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Abstract

Sparsity-constrained optimization is an important
and challenging problem that has wide applicabil-
ity in data mining, machine learning, and statistics.
In this paper, we focus on sparsity-constrained op-
timization in cases where the cost function is a gen-
eral nonlinear function and, in particular, the spar-
sity constraint is defined by a graph-structured
sparsity model. Existing methods explore this
problem in the context of sparse estimation in lin-
ear models. To the best of our knowledge, this is
the first work to present an efficient approximation
algorithm, namely, GRAPH-structured Matching
Pursuit (GRAPH-MP), to optimize a general nonlin-
ear function subject to graph-structured constraints.
We prove that our algorithm enjoys the strong guar-
antees analogous to those designed for linear mod-
els in terms of convergence rate and approximation
accuracy. As a case study, we specialize GRAPH-
MP to optimize a number of well-known graph scan
statistic models for the connected subgraph detec-
tion task, and empirical evidence demonstrates that
our general algorithm performs superior over state-
of-the-art methods that are designed specifically for
the task of connected subgraph detection.

1

In recent years, that is a growing demand on efficient com-
putational methods for analyzing high-dimensional data in a
variety of applications such as bioinformatics, medical imag-
ing, social networks, and astronomy. In many settings, spar-
sity has been shown effective to model latent structure in
high-dimensional data and at the same time remain a math-
ematically tractable concept. Beyond the ordinary, exten-
sively studied, sparsity model, a variety of structured spar-
sity models have been proposed in the literature, such as the
sparsity models defined through trees [Hegde et al., 2014b],
groups [Jacob et al., 20091, clusters [Huang et al., 20111,
paths [Asteris ef al., 2015], and connected subgraphs [Hegde
et al., 2015b]. These sparsity models are designed to capture
the interdependence of the locations of the non-zero compo-
nents via prior knowledge, and are considered in the general

Introduction

1389

sparsity-constrained optimization problem:
)

where f : R™ — R is a differentiable cost function and the
sparsity model M is defined as a family of structured sup-
ports: M = {S1,S5s,---,Sr}, where S; C [n] satisfies a
certain structure property (e.g., trees, groups, clusters). The
original k-sparse recovery problem corresponds to the partic-
ular case where the model M = {S C [n] | |S| < k}.

The methods that focus on general nonlinear cost functions
fall into two major categories, including structured sparsity-
inducing norms based and model-projection based, both
of which often assume that the cost function f(x) satisfies
a certain convexity/smoothness condition, such as Restricted
Strong Convexity/Smoothness (RSC/RSS) or Stable Mode-
Restricted Hessian (SMRH). In particular, the methods in the
first category replace the structured sparsity model with regu-
larizations by a sparsity-inducing norm that is typically non-
smooth and non-Euclidean [Bach et al., 2012]. The methods
in the second category decompose Problem (1) into an uncon-
strained subproblem and a model projection oracle that finds
the best approximation of an arbitrary x in the model M:

m]iRn f(x) s.t. supp(x) € M,
xeR™

P(x) = arg min |x —x'||3 s.t. supp(x’) € M.
x/e n

A number of methods are proposed specifically for the k-
sparsity model M = {S C [n] | |S] < Ek}, including
the forward-backward algorithm [Zhang, 2009], the gradient
descent algorithm [Tewari et al., 2011], the gradient hard-
thresholding algorithms [Yuan et al., 2013; Bahmani erf al.,
2013; Jain et al., 2014], and the Newton greedy pursuit al-
gorithm [Yuan and Liu, 2014]. A limited number of meth-
ods are proposed for other types of structured sparsity mod-
els via projected gradient descent, such as the union of sub-
spaces [Blumensath, 2013] and the union of nested sub-
sets [Bahmani et al., 2016].

In this paper, we focus on general nonlinear optimization
subject to graph-structured sparsity constraints. Our approach
applies to data with an underlying graph structure in which
nodes corresponding to supp(x) form a small number of con-
nected components. By a proper choice of the underlying
graph, several other structured sparsity models such as the
“standard” k-sparsity, block sparsity, cluster sparsity, and tree
sparsity can be encoded as special cases of graph-structured
sparsity [Hegde er al., 2015al.



We have two key observations: 1) Sparsity-inducing
norms. There is no known sparsity-inducing norm that is able
to capture graph-structured sparsity. The most relevant norm
is generalized fused lasso [Xin er al., 2014] that enforces the
smoothness between neighboring entries in x, but does not
have fine-grained control over the number of connected com-
ponents. Hence, existing methods based on sparsity-inducing
norms are not directly applicable to the problem to be opti-
mized. 2) Model projection oracle. There is no exact model
projection oracle for a graph-structured sparsity model, as this
exact projection problem is NP-hard due to a reduction from
the classical Steiner tree problem [Hegde et al., 2015b]. As
most existing model-projection based methods assume an ex-
act model projection oracle, they are not directly applicable
here as well. To the best of our knowledge, there is only one
recent approach that admits inexact projections for a graph-
structured sparsity model by assuming “head” and “tail” ap-
proximations for the projections, but is only applicable to lin-
ear regression problems [Hegde er al., 2015b]. This paper
will generalize this approach to optimize general nonlinear
functions. The main contributions of our study are summa-
rized as follows:

e Design of an efficient approximation algorithm. A
new and efficient algorithm, namely, GRAPH-MP, is de-
veloped to approximately solve Problem (1) with a dif-
ferentiable cost function and a graph-structured sparsity
model. We show that GRAPH-MP reduces to a state-of-
the-art algorithm for graph-structured compressive sens-
ing and linear models, namely, GRAPH-COSAMP, when
f(x) is a least square loss function.

Theoretical analysis and connections to existing
methods. The convergence rate and accuracy of the
proposed GRAPH-MP are analyzed under a condition
of f(x) that is weaker than popular conditions such as
RSC/RSS and SMRH. We demonstrate that GRAPH-MP
enjoy strong guarantees analogous to GRAPH-COSAMP
on both convergence rate and accuracy.

Compressive experiments to validate the effective-
ness and efficiency of the proposed techniques. The
proposed GRAPH-MP is applied to optimize a variety
of graph scan statistic models for the task of connected
subgraph detection. Extensive experiments demonstrate
that GRAPH-MP performs superior over state-of-the-art
methods that are customized for the task of connected
subgraph detection on both running time and accuracy.

The rest of this paper is organized as follows. Section 2
introduces the graph-structured sparsity model. Section 3
formalizes the problem and presents an efficient algorithm
GRAPH-MP. Sections 4 and 5 present theoretical analysis
and applications of GRAPH-MP. Experiments are presented
in Section 6, and Section 7 describes future work. An ex-
tended version of this paper is available from [Chen, 2016].

2 Graph-Structured Sparsity Model

Given an underlying graph G = (V,E) defined on the co-
efficients of the unknown vector x, where V = [n] and
E CV x V, a graph-structured sparsity model has the form:
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Mk, g) = {5 S V[|S| < k,7(5) = g}, )
where k refers to an upper bound of the sparsity (total number
of nodes) of S and v(S) = g refers to the maximum number
of connected components formed by the forest induced by S:
Gs = (S,Es), where Es = {(4,5) | 4,5 € S, (4,5) € E}. The
corresponding model projection oracle is defined as

P(x) = arg 1,1%1]1? |x —x'||3 s.t. supp(x’) € M(k,g). (3)

Solving Problem (3) exactly is NP-hard due to a reduction
from the classical Steiner tree problem. Instead of solving
(3) exactly, two nearly-linear time approximation algorithms
with the following complementary approximation guarantees
are proposed in [Hegde et al., 2015b]:

e Tail approximation (T(x)): Find S € M(kr, g) such that
C))

min
S’eM(k,g)

where ¢ = /7 and kr = 5k.

e Head approximation (H(x)): Find S € M(ky,g) such
that )

|lx —xs|l2 <er- llx — xsl2,

max
S’eM(k,g)

where cy = /1/14 and ky = 2k.

If ecr = ¢g = 1, then T(x) = H(x) = S provides the
exact solution of the model projection oracle: P(x) = xg,
which indicates that the approximations stem from the fact
that cr > 1 and cy < 1. We note that these two approxima-
tions originally involve additional budgets (B) based on edge
weights, which are ignored in this paper by setting unit edge
weightsand B =k — g.

xsll2 > crr - l[xs ]2,

Generalization: The above graph-structured sparsity model
is defined based on the number of connected components in
the forest induced by S. This model can be generalized to
graph-structured sparsity models that are defined based on
other graph topology constraints, such as density, k-core, ra-
dius, cut, and various others, as long as their corresponding
head and tail approximations are available [Chen, 2016].

3 Problem Statement and Algorithm
Given the graph-structured sparsity model, M(k, g), as de-

fined above, the sparsity-constrained optimization problem to
be studied is formulated as:

min f(x) s.t. supp(x) € M(k, g), (©)

where f : R®™ — R is a differentiable cost function, and
the upper bound of sparsity k£ and the maximum number of
connected components g are predefined by users.

Hegde et al. propose GRAPH-COSAMP, a variant of
CosaMpP [Hegde et al., 2015b] to optimize the least square
cost function f(x) = |y — Ax||3 based on the head and
tail approximations. The authors show that GRAPH-COSAMP
achieves an information-theoretically optimal sample com-
plexity for a wide range of parameters. In this paper, we
genearlize GRAPH-COSAMP and propose a new algorighm
named as GRAPH-MP for Problem (6), as shown in Algo-
rithm 1. The first step (Line 3) in each iteration, g = V f(x?),
evaluates the gradient of the cost function at the current es-
timate. Then a subset of nodes are identified via head ap-
proximation, I' = H(g), that returns a support set with



head value at least a constant fraction of the optimal head
value, in which pursuing the minimization will be most ef-
fective. This subset is then merged with the support of the
current estimate to obtain the merged subset {2, over which
the function f is minimized to produce an intermediate esti-
mate, b = arg minyegn f(x) s.t. xqc = 0. Then a subset
of nodes are identified via tail approximation, B = T(b), that
returns a support set with tail value at most a constant times
larger than the optimal tail value. The iterations terminate
when the halting condition holds. There are two popular op-
tions to define the halting condition: 1) the change of the cost
function from the previous iteration is less than a threshold
(| f(x*F1) = f(x%)| < €); and 2) the change of the estimated
minimum from the previous iteration is less than a threshold
(J|x*** — x%||2 < €), where ¢ is a predefined threshold (e.g.,
e = 0.001).

Algorithm 1 GRAPH-MP
1:i=0,x"=0;

2: repeat _

3 g=Vf(x');

4 I'=H(Vig)):

5: Q =T U supp(x")

6 b = arg mingegn f(x) s.t. Xge =0
7 B =T(b);

8: XH_1 = bB

9: until halting condition holds
10: return x*1

4 Theoretical Analysis of GRAPH-MP

In order to demonstrate the accuracy of estimates using Algo-
rithm 1 we require a variant of the Restricted Strong Convex-
ity/Smoothness (RSC/RSS) conditions proposed in [Yuan et
al., 2013] to hold. The RSC condition basically characterizes
cost functions that have quadratic bounds on the derivative of
the objective function when restricted to model-sparse vec-
tors. The condition we rely on, the Weak Restricted Strong
Convexity (WRSC), can be formally defined as follows:

Definition 1 (Weak Restricted Strong Convexity Property
(WRSQ)). A function f(x) has condition (&, §, M)-WRSC
ifVvx,y € R" and VS € M with supp(x) Usupp(y) C S, the
Jollowing inequality holds for some & > 0and 0 < § < 1:

[x =y = &Vsf(x) + Vs f(y)l2 <dlx—yll2. (D

Remark 1. 1) In the special case where f(x) = ||y — Ax||3
and & = 1, condition (£, §, M)-WRSC reduces to the well
known Restricted Isometry Property (RIP) condition in com-
pressive sensing. 2) The RSC and RSS conditions imply con-
dition WRSC, which indicates that condition WRSC is no
stronger than the RSC and RSS conditions [Yuan et al., 2013].

Theorem 4.1. Consider the graph-structured sparsity model
M(k, g) for some k, g € N and a cost function f : R"" — R
that satisfies condition (€, 0, M(8k, g))-WRSC. If n = cy (1—
8)—38 > 0, then for any true x € R™ with supp(x) € M(k, g),
the iterates of Algorithm 1 obey

% = x|l < allx’ = x[l2 + BIV1f ()], ®
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where 5(114267“) (1+CH) + 77(11+CH) +1], a _
n
U%CBT) 1—1n?2, and I = argmaxgsep(sk,g) ||Vsf(x)]2-

Proof. A proof of this result can be found in Appendix. [

As indicated in Theorem 4.1, under proper conditions the
estimator error of GRAPH-MP is determined by the multiplier
of || Vs f(x)]|2, and the convergence rate before reaching this
error level is geometric. In particular, if the true x is suffi-
ciently close to an unconstrained minimum of f, then the es-
timation error is negligible because |V g f(x)||2 has a small
magnitude. Especially, in the ideal case where V f(x) = 0, it
is guaranteed that we can obtain the true x to arbitrary preci-

sion. If we further assume that o = % ‘617"2 < 1, then
exact recovery can be achieved in finite iterations.

The shrinkage rate @ < 1 controls the convergence of
GRAPH-MP, and it implies that when § is very small, the ap-
proximation factors cg and cp satisfy

4 >1-1/(1+¢p)2 )

We note that the head and tail approximation algorithms de-
signed in [Hegde et al., 2015b] do not satisfy the above con-
dition, with ¢ = v/7 and cgy = +/1 /14. However, as proved
in [Hegde er al., 2015b], the approximation factor ¢y of any
given head approximation algorithm can be boosted to any
arbitrary constant c’H < 1, such that the above condition is
satisfied. Empirically it is not necessary to boost the head-
approximation algorithm as strongly as suggested by the anal-
ysis in [Hegde et al., 2014al.

Theorem 4.2. Let x € R™ be a true optimum such that
supp(x) € M(k,g), and f : R® — R be a cost func-
tion that satisfies condition (£, 0, M(8k, g))-WRSC. Assum-
ing that « < 1, GRAPH-MP returns a X such that, supp(X) €
M(5k, g) and ||x—%||2 < ¢||V1f(x)||2, where c = (1+12)
is a fixed constant. Moreover, GRAPH-MP runs in time

O ((T + [E[log™ n) log(||x[|2/IIV1£ (x)]|2)) .

where T is the time complexity of one execution of the sub-
problem in Line 6. In particular, if T scales linearly with n,
then GRAPH-MP scales nearly linearly with n.

(10)

Proof. The i-th iterate of Algorithm 1 satisfies

% = x'll2 < @llx]l2 + 7=~ IV2f(x)]2-

1 1)

After t = {log (m) / log —‘ iterations, Algorithm
1 returns an estimate & satisfying [[x — X[z < (1 +
)||V 1f(x)]|2. The time complexities of both head and

ta11 approximations are O(|E|log®n). The time complexity
of one iteration in Algorithm 1 is (T + |E|log®n), and the

lx ) /log L1, and

total number of iterations is [log (m

the overall time complexity follows.
Remark 2. The  previous  algorithm  GRAPH-

COSAMP [Hegde et al., 2015b] for compressive sensing is a
special case of GRAPH-MP. Assume f(x) = |y — Ax||3.



1) Reduction. The gradient in Step 3 of GRAPH-MP has
the form: Vf(x') = —AT(y — Ax"), and an analytical
form of b in Step 6 can be obtained as: bg Aéy and
boe = 0, where AT = AT(ATA)~L, which indicates that
GRAPH-MP reduces to GRAPH-COSAMP in this scenario.
2) Shrinkage rate. The shrinkage rate o of GRAPH-MP is
analogous to that of GRAPH-COSAMP, even though that
the shrinkage rate of GRAPH-COSAMP is optimized based
on the RIP sufficient constants. In particular, they are
identical when § is very small. 3) Constant component.
Assume that & = 1. Condition (§,9,M(k, g))-WRSC then
reduces to the RIP condition in compressive sensing. Let
e = y — Ax. The component ||V f(x%)|2 = ||ATe|2 is
upper bounded by +/1+ dlle|la [Hegde et al, 2014a].
The constant B||Vif(x)| is then upper bounded by

1+cr)V1+6 1+c n(l4+c .
& 1T_)5 P nH) + o 1_:2) +1} llell2  that is analo-

e

gous to the constant of GRAPH-COSAMP, and they are
identical when 6 is very small.

S Application in Graph Scan Statistic Models

In this section, we specialize GRAPH-MP to optimize a num-
ber of graph scan statistic models for the task of connected
subgraph detection. Given a graph G = (V,E), where
V = [n],E C VxV, and each node v is associated with a vec-
tor of features c(v) € RP. Let S C V be a connected subset

of nodes. A graph scan statistic, F'(S) = log %,

corresponds to the generalized likelihood ratio test (GLRT) to
verify the null hypothesis (Hy): c(v) ~ Dp,Vv € V, where
D; refers to a predefined background distribution, against the
alternative hypothesis (H1(5)): c(v) ~ Dy,Vv € S and
c(v) ~ Dy1,Vv € V\ S, where Dy refers to a predefined
signal distribution. The detection problem is formulated as

ISTICI{‘} —F(S) s.t. |S| < kandS is connected, (12)

where k is a predefined bound on the size of S.

Taking elevated mean scan (EMS) statistic for instance, it
aims to decide between Hy : ¢(v) ~ N(0,1),Vv € V and
Hy(S): ¢(v) ~ N(u,1),Vv € S and c(v) ~ N(0,1),Vv €
V'\ S, where for simplicity each node v only has a univariate
feature c(v) € R. This statistic is popularly used for detecting
signals among node-level numerical features on graph [Qian
et al., 2014; Arias-Castro et al., 2011] and is formulated as
F(S) = (X ,es¢(v))?/]S]|. Let the vector form of S be
x € {0,1}™, such that supp(x) = S. The connected subgraph
detection problem can be reformulated as

Te%nll}n —(c"x)?/(17x) s.t. supp(x) € M(k,g=1), (13)
where ¢ = [¢(1),- -+ ,¢(n)]T. To apply GRAPH-MP, we re-
lax the input domain of x such that z € [0, 1]", and the con-
nected subset of nodes can be found as S = supp(x*), the
support set of the estimate x* that minimizes the strongly
convex function [Bach, 2011]:

mingern f(x) = —(cTx)2/(17x) + $xTx s.t. supp(x) € M(k, 1).

Assume that c is normalized, and hence 0 < ¢; < 1,Vi. Let
¢ = max{c¢;}. The Hessian matrix of the above objective

function V2 f(x) = 0 and satisfies the inequalities:

)(c

c'x
c——1
1Tx

T
(1-&%) 1<1—( ~ZEDT <L (14
17'x
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According to Lemma 1 (b) in [Yuan er al., 2013]), the objec-
tive function f(x) satisfies condition (£, 3, M(8k, g))-WRSC
that § = \/1 —2¢(1 — ¢%) + &2, for any ¢ such that £ <
2(1 — ¢2). Hence, the geometric convergence of GRAPH-MP
as shown in Theorem 4.1 is guaranteed. We note that not all
the graph scan statistic functions satisfy the WRSC condition,
but, as shown in our experiments, GRAPH-MP works empir-
ically well for all the scan statistic functions tested, and the
maximum number of iterations to convergence for optimizing
each of these scan statistic functions was less than 10.

We note that our proposed method GRAPH-MP is also ap-
plicable to general sparse learning problems (e.g. sparse lo-
gistic regression, sparse principle component analysis) sub-
ject to graph-structured constraints, and to a variety of sub-
graph detection problems, such as the detection of anoma-
lous subgraphs, bursty subgraphs, heaviest subgraphs, fre-
quent subgraphs or communication motifs, predictive sub-
graphs, and compression subgraphs. More details can be
found at [Chen, 2016].

6 Experiments

This section evaluates the effectiveness and efficiency of the
proposed GRAPH-MP approach for connected subgraph de-
tection. The implementation of GRAPH-MP is available at
https://github.com/baojianzhou/Graph-MP.

6.1 Experiment Design

Datasets: 1) Water Pollution Dataset. The Battle of
the Water Sensor Networks (BWSN) [Ostfeld et al., 2008]
provides a real-world network of 12,527 nodes and 14831
edges, and 4 nodes with chemical contaminant plumes that
are distributed in four different areas. The spreads of contam-
inant plumes were simulated using the water network sim-
ulator EPANET for 8 hours. For each hour, each node has
a sensor that reports 1 if it is polluted; O, otherwise. We
randomly selected K percent nodes, and flipped their sen-
sor binary values in order to test the robustness of methods to
noises, where K € {2,4,6,8,10}. The objective is to detect
the set of polluted nodes. 2) High-Energy Physics Citation
Network. The CitHepPh (high energy physics phenomenol-
ogy) citation graph is from the e-print arXiv and covers all the
citations within a dataset of 34,546 papers with 421,578 edges
during the period from January 1993 to April 2002. Each pa-
per is considered as a node, each citation is considered as
a edge (direction is not considered), and each node has one
attribute denoting the number of citations in a specific year
(t = 1993,---,t = 2002), and another attribute denoting
the average number of citations in that year. The objective
is to detect a connected subgraph of nodes (papers) whose
citations are abnormally high in comparison with the ci-
tations of nodes outside the subgraph. This subgraph is
considered an indicator of a potential emerging research area.
The data before 1999 is considered as training data, and the
data from 1999 to 2002 is considered as testing data.

Graph Scan Statistics: Three graph scan statistics were
considered, including Kulldorff’s scan statistic [Neill, 2012],
expectation-based Poisson scan statistic (EBP) [Neill, 2012],
and elevated mean scan statistic (EMS, Equation (13)) [Qian
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Figure 1: Evolving curves of graph scan statistic scores between our method and GenFusedLasso.

WaterNetwork CitHepPh
Kulldorff | EMS EBP Run Time (sec.) | Kulldorff EMS EBP Run Time
Our Method 1668.14 | 499.97 | 4032.48 40.98 13859.12 | 142656.84 | 9494.62 97.21
GenFusedLasso 541.49 388.04 | 3051.22 901.51 2861.6 60952.57 | 6472.84 947.07
EdgeLasso 212.54 308.11 | 1096.17 70.06 39.42 2.0675.89 261.71 775.61
GraphLaplacian 272.25 182.95 | 928.41 228.45 1361.91 29463.52 876.31 2637.65
LTSS 686.78 479.40 | 1733.11 1.33 11965.14 | 137657.99 | 9098.22 6.93
EventTree 1304.4 744.45 | 3677.58 99.27 10651.23 | 127362.57 | 8295.47 100.93
AdditiveGraphScan 1127.02 | 761.08 | 2794.66 1985.32 12567.29 | 140078.86 | 9282.28 2882.74
DepthFirstGraphScan 1059.10 | 725.65 | 2674.14 8883.56 7148.46 62774.57 | 4171.47 9905.45
NPHGS 686.78 479.40 | 1733.11 1339.46 12021.85 137963.5 | 9118.96 1244.80

Table 1: Comparison on scores of the three graph scan statistics based on connected subgraphs returned by comparison methods.
EMS and EBP refer to Elevated Mean Scan Statistic and Expectation-Based Poisson Statistic, respectively.

et al., 2014]. The first two require that each node has an ob-
served count of events at that node, and an expected count.
For the water network dataset, the report of the sensor (0 or
1) at each node is considered as the observed count, and the
noise ratio is considered as the expected count. For the Cite-
HepPh dataset, the number of citations is considered as the
observed count, and the average number of citations is con-
sidered as the expected count. For the EMS statistic, we con-
sider the ratio of observed and expected counts as the feature.

Comparison Methods: Seven state-of-the-art baseline
methods are considered, including EdgelLasso [Sharp-
nack et al, 2012bl, GraphLaplacian [Sharpnack
et al., 2012al, LinearTimeSubsetScan (LTSS) [Neill,
2012], EventTree [Rozenshtein et al, 20141,
AdditiveGraphScan [Speakman et al, 2013],
DepthFirstGraphScan [Speakman er al, 2016],
and NPHGS [Chen and Neill, 2014]. We followed strategies
recommended by authors in their original papers to tune
the related model parameters. Specifically, for Event-
Tree and Graph-Laplacian, we tested the set of A values:
{0.02,0.04,--- ,2.0}. DepthFirstScan is an exact
search algorithm and has an exponential time cost in the
worst case scenario. We hence set a constraint on the depth
of its search to 10 in order to reduce its time complexity.

We also implemented the generalized fused lasso model
(GenFusedLasso) for these three graph scan statistics us-
ing the framework of alternating direction method of multi-
pliers (ADMM). GenFusedLasso is formalized as

+>\Z z;l,

rmn —f(x (15)

i -
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where f(x) is a predefined graph scan statistic and the trade-
off parameter A controls the degree of smoothness of neigh-
boring entries in x. We applied the heuristic rounding step
proposed in [Qian ef al., 2014] to the numerical vector x
to identify the connected subgraph. We tested the )\ values:
{0.02,0.04, - -- ,2.0,5.0,10.0} and returned the best result.

Our Proposed Method GRAPH-MP:  Our proposed
GRAPH-MP has a single parameter k, an upper bound of
the subgraph size. We set k 1000 by default, as the
sizes of subgraphs of interest are often small; otherwise,
the detection problem could be less challenging. We note
that, to obtain the best performance of our proposed method
GRAPH-MP, we should try a set of different k values (k =
50, 100, 200, 300, - - - , 1000) and return the best.

Performance Metrics: The overall scores of the three
graph scan statistics of the connected subgraphs returned by
the competitive methods were compared and analyzed. The
objective is to identify methods that could find the connected
subgraphs with the largest scores. The running times of dif-
ferent methods are compared.

6.2 Evolving Curves of Graph Scan Statistics

Figure 1 presents the comparison between our method and
GenFusedLasso on the scores of the best connected sub-
graphs that are identified at different iterations based on the
Kulldorff’s scan statistic and the EMS statistic. Note that,
a heuristic rounding process as proposed in [Qian et al.,
2014] was applied to the numerical vector x* estimated by
GenFusedLasso in order to identify the best connected
subgraph at each iteration <. As the setting of the parameter A



will influence the quality of the detected connected subgraph,
the results based on different A values are also shown in Fig-
ure 1. We observe that our proposed method GRAPH-MP
converged in less than 5 steps and the qualities (scan statis-
tic scores) of the connected subgraphs identified GRAPH-MP
at different iterations were consistently higher than those re-
turned by GenFusedLasso.

6.3 Comparison on Optimization Quality

The comparison between our method and the other eight
baseline methods is shown in Table 1. The scores of the three
graph scan statistics of the connected subgraphs returned by
these methods are reported in this table. The results in indi-
cate that our method outperformed all the baseline methods
on the scores, except that AdditiveGraphScan achieved
the highest EMS score (761.08) on the water network data
set. Although AdditiveGraphScan performed reason-
ably well in overall, this algorithm is a heuristic algorithm
and does not have theoretical guarantees.

6.4 Comparison on Time Cost

Table 1 shows the time costs of all competitive methods on
the two benchmark data sets. The results indicate that our
method was the second fastest algorithm over all the compar-
ison methods. In particular, the running times of our method
were 10+ times faster than the majority of the methods.

7 Conclusion and Future Work

This paper presents, GRAPH-MP, an efficient algorithm to
minimize a general nonlinear function subject to graph-
structured sparsity constraints. For the future work, we plan
to explore graph-structured constraints other than connected
subgraphs, and analyze theoretical properties of GRAPH-MP
for cost functions that do not satisfy the WRSC condition.

A Proof of Theorem 4.1

Proof. Letr't! = x*+*1 — x._ ||r**||5 is upper bounded as

e e = ™ —xll < [x7 = bll2 + x — b2
< erlx—bla + x - bl
< (1+er)x—bla,

which follows from the definition of tail approximation. The
component ||(x — b)q/||3 is upper bounded as

I(x = b)alz = (b —x, (b —x)a)

(b —x—¢Vaf(b) +£Vaf(x), (b —x)a) —

EVaf(x), (b —x)a)

x)all +£l[Vaf)2(b—x)all2,
where the second equality follows from the fact that
Vaf(b) = 0 since b is the solution to the problem in Step 6

of Algorithm 1, and the last inequality follows from condition
(&,6,M(8k, g))-WRSC. After simplification, we have

< 6|fb —x]l2[|(b —

[[(x —b)all2 < d|lb —x[]2 + £[[Vaf(x)]2.
It follows that
[(x = b)[l2 < [[(x = b)all2 + [|(x — b)ac|2

<Olb —x[l2 +&[[Vaf(x)lz + [I(x = b)ac|l2.
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After rearrangement we obtain

[|(b — x)qell2 §||an(x)||2
—xlls <
b =xll2 < ==5—5 1-06
_ lixgell glv f(x)ll _ lle=x)gell glv f(x)H
_ 1Q—62 + Q 2 _ x o 2 4 Q 2
_ lIrac|l2 SHVQf( Mz _ [Irtell2 fllVQf( 2
1-946 1-96 - 1-90 1-6 ’

where the first equality follows from the fact that supp(b) C
), the second and last inequalities follow from the fact that
Q = I'Usupp(x*). Combining above inequalities, we obtain

)EHVIf(X)Hz
1-6

< (s en) ke

From Lemma A.2, we have

Irbellz < /1= n2|r|l2 + | SEe %f—n’;) IV f(x)ll2

Combining the above inequalities, we prove the theorem. [J

Lemma A.1. [Yuan et al., 2013] Assume that | is a differen-
tiable function. If f satisfies condition (£, 5, M)-WRSC, then
Vx,y € R™ with supp(x) Usupp(y) C S € M, the following
two inequalities hold

o =yl < Vs f(x) £ llx = yll2,
146

fx) < Fly) +(Vily),x—y)+ T{HX?

Lemma A.2. Letr’ = x' —xandT' = H(Vf(x

Iefellz < /T =2l | SO 4+ ST 9 (),

wheren = cu(1—6)—6 and I = argmaxgewmsk,g) ||Vsf(x)]|2-
We assume that cry and 6 are such that n > 0.

Proof. Denote ® = supp(x) € M(k,g),T =

M(2k,g), r' = x' —x,and Q =

component ||V f(x")||2 can be lower bounded as

IVefallz 2 en(IVaf(x') = Vaf(x)llz — Ve f(x)ll2)
> cu(1=0)[[r"ll2/€ = cullVif(x)ll2,

where the last inequality follows from Lemma A.1. The com-
ponent ||V f(x")||2 can also be upper bounded as

[P +(L+er

= Vsfly)lla < 12
yll3.

%)). Then

_ H(Vf(x') e
supp(r’) € M(6k, g). The

Ve )2 < %Ilévrf(X) EVrf(x)ll2 + Ve f(x)l2
< V() = €S x) — v + bl +
Ve f(x)l2
< GlEVraf () = €9run f(x) ~ rhuall +
bl + Ve f ()2
< g ez + Ellrr\lz +IVif()ll2;
where the last inequality follows from condition

7

(€,0,M(8k, g))-WRSC and the fact that r} rl,
Letn = (cg - (1 — 0) — §). Combining the two bounds and
grouping terms, we have ||rh|| > nl|rt||2—&(14+cr) || Vif(%)]|2.
After a number of algebraic manipulations similar to those
used in [Hegde er al., 2014a] Page 11, we prove the lemma.
Readers are referred to [Chen, 2016] for more details of the
proof. O
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