–500 Hz, 0–1 kHz) Spectral
Formants 1, 2, 3 (rel. energy) Voice qual.
Harmonic difference H1–H2, H1–A3 Voice qual.

Table 2: GeMAPS acoustic feature sets: 18 low-level descrip-
tors (LLDs).

1 12 24

2 12* 25

4 15 28

9 17 43

10 18

AU Action AU Action

1 Inner Brow Raise 15 Lip Depressor
2 Outer Brow Raise 17 Chin Raise
4 Brow Furrow 18 Lip Pucker
9 Nose Wrinkle 24 Lip Press
10 Upper Lip Raise 25 Lips Part
12 Lip Corner Pull 28 Lip Suck
12* Assym. Lip Cor. Pull 43 Eyes Closed

Table 3: Names of the 14 facial actions scored by the Affdex
Software.

position metric were calculated to give 60 video features ((14
actions + 3 head pose angles + 3 landmark positions)*4).
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4.3 Classifier

We used a Weka 3 implementation of Support Vector Ma-
chines (SVMs) with the Sequential Minimal Optimization
(SMO), and audio and video features described in §4 [Hall
et al., 2009]. We describe a set of SMO complexity parame-
ters as:

C 2 {10�4, 5⇥ 10�4, 10�3, 5⇥ 10�3, ..., 1}. (1)

For each SMO complexity parameter C from (1) we upsam-
pled the feature vectors (one per epoch) from the original
datasets to balance the number of epochs per class by calcu-
lating the upsampling factors. An average upsampling factor
across four folds is 1.03 for the “frustrated” class and 1.24 for
the “satisfied” class, details are presented in Table 4. We kept
the original datasets, and produced an additional upsampled
dataset for further experiments.

Fold 1 2 3 4
Factor

Factor for “frustrated” 1.00 1.00 1.00 1.13
Factor for “satisfied” 1.57 1.26 1.11 1.00

Table 4: Upsampling factors for “frustrated” and “satisfied”
classes across four folds.

We then (a) normalized and (b) standardized both upsam-
pled and original datasets for each SMO complexity parame-
ter C, and obtained 36 different configurations per fold. We
carried out 144 experiments across four folds, computed ac-
curacy, and selected the configuration that gave us the best
average result. The term “accuracy” stands for Unweighted
Average Recall (UAR).

5 Results

We used features and a classifier as described in §4 and
achieved an accuracy of 77.4 % for “audio” epochs and
81.2 % for “video” epochs as presented in Table 5. The epoch
type column indicates whether the human or the machine are
speaking and data source indicates the source of the signal
which is being used for extracting features. The presented
results are the average accuracy for the subject-independent
cross-validation over four folds.

Epoch Type Data Source C Acc. (%)

Machine Speaking Video 1e�3 81.2
Human Speaking Audio 5e�3 77.4

Table 5: Results for predicting frustration from a single epoch
of audio and video.

In order to characterize the tradeoff between classification
accuracy and the duration of the interaction, we fused the
predictions from consecutive epochs for both video and au-
dio using a majority vote fusion rule [Kuncheva, 2002]. The
interaction of the driver with the voice-based system is a se-
quence of mostly-alternating epochs of face video data and
voice data. In presenting the results, we consider two mea-
sures of duration: (1) de is the duration in the number epochs
and (2) ds is the duration in the number of seconds. Both

Figure 4: Trade-off between fused prediction accuracy and
the number of epochs per interaction (de).

measures are important for the evaluation of systems perfor-
mance, since classifier decisions are made once per epoch
(as measured by de) but the driver experiences the interac-
tion in real-time (as measured by ds). In other words, de can
be thought of as classifier time and ds can be thought of as
human time.

The fused results for up to 17 epochs are presented in Fig. 4
where duration de is used. The average accuracy is shown
with the red line and the accuracy for each of the four folds
is shown with the gray line. The average accuracy does not
monotonically increase with the number of predictions fused.
Instead, it slightly fluctuates due to a broad variation in com-
plexity of the underlying subtasks. In Fig. 4 the length of
interactions is measured in the number of epochs. In order
to reduce practical ambiguity of this tradeoff, we characterize
the absolute duration in seconds with respect to the number
of epochs in Fig. 5. Grey lines indicate the duration for the
train and test sets, whilst the blue line represents the average
duration. These two figures allow us to observe that an av-
erage accuracy of 88.5 % is achieved for an interaction that
lasts approximately 1 minute but a lower average accuracy of
82.8 % is achieved for an interaction that lasts approximately
2 minutes.

Evaluation over one of the folds in Fig. 4 achieves 100 %
accuracy after 9 epochs. This is possible due to the fact that
the number of epochs for total interaction varies between sub-
jects, and the reported accuracy for a specific duration de is
averaged over only the interactions that last at least that long.
It follows that with the longer durations de (x-axis), the num-
ber of subjects over which the accuracy is averaged decreases
and the variance of the accuracy increases.

We used a Weka implementation of the Information Gain
(IG) feature evaluation to rank video features [Karegowda
et al., 2010]. Then, we grouped features into the feature
categories by summing corresponding category IG ranking
values for mean, maximum, minimum and standard devia-
tion. Each feature category represents one action, i. e., in-
ner brow rise, nose wrinkle or lip depressor as presented in
Table 3. The 5 best discriminating feature categories are:
(1) horizontal location of the left eye corner, (2) horizontal
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Figure 5: Accumulated duration for up to 17 epochs from the
train and test sets. The x-axis is the duration in the number of
epochs (de) and the y-axis is duration in seconds (ds).

location of the top of the mouth, (3) horizontal location of
the right eye corner, (4) the angle of head tilt (i.e. rotation
of the head about an axis that passes from the back of the
head to the front of the head), and (5) smile confidence (on
a scale of 0 - 100). We ranked only video features to se-
lect the most interesting epochs for our presentation video:
http://lexfridman.com/driverfrustration.

6 Conclusion

We presented a method for detecting driver frustration from
615 video epochs and 596 audio epochs captured during the
driver’s interaction with an in-vehicle voice-based navigation
system. The data was captured in a natural driving context.
Our method has been evaluated across 20 subjects that span
over different demographic parameters and both cars that
were used in our study. This method resulted in an accu-
racy of 81.2 % for detecting driver frustration from the video
stream and 77.4 % from the audio stream. We then treated
the video and audio streams as a sequence of interactions
and achieved 88.5 % accuracy after 9 epochs by using deci-
sion fusion. Future work will include additional data streams
(i. e., heart rate, skin conductance) and affective annotation
methods to augment the self-reported frustration measure.
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