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Abstract

We study the problem of bag-level classification
from generalized multiple-instance (GMI) data.
GMI learning is an extension of the popular
multiple-instance setting. In GMI data, bags are
labeled positive if they contain instances of certain
types, and avoid instances of other types. For ex-
ample, an image of a “sunny beach” should contain
sand and sea, but not clouds. We formulate a novel
generative process for the GMI setting in which
bags are distributions over instances. In this model,
we show that a broad class of distribution-distance
kernels is sufficient to represent arbitrary GMI con-
cepts. Further, we show that a variety of previously
proposed kernel approaches to the standard MI and
GMI settings can be unified under the distribution
kernel framework. We perform an extensive empir-
ical study which indicates that the family of distri-
bution distance kernels is accurate for a wide va-
riety of real-world MI and GMI tasks as well as
efficient when compared to a large set of baselines.
Our theoretical and empirical results indicate that
distribution-distance kernels can serve as a unify-
ing framework for learning bag labels from GMI
(and therefore MI) problems.

1

Many real-world problem domains require learning from
structured data. For example, consider the content-based im-
age retrieval (CBIR) domain, in which the goal is to retrieve
images that contain some object or scene of interest [Maron
and Ratan, 1998]. If the image is segmented, then the pres-
ence of an object within the image corresponds to the pres-
ence of certain classes of segments within the image. For such
problems, the multiple-instance (MI) setting offers a richer
representation for these structured objects as sets, or “bags,”
of feature vectors, each of which is called an “instance” [Di-
etterich et al., 1997]. In CBIR, an image is a bag of segments,
each of which can be described with a feature vector. The MI
setting can also be applied to other problems with structured
objects, such as text categorization, audio classification, or
drug discovery.
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In the “standard” MI setting, it is assumed that a bag is
positive if it contains at least one instance from the posi-
tive class of instances. This makes sense for many CBIR
problems; for example, an image contains an apple if some
segment corresponds to an apple. However, prior work has
observed that a more complex relationship is required for
many real-world problems. Consider a CBIR problem in
which the task is to distinguish pictures of deserts, oceans,
and beaches [Foulds and Frank, 2010]. Segments in these
images are primarily either sand or water. However, in
this case, the presence of both sand and water is required
to distinguish beaches from deserts (only sand) or oceans
(only water). Similarly, Wang et al. [2004] study the prob-
lem of identifying members of the Thioredoxin-fold “su-
perfamily” of proteins. A sequence of amino acids corre-
sponding to a protein (bag) is represented using properties
of subsequences (instances) surrounding a central “motif”
within the protein sequence. To be a member of this su-
perfamily, the sequence must contain certain subsequences
and exclude others. Such concepts can be learned under the
generalized MI (GMI) framework [Weidmann ef al., 2003;
Scott et al., 2005]. Here, we assume that some types of in-
stances are “attractive” and that others are “repulsive.” For a
bag to be positive, it must contain a certain number of attrac-
tive instance types and exclude some number of the repulsive
instance types. The generalization allows for richer relation-
ships between bag and instance labels than the standard MI
setting, which is a special case of GMI as follows: there is
one attractive type, no repulsive types, and a bag is labeled
positive if it has at least one instance from the attractive type.

Many existing supervised learning approaches such as de-
cision trees [Blockeel ef al., 2005] and support vector ma-
chines (SVMs) [Andrews et al., 2003] have been extended
to standard MI learning, but none of these approaches are
directly applicable to the GMI setting. Furthermore, many
of these approaches extend instance-based approaches, and
therefore use instance-level hypothesis classes to label bags.
An alternative, successfully employed by other prior work
[Girtner et al., 2002; Chen et al., 2006; Foulds, 2008;
Zhou et al., 2009; Amores, 2013al, is to explicitly or im-
plicitly construct a feature vector representation for bags and
use a standard supervised classifier to solve the bag-labeling
task. In fact, these bag-level classifiers often outperform their
instance-level counterparts in practice in terms of both accu-



racy and efficiency on the bag-labeling task [Amores, 2013b;
Doran and Ray, 2013; Cheplygina ef al., 2015]. Given this
observation, we are interested in the question: how can we
appropriately represent bags so that standard supervised ap-
proaches can learn GMI concepts?

Kernel methods are a well-studied set of approaches for
implicitly constructing feature vector representations of arbi-
trary objects. Given a set of objects X, a positive-definite
function £ : X x X — R is a “kernel function” that is
implicitly associated with a “feature map” ¢ : X — H
such that k(z,z") (¢(x), dp(z')),,. Given the uncount-
ably infinite family of potential kernel functions, how can
we choose a class of kernel functions that are appropriate
for the GMI setting? Some of the first work on MI kernels
showed that a family of ser kernels could be used to repre-
sent standard MI concepts [Girtner et al., 2002]. However,
the desirable properties of such kernels hold only under the
standard MI assumption in which a bag’s label is the logical
disjunction of its instances’ labels. Subsequent work devised
a specialized kernel for the GMI setting [Tao et al., 2004;
2008]. In our work, we propose a new formal generative
model that describes GMI concepts in a setting where bags
are distributions over instances. We show that in this gen-
erative model, a family of distribution-distance kernels can
be successfully applied to the GMI setting. In particular, we
show that a universal kernel based on the maximum mean dis-
crepancy (MMD) distance between distributions is sufficient
for representing GMI concepts given some weak assumptions
[Christmann and Steinwart, 2010].

Next, we show that some existing bag-level representa-
tions of GMI data can be viewed as approximations of cer-
tain distribution-distance or distribution-embedding kernels.
Prior work [Amores, 2013b] proposed a taxonomy of MI
learning algorithms that included categories for “bag-space”
approaches that implicitly map bags into a feature space
via kernels or distance metrics, and “embedded-space” ap-
proaches that first construct feature vectors from bags be-
fore applying supervised learning techniques. By showing
that some of these embedded-space approaches are actually
approximations to bag-space approaches, our work implies
that these two separate categories can be unified into a single
framework for understanding bag-level representations.

Finally, we empirically evaluate the performance in terms
of both accuracy and efficiency of distribution kernels as well
as existing bag-level representations across 72 datasets from
a variety of real-world domains. We show that distribution-
based kernels yield the best performance in terms of these two
metrics. Thus, in addition to the theoretical understanding
provided by our results, we also provide practical recommen-
dations regarding the use of distribution-based kernels for a
wide variety of MI and GMI problems.

2 The GMI Generative Model

In this section, we describe the generative process for GMI
data. Although the original work on standard MI learning
leaves the precise generative process unspecified [Dietterich
et al., 19971, subsequent theoretical analyses either assume
the bags are independent and identically distributed (IID)
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Figure 1: An example GMI concept of “sunny beach” has at-
tractive types sand and water, and a repulsive type c1oud.
The desert and ocean images (top) only contain one of the
two required attractive types. The cloudy beach image (lower
left) is not a member of the concept because it contains the
repulsive type c1oud. The sunny beach image (lower right)
satisfies the definition of the concept.

samples from a single distribution across bags [Blum and
Kalai, 1998], or are drawn from an arbitrary distribution over
tuples of instances [Sabato and Tishby, 2012]. Our approach
builds on a more recently proposed generative model [Do-
ran and Ray, 2014] that assumes that bags correspond to dis-
tinct distributions over instances. This model makes fewer
assumptions about the generative process than prior work.
It is motivated by domains such as 3-dimensional Quanti-
tative Structure—Activity Relationship (3D-QSAR), where a
molecule exists in a dynamic equilibrium whose distribu-
tion over shapes is governed by the energy associated with
each shape, or text categorization, for which existing suc-
cessful models such as topic models already treat documents
as topic-specific distributions over words or passages [Blei et
al., 2003]. We extend this distribution-based model of MI
data to the GMI setting.

Formally, let X’ be the space of instances, and Z(-) de-
note the space of Borel probability measures over its argu-
ment. Then &?(X), the space of probability measures over
instances, is the space of bags. Hence, each bag B cor-
responds to a specific distribution over instances, denoted
Pr(z | B). Bags themselves are drawn from some fixed dis-
tribution over bags, which is given by Dg € 2(2(X)).
After being sampled, these bags are labeled by a function
F : 2(X) — {—1,+1}. In GMI learning, it is assumed
that some types of instances are “attractive” and that others
are “repulsive.” For a bag to be labeled positive by F, it
must contain or “hit” a certain number of attractive instance
types and exclude or “miss” some number of the repulsive in-
stance types. Figure 1 shows a GMI concept “sunny beach,”
for which the attractive types are sand and water, and a
repulsive type is cloud. Let A = {A;}{ ; denote a set of
attractive types, and R = {R; }/_, be a set of repulsive types,
all disjoint closed subsets of X. The set of “other” instances
in the support of the instance distribution Dy is defined as

O £ supp Dy — UQEAUR C;, assumed to be a closed set.



Note that this is equivalent to the assumption that there is a
continuous function that defines the boundary with separation
between each of the types of instances. Formally, we say that
abag B hits a type C; € AURIf [, dP(z | B) > m
for threshold 7; and misses C; if fCi dP(x | B) = 0. That
is, there must be probability 7; of sampling an instance from
type C; within a bag to hit the type, or zero probability to miss
the type. Given this notion, we can extend the distribution-
based generative process to the GMI setting:

Definition 1 (GMI-GEN). Let 114 = {m;}?_, and Ig =
{mi}i_, be sets of positive type-specific threshold pa-
rameters for the attractive and repulsive types. Then
GMI-GEN(A, R, 114,11k, «, p) is the set of (D, F) s.t.:

1. The support of the instance distribution defined by
Dy £ [ BdPrp,(B) is a compact set.

2. For each bag B in the support of Dg, and each type in
AUTR, B either hits or misses the type.

3. A bag is positive if and only if it hits at least « of the
types in A and misses at least p of the types in R.

Condition 3 allows for flexibility in using the attractive and
repulsive types to define classes. To illustrate, consider a vari-
ant of our “sunny beach” example called “nice beach” with
an extra repulsive type trash. A beach is nice if it does not
have both trash and cloud, so selecting p = 1 with these
two types can be used to express this condition.

An assumption of the standard MI setting is that there also
exists some instance-labeling function f : X — {—1,+1},
which has the relationship with F' that F' should label a bag
B € Z(X) negative if the labels of the instances sampled
from B are almost surely negative, and positive if there is
some nonzero probability 7 of sampling a positive instance
within the bag. Note that given an instance-labeling func-
tion fand Xy = {z € X : f(z) = +1}, the (Dg, F)
in GMI-GEN({ X, }, @, {r}, @, 1, 0) correspond to the stan-
dard MI concepts. Hence, GMI-GEN is indeed a generaliza-
tion of the standard MI setting. Having described possible
generative processes for GMI data, we can begin to discuss
kernel methods for learning from data generated in the man-
ner described in Definition 1.

3 Learning GMI-GEN Concepts with Kernels

We first show that certain classes of distribution kernels are
sufficient to represent concepts in GMI-GEN. Then, we
show that existing bag kernels and feature space embeddings
can be viewed under one unifying framework provided by our
generative process.

3.1 Distribution Kernels for GMI Data

Given our generative model where bags are distributions, we
are interested in the application of kernels constructed for
learning from distributions, which have been explored by
prior work [Muandet et al., 2012]. One particularly success-
ful kernel-based representation for distributions is the “mean
embedding.” Given an instance space X and instance kernel
k with feature map ¢, the mean embedding of a distribution
P € P(X)is given by u(P) £ E,p[é(z)]. The associated
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“mean embedding kernel” K defined on distributions is given
by K(P, Q) £ E(; »/)~pxolk(z,2')] for P,Q € 2(X).

The mean embedding has some desirable theoretical prop-
erties. First, given a sample X ~ P", the empirical mean
embedding i(X) = £, .y ¢(x;) converges quickly to
the underlying embedding w(P) as sample size n increases
[Smola et al., 2007]. Furthermore, whenever the instance ker-
nel k is characteristic, the mean embedding p is an injective
mapping of distributions into the kernel feature space, or re-
producing kernel Hilbert space (RKHS), H [Sriperumbudur
et al., 2010]. This means that distinct distributions will have
unique feature representations. A kernel is characteristic if
it is universal, meaning that its RKHS 7, interpreted as a
space of functions over &, is uniformly dense in C'(X), the
space of bounded, continuous functions over X’ [Micchelli et
al., 2006]. The commonly used radial basis function (RBF)
kernel, k(z,z') = e*VHI*“’lHZ, is universal.

Prior work describes the class of functions over distribu-
tions that can be represented using the mean embedding ker-
nel [Muandet et al., 2012]. In particular, the RKHS of the
mean embedding kernel with some universal instance kernel
is dense in the set:

]-"_{PH/){QdP:?E@(X),gGC(X)}. (D

These are the functions we get by taking the expected value of
a fixed but arbitrary continuous function with respect to prob-
ability distributions. However, the function class F is a strict
subset of C'(Z(X)), the set of all bounded, continuous func-
tions over the set of probability distributions, with respect to
the weak topology on Z7(X) [Muandet et al., 2012]. Thus,
the mean embedding defined in terms of a universal kernel
with respect to C'(X) is not itself universal with respect to
C(Z2(X)).

MMD. However, as shown by Christmann and Stein-
wart [2010], it is possible to construct a universal kernel
with respect to C'(?(X)) using an additional level of em-
bedding. That is, using the RBF kernel defined with re-
spect to the mean embeddings of two distributions P and

Q, k(P,Q) = 6_’”'#(73)_#(9)”3", is universal with respect
to C(Z(X)) when p is injective and X is compact. Note
that this kernel is equivalent in form to the RBF kernel but
treats H rather than X as the input space. Since the quan-
tity ||p(P) — p(Q)l|;, is known as the MMD [Smola e al.,
2007], we refer to this as the MMD kernel. This iterated em-
bedding is also called the “level-2”” embedding by prior work
[Muandet et al., 2012].

Are MMD distribution kernels expressive enough to rep-
resent bag-level GMI concepts from Definition 1? Our first
result answers this question affirmatively.

Proposition 1. Let (Dp,F) be an element of
GMI-GEN(A, R, 114,11, o, p). Then the universal
MMD kernel can arbitrarily approximate in the uniform
norm a function that separates bags according to F.

Proof. Since a universal kernel can arbitrarily approximate
continuous functions, it suffices to show that a GMI concept
F' is separable with a continuous function.



Taking for granted that X is a normal space,' by Urysohn’s
Lemma, there exists a continuous function h; : X — [0, 1]
for each type C; such that z € C; = h;(xz) = 1 and
x & CiNx € suppDy = h;(z) = 0. This follows
from the assumption that all sets of instance types and their
complements within supp D y are disjoint closed sets.

Given the existence of the h;, the function H;(B)
min {1, L [y hidP(a | B)} is 1 if B hits type C; and 0 if
B misses C;. Furthermore, each H; is a continuous function
over bags since it is a composition of continuous functions.

Then, for a GMI concept F' as described in Defini-
tion 1, the following concept separates F: G(B)

2 min {ZL Hy(B) — a, " (1 — Hy(B)) — p} T

1=a+1
The minimum is at least 1 if the number of hits and misses
are both above their respective thresholds o and p. Thus,
G(B) > 1 for positive bags according to F', and G(B) < —1
for negative bags.

Finally, note that GG is a composition of the continuous min
function with continuous functions over bags, so it is in fact
continuous and can be approximated by an element of the
RKHS of the MMD kernel. U

A corollary of this result is that the mean em-
bedding kernel suffices to represent standard MI con-
cepts. Recall that standard MI concepts are of the form
GMI-GEN({X.},@,{r},2,1,0) for some = > 0 and
X, = {x € X: f(xr) = +1}, where f is an instance-
labeling function. Then we have:

Corollary 1. Let (Dg, F) be a standard MI concept, an el-
ement of GMI-GEN({X,. }, @, {n}, &, 1,0). Then the mean
embedding kernel with a universal instance kernel can sepa-
rate bags with respect to F'.

Proof. By Proposition 1, there is a single function H such
that a bag separating function is given by:

G(B)=2(Hy(B)—1)+1=2H,(B)—1

_2min{1,;/h+dP(B)}1
:min{1,§/h+dP(B)—1}.

Hence, it follows that the function G’(B)
2 [hy dP(B) — 1 also separates bags.

Now, given that G’ (B) is a linear rescaling of the function
[ hy dP(B), where h. is a continuous function, it can be ap-
proximated by an element of the RKHS of the mean embed-
ding kernel. This fact follows from the results of [Muandet et
al., 2012] as shown in Equation 1. O

The results above show that the mean embedding and
MMD kernels can learn MI and GMI concepts. Note that

'A topological space is normal if for any disjoint closed sets A
and B in the space, there are disjoint open sets U and V' containing
A and B, respectively [Folland, 1999].
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these results do not require prior knowledge of the 7 param-
eters, only that they exist. These results assume that the en-
tire bag distribution B; is known during training. In prac-
tice, only samples of instances are observed for each bag.
However, since empirical estimates of mean embeddings con-
verge quickly to the underlying embeddings as the sample
size within each bag increases [Sriperumbudur et al., 2010],
we argue (and empirically show) that these approaches will
also work well in practice.

3.2 Relationship of Prior Work to the MMD

In prior work, some other bag-level kernels have been defined
for solving GMI classification problems. In this section, we
discuss these approaches and their relationship to the mean
embedding and MMD kernels. In particular we show that
these approaches are either special cases, or approximations
of the MMD, or learn hypotheses that are a proper subset of
those representable by the MMD. Thus, although these ap-
proaches were placed in two distinct categories by prior work
[Amores, 2013b], we argue that they can be unified under our
proposed generative model.

Box-Counting Kernel. The box-counting kernel is mo-
tivated by the assumption that “attractive” and “repulsive”
types of points as described in Definition 1 are contained
within axis-parallel boxes in the feature space [Tao er al.,
2004; 2008]. This is a stronger assumption than is made in
Proposition 1, which allows these sets of types to be arbitrary
closed sets. Hence, the hypothesis space of the MMD kernel
subsumes that of the box-counting kernel. The box-counting
kernel constructs a Boolean feature corresponding to every
axis-parallel box in a discretized version of the feature space.
A feature has value 1 if the corresponding box contains a
point in the bag and value 0 otherwise.

Because it is intractable to explicitly enumerate all such
features, Tao et al. [2004] use a “box-counting” kernel by
observing that the inner product between two Boolean fea-
ture vectors above will be equal to the number of boxes that
contain points from both corresponding bags. However, the
box-counting problem is #P-complete, so an approximation
is used to make even the kernel computation tractable [Tao et
al., 2004]. The approximation scheme finds a value within
a factor of € of the true count with probability 1 — 4, in
poly(m,, k, 1, 1) time, where m is the bag size and k is the
dimensionality of the input feature space. In contrast to this,
the MMD kernel can be efficiently computed exactly.

YARDS. Another set of approaches for both MI and GMI
learning construct a feature vector representation for each
bag. The “yet another radial distance-based similarity mea-
sure” (YARDS) approach constructs a representation for bags
as follows: First, each instance in a dataset is represented
using a feature vector of length |X|, where X is the set of
all instances in the dataset, with each feature an RBF kernel
between that instance and one of the z; € X. This map-
ping, © + [k(z,1),...,k(z,z|x|)], where k is the RBF
kernel, is called the empirical kernel map [Scholkopf and
Smola, 2002], which we denote ¢(z:). YARDS then proceeds
to represent each bag as the average of these empirical ker-

nel mappings, as in fZ(Bz) = Flil > e.cB, o(z;). We call



this the doubly empirical mean embedding, since it is empir-
ical in terms of both the kernel feature map as well as the
estimate of the underlying mean embedding. This embed-
ding is equivalent to the implicit kernel feature map with the
empirical mean embedding up to a linear rescaling of the fea-
tures [Scholkopf and Smola, 2002]. Finally, YARDS uses

another RBF kernel to embed /i into a feature space, making
it a doubly empirical version of the MMD kernel. Thus, when
YARDS is used with a standard SVM and an RBF kernel, it
can learn the same concepts as the MMD kernel. However,
some practical differences between these approaches are ob-
served in the experiments, likely due to feature rescaling.

NSK. The normalized set kernel (NSK) is an early ker-
nel method proposed for the standard MI setting [Giirtner et
al., 2002]. In its most basic form, the set kernel between two
bags is formed by a sum of pairwise instance kernel values be-
tween all pairs of instances across the two bags. Early work
showed empirically that the kernel performs better when it
is normalized, for example, by dividing by the bag sizes. In
fact, the NSK with “averaging normalization” is equivalent
to the empirical mean embedding kernel [Smola et al., 2007];
that is, knsk (X, X') = m Yowex Dwex Kz, 2
(L(X), 2(X")). The NSK is complete for standard MI clas-
sification, meaning that when the RKHS of k& contains a
function that separates instances of different classes, the
RKHS of a corresponding kngk contains a function that
separates bags of different classes [Girtner er al., 2002;
Doran and Ray, 2013]. Proposition 1 shows this also holds
for the standard MI setting within GMI-GEN.

mi-Graph. The MI-Graph and mi-Graph [Zhou et al.,
2009] approaches first construct graphs for each bag by con-
necting two instances in a bag with an edge if they are within a
distance of T of each other. The parameter 7 is chosen heuris-
tically as the average distance between instances in a bag. The
corresponding edge is weighted with a normalized reciprocal
of the distance between the instances.

Like the NSK, the MI-Graph kernel is a sum of pairwise
kernel values between instances and edges across two bags
and their corresponding graphs based on an instance kernel
and a kernel defined on edges. However, since the number of
edges in a bag graph grows roughly as the square of the bag
size, computing all pairwise edge kernel values is quartic in
terms of the bag size. The mi-Graph kernel is a computation-
ally more efficient version of MI-Graph that is equivalent to
a weighted version of the mean embedding kernel. Under the
view of bags as distributions, mi-Graph can be viewed as per-
forming the mean embedding on a biased sample, or a sample
drawn from a modified version of the bag’s distribution.

EMD. The earth-mover’s distance (EMD), also known
as the Wasserstein metric, is a popular distance metric com-
monly used within the CBIR domain [Rubner et al., 2000].
The EMD is a proper distance metric between distributions,
and its name comes from an intuitive description of how it op-
erates. If one views one distribution as a pile of dirt, and the
other distribution as a hole in the ground, then the EMD is a
measure of the minimum amount of work, in terms of mass of
dirt times Euclidean distance across the ground traveled, that
it takes to fill the hole with the pile. The EMD kernel is for-
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mally defined via kpyp (B;, Bj) = e~V EMDP(Bi.5i) " which
is similar to that of the MMD kernel. We hypothesize that
because the EMD produces a similar representation of bag
distributions to that of the MMD kernel, it can achieve simi-
lar performance on MI and GMI tasks.

4 Empirical Evaluation

In this section, we evaluate our hypothesis that the universal
MMD kernel can efficiently learn accurate GMI concepts. We
evaluate this hypothesis by comparing the MMD kernel to
several baselines, described below.

4.1 Methodology

To evaluate our hypothesis, we use 52 existing datasets from
3D-QSAR [Dietterich et al., 1997], CBIR [Andrews et al.,
2003; Maron and Ratan, 1998; Rahmani et al., 2005], text
categorization [Andrews et al., 2003; Settles et al., 2008], au-
dio classification [Briggs et al., 2012], and TRX protein se-
quence classification [Wang er al., 2004]. Of these, only the
TRX dataset is known to require a GMI concept; thus, we
augment our results with 20 semi-synthetic GMI datasets de-
rived from the multi-label natural scenes datasets [Zhou and
Zhang, 2006]. For each of the 5 instance types the bags in
these datasets can contain (desert, mountains, sea, sunset, or
trees), we form 20 datasets in which one of these is the at-
tractive class and another is the repulsive class (e.g., images
of mountains with no trees). Some of these datasets should
be more difficult for standard MI methods; however, we can-
not verify that all of them are strictly GMI without instance
labels. We use 10-fold stratified cross-validation to evaluate
algorithm performance in terms of accuracy, with 5-fold inner
cross-validation and random parameter search [Bergstra and
Bengio, 2012] used to select parameters. Details of the pa-
rameter ranges used for each kernel, full numerical tables of
results, and additional figures are available in supplementary
material online?.

We use the method described by [Demsar, 2006] to statis-
tically compare the kernel approaches. We use the Friedman
test to reject the null hypothesis that the algorithms perform
equally at an o = 0.001 significance level, and an o« = 0.05
significance level for the Nemenyi test and resulting critical
difference diagram shown in Figure 2.

4.2 Results: Accuracy

The results in Figure 2 are generally consistent with the the-
oretical discussion presented above. The NSK and mi-Graph
approaches produce very similar representations of the data,
and also perform very similarly with no significant differ-
ence across datasets. The MMD kernel outperforms YARDS,
which offers only an approximation of the same represen-
tation. Although the MMD kernel offers greater represen-
tational power than the NSK, the performance of these ap-
proaches is statistically equivalent across the MI and GMI
datasets. On the other hand, restricting the analysis to the
semi-synthetic GMI datasets, using the Wilcoxon signed-rank
test to perform a pairwise comparison, the MMD does signif-
icantly outperform the NSK as expected. Interestingly, the

*http://engr.case.edu/ray_soumya/
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Figure 2: Ranks (lower is better) of the bag kernel approaches
on the bag-labeling task. The critical difference diagram
shows the average rank of each technique across datasets,
with techniques being statistically different at an o = 0.05
significance level if the ranks differ by more than the critical
difference (CD) indicated above the axis. Thick horizontal
lines indicate statistically indistinguishable groups.

Table 1: Complexity of computing bag-level kernel entries,
where m denotes bag size, | X| is the number of instances in
the dataset, € is an approximation factor for the box-counting
kernel, and 1 — ¢ is the probability of e-approximation.

Technique  Complexity |Technique Complexity
Box Counting O (m?%log )| EMD O (m?)
YARDS O (m|X]) MMD O (m?)
mi-Graph 0] (mz) NSK (0] (mz)

box-counting kernel, designed for the GMI setting, is typi-
cally outperformed by other kernels, even on GMI problems.

One somewhat surprising result is that the EMD kernel is
slightly better than the MMD kernel, though not significantly
so. We conjecture that the explanation for this result is that
both the MMD and EMD kernels are actually members of
the same family of distribution-distance kernels. Given any
distance metric d, a kernel can be constructed using the gen-
eralized RBF kernel ky(z;,z;) = e 74®:%)" [Scholkopf
and Smola, 2002]. Both the MMD and EMD kernels are of
this generalized form based on distance metrics defined on
the space of distributions (or samples from distributions). In
fact, both distance metrics induce the same weak topology
on the space of distributions over instances, &?(X), when the
instance space is separable [Sriperumbudur ef al., 2010]. As
discussed above, the MMD kernel is universal in its ability to
represent continuous functions over distributions. Although
it intuitively seems that the EMD kernel should have similar
representational abilities, it is still an open question whether
the EMD kernel is similarly universal over the space of dis-
tributions. However, given the empirical performance of the
EMD kernel, we conjecture that this kernel is at least profi-
cient at representing GMI concepts.

4.3 Results: Efficiency

Within the set of bag kernel classifiers, each approach re-
quires differing amounts of time to construct the kernel ma-
trix and train a classifier. The trade-off between training time
and accuracy can be informative for selecting a bag kernel
to apply in practice. Table 1 shows the time complexity of
each algorithm. While the EMD occasionally outperforms
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the MMD in terms of accuracy, it is computationally more
intensive. In practice, the NSK is the fastest algorithm given
our implementations. The NSK, MMD, and EMD kernels lie
on the Pareto frontier of algorithms ranked by both accuracy
and running time (see supplementary materials).

5 Conclusion

In this paper, we have analyzed the GMI and MI settings in a
model where bags are distributions over instances. Our theo-
retical results show that a class of distribution-based kernels
are sufficient to represent GMI concepts. Furthermore, we
show that many other existing approaches can be viewed as
approximations or special cases of this approach. Finally, our
empirical results indicate that the most accurate and efficient
approaches are either distribution-distance or distribution-
embedding kernels. Accordingly, we recommend the use of
these distribution-based kernels for a wide variety of MI and
GMI problem domains in practice.
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