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Abstract

With the rapid increase in the available data, it be-
comes computationally harder to extract useful in-
formation. Thus, several techniques like PCA were
proposed to embed high-dimensional data into low-
dimensional latent space. However, these tech-
niques don’t take the data relations into account.
This motivated the development of other techniques
like MDS and LLE which preserve the relations be-
tween the data instances. Nonetheless, all these
techniques still use latent features, which are dif-
ficult for data analysts to understand and grasp the
information encoded in them. In this work, a new
embedding technique is proposed to mitigate the
previous problems by projecting the data to a space
described by few points (i.e, exemplars) which pre-
serves the relations between the data points. The
proposed method Exemplar-based Kernel Preserv-
ing (EBEK) embedding is shown theoretically to
achieve the lowest reconstruction error of the ker-
nel matrix. Using EBEK in approximate nearest
neighbor task shows its ability to outperform re-
lated work by up to 60% in the recall while main-
taining a good running time. In addition, our inter-
pretability experiments show that EBEK’s selected
basis are more understandable than the latent basis
in images datasets.

1 Introduction

Recently, extracting useful information from large volume of
data has attracted many researchers in different areas like text,
images, videos and more. Nonetheless, this large size of data
has very high computational and memory demands, in addi-
tion it is hard for data analysts to have a grasp of large sized
data that has high dimensions. Therefore, dimensionality re-
duction techniques are used as a solution to these challenges.
Some of these techniques, like Principal Component Analy-
sis (PCA) [Jolliffe, 2002], summarize the data by projecting it
on some latent space. However, these latent features are diffi-
cult to interpret. Using exemplar-based embedding solves the
aforementioned problem by projecting the data into a lower
dimension space spanned by a subset of data points (i.e., the
exemplars), which attains lucid features, that are related to
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explicit data points. In addition, these exemplars can be used
by the data analysts to gain a better understanding of the data
nature and structure.

One criterion for selecting the exemplars is minimizing the
discrepancy between the original data matrix and the low rank
approximation obtained by these exemplars, which is a com-
binatorial problem. Thus, many techniques have been pro-
posed to solve it greedily as in [Farahat et al., 2013]. One
limitation of these techniques is not taking the data points re-
lations and similarities into account, preserving such relations
is shown to be effective in the similarity preserving dimen-
sionality reduction techniques like Multidimensional Scaling
(MDS) [Silva and Tenenbaum, 2002] and Locally Linear Em-
bedding (LLE) [Roweis and Saul, 2000]. It is shown to be
effective in topic detection [Elbagoury et al., 2015] and in
clustering [Ibrahim er al., 2016]. Additionally, preserving
the pairwise similarities in the embedded data is very useful
for the task of Approximate Nearest Neighbor (ANN) search,
which is defined as finding the set of samples that have the
smallest distance to a given query sample. Finding ANNs has
a wide range of applications in machine learning and informa-
tion retrieval [Moraleda, 2008]. That is why in this work, we
propose Exemplar-based Kernel Preserving (EBEK) embed-
ding to choose the exemplars and the embedding that result in
the best low rank approximation of the similarities of the data
where the similarities are represented by a kernel matrix. In
addition, formulating the problem as preserving the data sim-
ilarities obviates the need to solve a combinatorial problem as
will be shown in our theoretical analysis.

It is essential to develop techniques that can work on kernel
matrices, as not all types of data can be represented in numeri-
cal feature vectors form. For instance, there is a need to group
users in social media based on their friendship relations and
to group proteins in bioinformatics based on their structures
[Elgohary er al., 2013]. EBEK supports linear kernel matri-
ces and can be extended to support other kernels types. The
contributions of the paper can be summarized as follows:

e Derive theoretical proof to show that Exemplar-based
Linear Kernel Preserving embedding achieves the mini-
mum reconstruction error for the kernel matrix.

e Evaluate the proposed approach in practical domains
like approximate nearest neighbors search.

e Show the interpretability of the exemplars chosen by the



proposed approach on images datasets.

The rest of the paper is organized as follows: Section 2
gives an overview of related work techniques, then section 3
shows the details of the proposed Exemplar-based Kernel Pre-
serving embedding. At the end, experimental evaluations are
shown in section 4 and section 5 concludes our work.

2 Related Work

In this section, we shed the light on some of the embedding
techniques that have been proposed in the literature. Then,
we will discuss some of the popular techniques for finding
the approximate nearst neighbors.

Several dimensionality reduction techniques project the
data to some latent space to optimize a certain objective func-
tion, such as PCA [Jolliffe, 2002], which has two main disad-
vantages: 1) The produced basis are latent and do not have a
clear meaning. 2) PCA doesn’t consider data points relations
and structure which, in some domains, are essential to be pre-
served in the low-dimensional space. Therefore, several di-
mensionality reduction techniques have been proposed to pre-
serve data points relations like MDS [Silva and Tenenbaum,
2002] and LLE [Roweis and Saul, 2000]. For instance, classi-
cal MDS [Silva and Tenenbaum, 2002] minimizes the differ-
ence between the Euclidean distances of the data points in the
original space and the Euclidean distances of the projected
data points in the lower dimension space and hence main-
tains the relationships between the points. LLE [Roweis and
Saul, 2000] is another dimensionality reduction technique
that aims to find a mapping, which preserves the local dis-
tances between the points, by trying to reconstruct the points
only using their k-nearest neighbors. On the other hand, our
approach combines both preserving the data points relations
and structures, while representing the new basis using sam-
ples that can be easily interpreted by data analysts.

Computing ANNs is a time and memory consuming task to
be performed on the high-dimensional data. That is why, sev-
eral approaches have been proposed to project the data into
a lower dimension space and then utilize this lower dimen-
sion space to compute the nearest neighbors of the data points
like in [Gong and Lazebnik, 2011], [Andoni and Indyk, 2006]
and [Raginsky and Lazebnik, 2009]. For example, a modified
version of PCA called PCA-RR is used in [Gong and Lazeb-
nik, 2011] where the projection matrix W of PCA is multi-
plied by a random orthogonal matrix R and then the approach
uses W R as lower dimension basis to project the data on. It
was also shown in [Gong and Lazebnik, 2011] that PCA-RR
outperforms PCA in ANNS task. Yet the objective function of
PCA does not preserve the similarities of the data, which lim-
its its ability to find the best ANNs. Local Sensitivity Hash-
ing (LSH) [Andoni and Indyk, 2006] mitigates this problem
by trying to preserve the local neighbors of the points using
random hash functions that with high probability map similar
data points to the same buckets. While, utilizing these buck-
ets enables LSH to retrieve the ANNs, defining general ran-
dom hash functions for LSH is a difficult task. SKLSH [Ra-
ginsky and Lazebnik, 2009] modifies the objective function
of LSH to approximate shift-invariant kernels using random
feature mapping. ITQ [Gong and Lazebnik, 2011] is another
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approach for finding ANNs, which tries to learn a similarity
preserving binary coding using training data and then utilizes
it to encode the data and compute the ANNs. While ITQ cod-
ing captures the data properties, it requires a lot of training
data to find a good binary coding, in addition this training
phase consumes a lot of time.

3 EBEK: Exemplar-based Kernel Preserving
Embedding

3.1 Notations

The following notations are used throughout the rest of the
paper unless otherwise is stated. Scalars are denoted by small
letters (e.g., m, n), sets are shown in script letters (e.g., £, H),
vectors are denoted by small bold italic letters (e.g., f, g), and
matrices are denoted by capital letters (e.g., A, .5). In addition
the following notations are used:
For a set &:
I€] the size of the set.
For a vector x € R™:
x; i-th element of x.
For a matrix A € R™*™;

A j the (4, j)-th entry of A.

A;. the i-th row of A.

A. the j-th column of A.

A ¢ the submatrix of A which consists
of the set £ of columns.

Ay e the submatrix of A that consists of
the set 77 of rows and the set £
of columns.

AT the transpose of A.

A the low rank approximation of A.

[|Al|lF the Frobenius norm of A.

We start this section by providing the details of embedding
that preserves linear kernels in subsection 3.2 and then we
explain the details of extending the approach to support any
arbitrary kernels.

3.2 Exemplar-based Linear Kernel Preserving
Embedding

Our objective in this work is choosing a subset of columns
(i.e, data points) that preserve the pairwise similarities as
much as possible between the data embedded in the span of
these columns. In addition, we would like these columns to
be less similar to each other to ensure that these columns cap-
ture the different characteristics of the dataset. Given this
objective the problem can be defined as follows.

Problem Definition Given a data matrix A € R¥™" (n
samples in d dimensional space). Select a subset £ of m
columns, such that:

. _ o~ _ . T _ ~T e
arg min 1S = S|lr arg min |IATA — AT A||p

(D

Where A is the low rank approximation of A using the

columns A. ¢, A AT, A ¢ € R™>™ and T € R™*™. T

st.S(i,j)<e Vi,jEE
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Figure 1: Precision@R and Recall@R for COIL20 and ISOLET Datasets
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Figure 2: Recall@ R for TDT2 and 20NG Datasets

represents the coefficients used to reconstruct the n samples
using the m selected samples and e is a similarity threshold
to ensure that the columns are not similar to each other.

At first we will drop the constraints on the columns simi-
larities and try to minimize the objective function and then we
will show how to minimize the objective function while pre-
serving these constrains. The goal of this objective function
is to choose A, ¢ and 1" that minimize the Frobenius norm of
the difference between the pairwise similarity matrix of the
original data (S = AT A) and the pairwise similarity matrix
of the low rank approximation data (S = AT 4), where the
similarity here is defined by the linear kernel. Therefore, the
problem can be reduced to:

arg min [|[ATA — AT A||p = )

arg Amgin:r |ATA - TTA?:gA:,sTHF

Let Sge = AT A. ¢ € R™ ™, which represents the
pairwise similarities between the selected m samples. Then,
equation 2 can be rewritten as:

3

arg min [|S = T" S, Tl

As the matrix S is symmetric positive semi-definite (by
construction), then S = VE2VT, where A = USVT, is the

singular value decomposition of A. In addition, 3 is a diago-
nal matrix with rank(S) positive elements and n—rank(.S)
zero elements on the diagonal. Then equation 3 can be writ-
ten as:

arg AmsinT V2V =TT Se T | “)

Lemma 3.1. ||GBQ||r = ||B||F for any matrix B and or-
thogonal matrices G and Q.

Proof.
IGBQ||% = tr(GBQ)'GBQ)

=tr(QTBTGTGBQ)
=tr(QQTBTGTGB) = tr(BTB) = ||B||r

As Q and G are orthogonal matrices, hence QQ7 = I and
GTG =1

O
Based on lemma 3.1, equation 4 can be re-written as:
arg min_ [|[VT(VE2VT —T7Se ¢ TV ||
A:,EvT
=arg min |22 -~ VITTSe cTV||p
A. g, T
=arg min ||¥? — (TV)T'Se TV || &)
A;157T
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Figure 3: Precision@ R for TDT2 and 20NG Datasets

Lemma 3.2. Sg ¢ = P~TDP~!, where P € R™*™ is an
invertible matrix and D € R™*™ is a diagonal matrix that
has only entries 0 and +1. The number of +1 in D equals r,
where 7 is the rank of matrix Sg ¢.

Proof. Using Sylvester’s Law of Inertia [Sylvester, 1852],
each symmetric matrix £ € R™*"™ is congruent to a diago-
nal matrix D € R™*™ which has only entries 0, +1 and -1
along the diagonal, where the number of zero diagonal ele-
ments is m—p, p = rank(E), the number of positive diagonal
elements, ¢, is the number of positive eigenvalues, the num-
ber of negative diagonal elements is the number of negative
eigenvalues p — g. Which means that there exists an invertible
matrix P € R™*™ such that: PT EP = D. Applying this to
the matrix Sg ¢ gives the following: PTS&gP = D, then

See=P TDP! (6)

As the matrix Sg ¢ is symmetric positive semi-definite,
then it has r positive eigenvalues, where r = rank(Sg ¢) =
rank(A. ¢), and m —r zero eigenvalues. The matrix P can be
obtained by multiplying pairs of elementary transformations,
one of which is with rows and the other is the corresponding
transformation with the columns as explained in [Lipschutz
and Lipson, 2012]. O

Theorem 3.3. By setting T = P(31.,,..)V?, where P satis-
fies equation 6 and selecting a subset £ of columns from ma-
trix A that have the highest rank, the matrix S, which equals
to TTA:TEA;ygT, achieves the minimum low rank approxima-
tion of S.

Proof. Using lemma 3.2, and by substituting equation 6 in
equation 5, we get:

arg AminT |22 — (V)T P~TDP~'TV ||

=arg min _||° — (PT'TV)TDP'TV|[p  (7)
L€

Our objective is to put the matrix D in canonical form such
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that:

D= . (8)

0

Where I, is r-by-r identity matrix. As the singular values
of S are sorted along the diagonal of 3, putting the matrix D
in the form of equation 8 enables us to cancel the first r singu-
lar values (the largest ones), which means the error of equa-

E?:rJrl 0-'?’
where o7 is the i singular value of .S. This can be achieved
by setting the value P~1TV = (2y.,,.), where 1., . is the
first m rows of the matrix X. This can be seen by substituting
the value of P~1TV in equation 7, which will be:

arg Ar.n;nT HEQ - (lem,:)TD(Elzm,:)HF (9)

tion 7 in terms of the Frobenius norm will be

Thus, the optimal value for P~'TV = (Xy.,,.), and T =
P(X1.m,.)VT. The error in this case is equal to the minimum
achieved error using rank-k approximation obtained by SVD
[Zhang et al., 2002]. So to minimize 7, we need to:

e Choose subset of columns £ from A that have the maxi-
mum rank.

e Set the value of T to P(X1.,,.) V7.
O

To maximize the rank of A:7g, there are two cases:

e If r > m, we can choose any independent m columns
by reducing the matrix to its echelon column form and
use the non-zero columns.

e If r < m, in this case we will use the non-zero columns
of the echelon form and any other m — r columns, and
in this case the error will be zero.

Recall that A = A, ¢T. To obtain the lower dimension
embedding of the data in the space spanned by A. ¢ we will
replace the matrix A, ¢ by its QR factorization. A = QRT,
where () is the orthogonal bases of the space spanned by A. ¢
and the lower dimension embedding of the data is RT'. Until
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Figure 4: EBEK and PCA Basis in COIL20 and ORL Datasets

now, we have only considered minimizing the objective func-
tion without the similarities constrains. As shown in the pre-
vious proof, choosing any subset of columns that has the max-
imum rank will be optimal for the objective function. There-
fore, to decide which subset to choose, we employ the sim-
ilarities constrains and choose a subset of columns with the
maximum rank, such that the pairwise similarities between
these columns are upper-bounded by a similarity threshold ¢
that can be chosen empirically.

Algorithm 1 shows the pseudo code of the algorithm.
The method get Independentcol returns m independent
columns. This can be computed using echelon form. How-
ever, the set of independent columns can be computed more
efficiently using algorithm 2. The algorithm starts with an ar-
bitrary column, as the first independent column (line 2), then
for each subsequent column j check if it has component or-
thogonal to the previously chosen columns or not (lines 5 to
7); if it has and its similarity with each of the previously se-
lected columns is less than e , then it will be included in the
set of independent columns (lines 8 to 10).

EBEK running time complexity is O(dnlogm + (d +
n)m? + nmd + m?3), where O(dnlogm + (d + n)m?) is
the time to compute the stochastic SVD decomposition of A,
O(nmd) for the independent columns selection and O(m?)
for computing the matrix P. Note that, QR decomposition
complexity is dominated by the other steps as the QR decom-
posision is done only for the selected columns in O(dm?).
To extend EBEK to work on any arbitrary kernel K, we get
the SVD of the K instead of A and then we get the indepen-
dent columns from the kernel matrix and use the rest of the
approach to embed the kernel matrix into the selected lower-
dimensional space.

4 Experimental Results

The effectiveness of the proposed approach is evaluated on
two tasks, approximate nearest neighbors search and inter-
pretability experiments. Section 4.1 shows the setup and re-
sults for the ANNSs search task, and section 4.2 shows the
interpretability experiments.
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Algorithm 1: Linear Kernel Preserving Embedding

Data: Matrix A € R%*" and integer m
Result: W € R"*", which represents the lower
dimension embedding of the data
1 [, V] « stochasticSVD(A, m)
2 € + getIndependentcol(A, m)
3 S&g — A?:SA;75
4 P <+ diagMatrix(S¢ ¢)
s T+ PYVT
6 [@, R] = orthogonalize(A. ¢)
7 W<« RT

4.1 Approximate Nearest Neighbors Search

In this subsection, we discuss the experimental setup and re-
sults for the task of ANNs search. To evaluate the effective-
ness of our approach, the pairwise similarities between the
lower dimension data is computed and the nearest neighbors
are retrieved based on the lower dimension embedding.

To build the ground truth, the set 7 of nearest neighbors is
retrieved by computing the distance to all queries and then ap-
plying the linear scan. The search quality for each approach
is measured using Recall @R and Precision@7R as in [Zhang
et al., 2014], where for each query the set of R nearest neigh-
bors is retrieved and the recall is computed as the fraction of
the samples in both set 7 and R and the size of the set T,

Recall@R = |R‘7ﬂ_|ﬂ and Precision@R = I?%Tl.

‘We have used four datasets, COIL20 which contains 1440
samples in 1024 dimensional space, ISOLET which contains
1560 samples in 617 dimensions, TDT2 which contains 9394
sample in 19677 dimensional space and a subset of 20 News-
groups (20NG in short) containing 9990 samples in 29360
dimensional space [Cai et al., 2009]. The performance with
|7| = 10, and 50 is reported and each experiment is repeated
10 times and the average and 95% confidence interval are pro-
vided. The observed behavior remains valid for other |7.
Additionally, the number of the basis in the lower dimen-
sional space m is set to 10 in all the techniques. Note that
the results in this subsection are not affected by the value of €




Algorithm 2: getIndependentcol: Independent Columns
Selection

Data: Matrix A € R4X™, integer m, €

Result: £ a set of indexes of m independent columns in
matrix A

size  1;& < {1}

for : = 2 : min(m,n) do

1

2

3 a; < A:)i

4 for j =1 : size do

s aj < A ()

SRR

7 if ||a;||1 # 0 and S(A.;, A. ¢) < e then
8 size < size + 1

9 E+EUd

Algorithm 3: diagMatrix: Diagonalize the Input Matrix

Data: Matrix S € R™*™
Result: P
1 [ € R™*™ identity matrix
2 fori =2:mdo

3 D;. = 8. /\/|Si.
4 D.; = 8./\/|5i
5 L. = 1. /\/|Siil

6 forj=i+1:mdo

7 mult = —%

8 Dj: = mult X Di: + Dj:
9 D:j = mult X D1 + D;j
10 Ij :multx]i;—s—lj:

1 p=1I7

as discussed in section 3.2. Figure 1 shows the results of the
different techniques in COIL20 and ISOLET datasets and as
shown in the figure, EBEK was able to achieve the best Pre-
cision@R and Recall @R. After that, ITQ and PCA-RR were
the second best in Precision@R and Recall@R. Moreover,
table 1 shows the running time of the techniques in COIL20
and ISOLET datasets. The results show that LSH and SKLSH
were the fastest approaches, while EBEK was the third fastest
approach with a gap of at most 0.04 seconds to LSH.

Figures 2 and 3 show the effect of changing the | 7| on
the Recall@R and Precision@7R for both TDT2 and 20NG
datasets. Note that, MDS and LLE were omitted from TDT2
and 20NG datasets as they were taking more than 20 minutes
to run. Table 2 shows the running time of obtaining the low
dimension embedding and the bit-encoding (depending on the
approach) in TDT2 and 20NG datasets. It is obvious that
EBEK consistently achieves the highest precision and recall
while achieving the lowest running time.

4.2 Interpretability Experiments

In order to show that the basis detected by EBEK are more
understandable than the basis detected by the other ap-
proaches, two datasets are selected which are COIL20 and
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Table 1: Approximate Nearest Neighbors Running Time (in
Seconds) Comparison for COIL20 and ISOLET Datasets

COIL20 ISOLET
EBEK 0.07 £ 0.00 0.03 £0.01
ITQ 0.08 £ 0.00 0.05+0.00
LSH 0.03£0.00 | 0.02+0.00
PCA-RR | 0.07+£0.00 0.04 +0.00
SKLSH 0.03 £0.00 | 0.02+0.00
MDS 129.39£0.20 | 146.44£1.23
LLE 0.43£0.01 1.06 £0.05

Table 2: Approximate Nearest Neighbors Running Time (in
Seconds) Comparison for TDT2 and 20NG Datasets

TDT2 TDT2 20NG 20NG

[7]=10 | |T]=50 || |[T|=10 | |T]=50

EBEK | 5.17 + 517+ 6.21 + 6.35 +

0.07 0.08 0.07 0.1

1TQ 32,77+ | 3219+ || 260.40E£ | 335.27+
0.96 1.66 40.80 74.82

LSH 1447+ | 1427+ || 268.09+ | 276.29+
0.11 0.18 91.93 80.68

PCA- | 3187+ | 31.70x || 300.09% | 451.66+
RR 1.12 1.25 58.29 91.01

SKLSH| 1458+ | 14.16 £ || 868.07+ | 716.33 %
0.27 0.17 130.50 198.58

ORL datasets and the basis selected by EBEK and PCA-RR
are drawn in figure 4. Note that the basis of PCA were simi-
lar to the basis detected by PCA-RR and PCA-RR has much
better quality in the approximate nearest neighbor task, thus
we only show PCA-RR basis. The value of € was chosen
empirically to yield the best visualization results and was
set to 0.65 and 0.94 in COIL20 and ORL datasets respec-
tively. As shown in the figure 4, in COIL20 dataset, EBEK
basis were more interpretable than PCA basis, as it shows
that COIL20 contains different objects in different orienta-
tions. While PCA produced understandable basis in the ORL
dataset, still EBEK basis are more understandable. PCA ba-
sis point out that there is a change in the mouth area in the
dataset images and as a viewer you do not know what are
these changes. However, EBEK shows you these changes
with men with beards and people with different mouth emo-
tions. Additionally, EBEK basis capture characteristics that
PCA can not capture, for example that the dataset contains
different gender, different age and different color people.

5 Conclusion

In this paper, Exemplar-based Kernel Preserving (EBEK)
embedding is proposed and shown theoretically to achieve
the lowest reconstruction error of the kernel matrix. Eval-
uation results show that EBEK exceeds the related work in
the retrieved Approximate Nearest Neighbors (ANNs) qual-
ity, while maintaining a good running time. Moreover, our
interpretability experiments show that EBEK’s selected basis
are more understandable than the latent basis of the images
datasets.
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