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Abstract

A classifier able to minimize the generalization er-
ror of a particular problem for any set of unseen
samples is named Bayes-optimal classifier. The
hypothesis induced by such classifier is equiva-
lent to the optimal Bayes point, which is approx-
imately equivalent to the center of mass of the ver-
sion space. However, there are only a few methods
for estimating the center of mass and most of them
are computationally expensive or impractical, es-
pecially for large datasets. In this paper we present
the Version Space Reduction Machine (VSRM), a
new method that obtains an approximation of the
center of mass. The method works by means of
successive reductions of the version space which
are consistent with an oracle’s decision. This ora-
cle is represented by the majority voting of an en-
semble, whose components must contain a reason-
able diversity level to ensure an effective approxi-
mation. We conduct an experimental study on mi-
croarray datasets and assess the performance of the
proposed method compared to Support Vector Ma-
chine and Bayes Point Machine. Our method con-
sistently outperforms the others. Such result indi-
cates that the proposed method provides a better ap-
proximation of the center of mass.

1 Introduction

Considering the classification problem in a Bayesian ap-
proach, the hypothesis given by a linear classifier, that is
able to predict which class minimizes the error for any given
sample is called a Bayes-optimal classifier [Michalski er al.,
2013]. However, the problem arises when find this hypoth-
esis involves analyzing every single solution that belongs to
the hypothesis space. Unfortunately, in that case, find the
Bayes-optimal classifier is absolutely expensive and cannot
be implemented for large datasets.

The advantage of this technique is that this hypothesis out-
performs every other solution belonging to the hypothesis
space, in average [Bishop, 1995]. The Bayes-optimal clas-
sifier induces an hypothesis represented by a point in the
hypothesis space, named optimal Bayes point. In [Watkin,
1993] and [Opper and Kinzel, 1996], the authors proved that
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the optimal Bayes point solution can be approximated by the
center of mass of the version space. Watkin and others refer
to this point as the “optimal Perceptron”. However, find the
center of mass of the version space is equally complicated.
In this sense, we are looking for methods that are capable to
generate a hypothesis that most closely approximates to the
center of mass. Many researches have been developed in or-
der to estimate the center of mass accurately. Although it
is a well-studied problem, the solutions proposed so far be-
sides not effective in most cases, are also not applicable in
real world datasets. Therefore, it is still an open problem.

Some methods focus on accurately calculate the center of
mass while others try an approximation of it. In [Graepel
et al., 1999], the authors propose the Bayesian Transduc-
tion (BT) for approximate the center of mass of the version
space. BT works according to the classification of new sam-
ples which splits the version space into two half-spaces. One
with the lowest volume is discarded. However, this approach
is slow and works only on transduction problems. [Trafalis
and Malyscheff, 2002] propose the Analytic Center Machine
(ACM) to calculate the analytic center of the version space,
an approximation of the center of mass. ACM solves a min-
imization problem using Newtons method and a logarithmic
barrier function. The main problem of this approach is the
treatment given to the redundant constraints that deviate the
solution of ACM from the real analytic center. Based on the
recursive method proposed by [Lasserre, 1983] to compute
the volume of a convex polytope, [Maire, 2003] proposes the
Balancing Board Machines (BBM) to compute an approxi-
mation of the centroid of higher dimensional polytope. How-
ever, the method is absolutely expensive and not applicable
in practice. In [Herbrich et al., 20011, the authors present two
implementations of the Bayes Point Machine (BPM) to esti-
mate de the center of mass. The first one considers the com-
putation of the volume of the polytope introduced by [Rujan,
1997] expanded to kernel space. The second algorithm pro-
posed considers the hypothesis equivalent to an average of an
ensemble of Perceptrons as the center of mass. This approach
has been considered the state-of-art in Bayesian-optimal clas-
sifiers and will be discussed later in this paper.

In this paper, we present the Version Space Reduction Ma-
chine (VSRM) to approximate the center of mass of the ver-
sion space. We determine the approximation by successive
reductions of the version space. The reduction process is de-



fined by considering a cutting plane method that uses as an
oracle the majority voting of an ensemble, whose components
are diverse and well distributed. Moreover, we successively
introduce cutting constraints in order to allow us to rebuild
the reduced version space. By doing this, in the end we are
able to generate a hypothesis equivalent to the representative
majority voting ensemble. We suggest that this hypothesis is
an approximation of the center of mass. Also, this method is
efficient enough to be applicable to large datasets, since the
reduction process is done from updating the constraints of the
problem, instead of including additional restrictions.

In order to verify our claims, we apply our method to
microarray gene expression data. This technology has a
large impact on cancer diagnosis research and provides high
dimensionality datasets, with a small number of samples.
Our experimental study focus on 6 linearly separable can-
cer datasets. We compare the proposed VSRM method to the
Support Vector Machine (SVM) [Boser e al., 1992], [Vapnik,
1995] and the BPM. From the reported results, we observe
that our method outperforms the other classifiers in almost
all considered datasets. This result indicates that our method
tends to provide a better approximation of the center of mass,
since the generalization error provided by our hypothesis is
lower than the error given by the other methods. We also
present statistical tests, in order to confirm the relevance of
our empirical study.

The remaining of this paper is structured as follows. In the
following section, we review the basic ideas of binary classi-
fication problem with a particular focus on linear classifiers.
We also define the version space and review two methods that
work as approximations of the center of mass of the version
space: SVM and BPM. In Section 3, we present the Variable
Margin Perceptron (VMP), an algorithm that evolves a Per-
ceptron solution maintaining this solution within a range of
values defined by two margin values. The VMP corresponds
to the base of VSRM, which is presented in Section 4. An ex-
tensive list of experimental results is presented in Section 5.
In Section 6 we give some considerations and discuss some
theoretical extensions of the presented method.

2 Binary classification

Consider the supervised learning paradigm, a binary classi-
fication task can be defined as follows. Let the input data,
denoted by Z = {(z;,v;) : i € {1,2,...,m}}, be a train-
ing set of m examples, for some unknown function h. The
x; € R? are vectors, whose components are discrete or real-
valued, called features. The y values are mapped from a dis-
crete set of classes, y; € {—1,+1}. Given a set of training
examples, a learning algorithm outputs a classifier which con-
sists of a hypothesis (represented by a hyperplane) about the
function h : RY — {—1,+1}. The classifier predicts the
corresponding values of y when additional samples of x are
presented. The additional samples are called testing set.

In those cases where the two classes are linearly separable,
linear classifiers work on defining the hyperplane correspond-
ing to the function h based on a linear combination of the
features vectors and a weight vector w and b, the bias term.

The weight vector is updating according to the training set
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error. In this case, the generated hypothesis gives the proba-
bility of a new sample belongs to each of the two classes. We
obtain the classifier (hypothesis) answer when all the training
instances are correctly classified, thus

y; ((w, ;) +0) >0, forall: € {1,2,...,m}.

The set of all hypotheses given by the learning algorithm
defines the hypothesis space. Besides that, we can also define
the set of all hypotheses given by linear classifiers that are
consistent with the training set as the version space.

2.1 Version space

According to [Herbrich, 2001], given the training set Z and
the consistent hypothesis (solution) set H of a problem, the
version space V' (Z) is defined in terms of H by

def

forall ¢ € {1,2,...,m}, i.e., the set of all consistent classi-
fiers with the training set. In particular, for linear classifiers,
the version space can also be defined as the set of consistent
weight vectors, for all ¢ € {1,2,...,m}, given by

def

Vi(Z) = {(w,b) € W :y; ({w, x;) +b) > 0} S W,

where W = {(w, b) : ||(w, b)||2 = 1} is the isomorphic unit
sphere to the hypothesis space of the problem. To simplify
the use of notation, we will represent the weight vector (w, b),
equivalent to a point in the version space, only by w.

2.2 Support Vector Machines - SVM

SVMs are maximal margin kernel classifiers which were in-
troduced by [Boser et al., 1992], [Vapnik, 1995]. This tech-
nique aims to separate the training set by a hyperplane that
maximizes the distance from members of opposite classes. In
order to obtain the maximal margin hyperplane that correctly
classifies all patterns in the training set, it is necessary to solve
an optimization problem.

Considering the version space approach, SVMs provide
as solution the center of the largest inscribed hypersphere
in V(Z). Usually, this solution is reasonable and, in most
cases, keeps lower generalization error. However, if the ver-
sion space is elongated or asymmetric, the solution provide
by SVMs tends to present a notable decrease of the gener-
alization error [Tong and Koller, 2002]. Besides that, [Her-
brich et al., 2001] show that SVMs can also be viewed as an
approximation of the center of mass of version space in the
noise free scenario.

2.3 Bayes Point Machines - BPM

BPMs are kernel classifiers that aims to return an approxi-
mation for the center of mass, following the Bayesian clas-
sification strategy. Such classifiers were originally presented
in two versions by [Herbrich et al., 2001]: a kernel billiard
sampling algorithm and an approximative method based on
an ensemble of Perceptrons. However, only the latter method
can be applied to large datasets. For this reason, we only dis-
pense attention to this approach.

The technique provides by the BPMs works by means of
generating a fixed number of Perceptrons, considering for



each one ||w|ls = 1, trained with different permutations
of the training set, and average them into a single classi-
fier. The hypothesis induced by such ensemble of classifiers
very closely approximates the Bayesian classification strategy
[Herbrich, 2001]. Nowadays, BPMs are considered the state-
of-art in Bayes-optimal classifier methods, since they provide
a better approximation of the center of mass, outperforming
other strategies for approximation such as SVM.

3 Variable Margin Perceptron — VMP

[Leite and Fonseca Neto, 2008] proposed an extension of the
Perceptron algorithm [Rosenblatt, 1958] that finds the solu-
tion of a linearly separable problem given a fixed margin ;.
The algorithm, called Fixed Margin Perceptron (FMP), can
establish a fixed margin value that will be attended by a sep-
arating hyperplane, such that

yi ((w, ;) +b) > v¢|jwl|e, foralli € {1,2,...,m}.

We propose a modification of FMP, in order to introduce
two distinct fixed margin values for each sample of the prob-
lem, defining a variable margin. We call this modified formu-
lation as Variable Margin Perceptron. The purpose of this
algorithm is to generate a Perceptron solution, feasible in
V(Z), belonging to a set of fixed margin interval. By do-
ing this, we obtain an interior point in V' (Z). Those points
belonging to the boundary of V' (Z) are not considered feasi-
ble. We define the VMP margin values as one lower 7/°* and
one upper y“P".

3.1 Correction rules

To construct the VMP algorithm, the correction rule of the
FMP algorithm must be modified to allow each point be cor-
rected in relation to each one of two margins. Thus, the vi-
ability criterion of a point must also be modified. A point is
feasible in the version space if obeys the following inequali-
ties

Yi ((w,z7) +b) > 7, |Jw||

yi ((w, i) +0) <" |w]2.

In that case where we can not satisfy the viability cri-
terion according to /% for a given point w, ie., if
yi ((w, ;) +b) < 4°%||w||2, we must applied the correc-
tion rule given by

! t
e omtw

w't e wt — e oy
[lwll2

On the other hand, if the criterion of viability is not satis-
fied for a point w according to ;""" i.e., if y; ((w, x;) +b) >
VP lwl|2 or —y; ((w, 2;) +b) < —;""[|w]|2, the follow-
ing correction rule must be applied

upr, it
Wt e wf + Ty,
[lwll2
Note that, although we are including a new viability criterion,
the computational cost of the VMP remains the same as FMP.

Figure 1 illustrates the two possible updating cases. Con-
sider the version space V' (Z) according to W. The introduc-
tion of two new feasible points w’ e w’” having two distinct
margin values, lower and upper, characterizes the two cases
of VMP in relation to R; constraint according to the x; sam-
ple.

Figure 1: Introduction of two feasible points, given by the
convergence of VMP.

3.2 Pseudocode
Algorithm 1 describes the Variable Margin Perceptron.

Algorithm 1: Variable Margin Perceptron

Input: training set Z = {(z;,v;)} : 1 € {1,2,...,m};
upper bound for the number of epochs maz;
lower geometric margin vector ~!°%;
upper geometric margin vector y“P";
learning rate 7;
Output: normal vector w and bias b if a solution is
found in less than max epochs;
begin
initialize (w®, b%);
J<0
t<+ 0;
stop « false;
while j < maz and —stop do
error < false;
for ; < 1 to m do
i s (W', 2) + B) < 91|}, then
wt e wt =y w! [wl]s + i
b <« bt + nys;
t+—t+1;
error < true;
Ise if y; ((w', x;) + b") > """ ||w||2 then
wt = w' +ywt /| Jwll2 + nyizs
b = b+ iy
t+—t+1;
error < true;
end if
end for
if —error then
| stop < true;
end if
JeJ+L
end while
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4 Version Space Reduction Machine - VSRM

We propose the VSRM method in order to provide an effec-
tive approximation of the center of mass of the version space.
Thus, it is a Bayes-optimal classifier.
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The reduction process applied in VSRM is based on the
introduction of successive cutting planes. A cutting plane is
generated by a parallel hyperplane to the solution given by
the VMP algorithm. When we add a cutting plane, V' (Z) is
divided into two half-spaces. To correctly reduce the version
space it is necessary to discard the half-space with the lowest
volume. The decision regarding to the discard of the half-
space must agree with an oracle answer. For the oracle, any
feasible classifier (or ensemble) in V' (Z) can be used. How-
ever, the construction of a good oracle can represent a better
approximation.

4.1 The oracle and its diversity

For the choice of the half-space to be preserved, VSRM con-
siders the correlation of the evaluated hypothesis according
to the oracle. In those cases where the oracle is a single clas-
sifier, the correlation reflects the half-space that contains the
hypothesis generated by the oracle. If the oracle is an ensem-
ble of classifiers, the agreement reflects the half-space that
contains the greater number of components of the ensemble,
which is characterized as the majority voting of the oracle.
This agreement tends to reflect the half-space with the highest
volume. However, the biggest half-space is directly related to
the distribution of the components. According to [Herbrich,
2001], an ensemble is well distributed in V' (Z) if the compo-
nents are the most diverse possible. Figure 2 illustrates two
cases of component distribution in the version space.

Figure 2: Poorly and well distributed ensemble, respectively.

The first case presents a poorly distributed ensemble and
the second case is a well distributed ensemble. It is easy to see
that the distribution of the ensemble directly affects the choice
of the discarded space, according to the majority voting of the
components and based on the cutting plane represented on the
figure.

Ensemble of Balanced Perceptrons

In particular, in this study, we choose as oracle the Ensemble
of Balanced Perceptrons with a dissimilarity measure (EBPd)
[Enes et al., 2015]. This choice was based on two main as-
pects: it is a kernel method, with a Perceptron as base classi-
fier, and for its good distribution and diversity of the compo-
nents.

The EBPd works by means of combine some base clas-
sifiers called Balanced Perceptron (BP) which are selected
by a set of three diversity measures. Basically, the authors
proposed the BP as an alternative to improve the individual
accuracy of the original Perceptron, by balancing the final
hyperplane. The balanced Perceptrons generated are diverse
since, for each Perceptron, a different initial weight vector
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are presented and a different permutation of the training set is
constructed. Also, the components are selected by a dissim-
ilarity measure based on the Euclidean distance. In the end,
the selected components are combined by a majority voting
strategy. For further and detailed information, refer to [Enes
et al., 2015].

4.2 Formulation

The first step of VSRM is the oracle construction from the
EBPd, whose components are consistent hypotheses in V' (7).
At each iteration of the algorithm, VPM generates a feasible
point and, from VSRM, we construct a cutting hyperplane,
passing through w and parallel to the restriction R;. We de-
fine the direction of the hyperplane based on the direction of
R; which is orthogonal to the normal vector given by y;x;.

This hyperplane divides the V' (Z) into two half-space. The
voting process, based on the evaluation of each component of
the ensemble, determines the choice of which half-space must
be preserved. Consider hy, = (wg, bi) as a component of the
ensemble. Thus, for each sample in the training set Z, we
have the following voting possibilities

{

Both margins 7'°* and “P" are associated to the votes of
low and upr, respectively. As a result, the update of one of
the two margins and the subsequent discard of the half-space,
depends on the outcome of the vote. If the number of votes for
low is greater than the votes for upr, the following updating
rule must be applied

yi (((wg —w) ,2;) + (b, = b)) > 0,low + low + 1

yi (((wr, —w) ,z;) + (b — b)) < 0, upr < upr + 1,

low

77 = ((w, i) +0) /|wll2,

otherwise, we apply the updating rule according to v“P"
((w, ) +b) /[[w]]2-

We can observe that, as the point is feasible in the version
space, this updating value does not violate the defined range
of VMP for the margin values, maintaining the relationship

low upr
Vit <7

The iterative procedure of the VSRM should be repeated
while exists a feasible point in the reduce version space, given
by the convergence of VMP. Note that, in the end of the pro-
cedure, all constraints will be updated according to the two

margin values, attending the following condition

upr

Vi

Ao < ((w, i) +) /Il < A"
The last feasible point, found by VSRM, defines the approxi-
mation of the center of mass of the version space.

Is worth mentioning that, we consider the reduced version
space just for updating the point w to generate a new feasi-
ble solution and a new cutting plane. However, in order to
define the half-space that agrees with the oracle, the original
version space must always be considered and thus all compo-
nents of the ensemble are used in the voting process. Also,
note that we reduce the version space without including any
new constraints to the problem.



Figure 3 shows the convergence of the VSRM, characteriz-
ing the step-by-step of the method on a hypothetical problem
with 6 restrictions in V' (Z). For example, consider the voting
scheme presented in Figure 3-(b). We obtain, by the voting
process, 9 votes for updating v'°* against 2 votes for updat-
ing v“P". In this case, we are able to discard the half-space
with less components, given by 7'°*’. On the other hand, con-
sider now Figure 3-(c). In this case, we discard the half-space
given by the update of v“P" (1 vote against 10 votes).

0} M 0]

Figure 3: Illustration of the strategy employed by the VSRM.

4.3 Pseudocode
Algorithm 2 describes the Version Space Reduction Machine.

5 Experimental Study and Results

5.1 Datasets

Clinical datasets such as DNA microarrays are particularly
complex and difficult to work with, due to its high dimension-
ality and few samples, resulting in large computational costs.
It is especially challenging to obtain generalizable decisions.
We use six datasets derived from gene selection, which are
related to cancer classification and genetic disease studies.
The datasets can be found in [Glaab et al., 2012], [Zhu et

Algorithm 2: Version Space Reduction Machine

Input: training set Z = {(z;,y:)} : 4 € {1,2,...,m};
upper bound for the number of epochs maz;

number of components of the ensemble size;
dissimilarity factor of the ensemble ¢;

learning rate 7;

Output: normal vector w and bias b;

1 begin

2 ensemble < EBPd(Z, n, size, £, max);

3 for i < 1tomdo

4 'yf"“’ <+ 0;

5 1P+ o0;

6 end for

7 1+ 0;

8 repeat

9 (w,b) +~ VMP(Z,~y1°% 4%" ‘maz);

10 normalize (w, b);

11 low + 0;

12 upr < 0;

13 for k < 1 to size do

14 if y; (((wr, —w), z;) + (b — b)) > 0 then

15 | low < low + 1;

16 else

17 | upr < upr +1;

18 end if

19 end for

20 if low > upr then

2 |yl ((w, ) + ) /][l

2 else

» | P = (w,2i) +0) /[ lwl]a;

2 end if

25 1+—1+1%m;

26 until the convergence of VMP in max iterations is
not achieved,;

27 end

al., 2007] or [Golub et al., 1999]. Table 1 summarizes the
main information.

Table 1: Information about the considered datasets.

Set Features Samples

Pos. Neg. Total
Prostate 12600 50 52 102
Breast 12625 10 14 24
Colon 2000 22 40 62
Leukemia 7129 47 25 72
DLBCL 5468 58 19 77
CNS 7129 21 39 60

5.2 Experimental Setting

Considering the random nature of the methods, for all the ex-
periments, we employ a 10x10-10-fold cross-validation strat-
egy, expect in the SVM case, where we employ a 1x10-10-
fold. These schemes were adopted in order to reduce the bias
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of the methods. In a stratified cross-validation strategy, each
fold always maintain the percentage os data points belonging
to each class [Kohavi, 1995]. For more accurate comparisons
we always select, for each dataset, the same training and test
sets and also the same 10 subsets for cross-validations, pre-
serving the generating seed associated to the random process.
The learning rate parameter was set to 7 = 0.05, for all the
Perceptrons.

We quantify the classification effectiveness of the classi-
fiers through the conventional error rate, i.e, the percentage of
test instances incorrectly classified. In order to check for sta-
tistical significance of the results we performed the Friedman
Rank Sum and the post-hoc Nemenyi statistical tests [Dem-
sar, 2006]. Also, we run the statistical tests using the fol-
lowing R package: Pairwise Multiple Comparison of Mean
Ranks Package (PMCMR) [Pohlert, 2014].

For the SVM and the BPM implementations, we consider
the Sequential Minimal Optimization [Platt, 1998] with hard
margin and the implementation given by [Herbrich er al.,
20011, respectively. All methods consider the use of a lin-
ear kernel, since the datasets analyzed are linearly separable.

Considering the defined oracle, EBPd, all parameters, as
the number of components and the dissimilarity factor, were
taken from [Enes et al., 2015]. In order to provide a clear in-
formation about these parameters, we set the number of com-
ponents as 10+1 to avoid ties due to the majority voting strat-
egy. The dissimilarity factor was defined as the highest possi-
ble value in such way that the algorithm is able to generate all
required components. Table 2 summarizes the dissimilarity
factors.

Table 2: Dissimilarity Factors (DF) for EPBd

Set DF
Prostate 10
Breast 70
Colon 11
Leukemia 97
DLBCL 150
CNS 125

5.3 Numerical Results

Initially, to verify the correctness of the proposed method,
we generated several oracles (ensembles) with only 1 compo-
nent. We observed that the algorithm was able to converge to
the point represented by the oracle, in all cases. Therefore,
we could conclude that the method was able to choose the
half-space which agrees with the oracle properly.

The following experimental study of VSRM was con-
ducted on the linearly separable datasets presented earlier. A
comparison was made among VSRM, SVM and BPM meth-
ods, aiming to identify if the proposed solution is a better
approximation of the center of mass of the version space, by
analyzing the generalization error. Table 3 shows the mean
classification error and the standard deviation at the testing
phase. The best results for each dataset are highlighted in
bold.
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Table 3: Comparison on datasets.

Set SVM BPM VSRM

Prostate 958 £ 135 10.46 £ 1.57 9.46 £+ 1.77
Breast 20.67 £2.49 2035+342 19.83 +2.39
Colon 18.69 £2.32 15.68 £2.35 15.44 £2.29
Leukemia 2.75 + 0.88 550+ 1.32 339 +£1.30
DLBCL 3.81 £0.68 3.86 £ 0.79 3.49 + 0.87
CNS 3350+£1.99 3333+268 32.87 +2.15

From the reported results, we can observe that our method
always outperforms BPM and overcome SVM in 5 of the 6
considered datasets. Also, we observe that the results of BPM
are better than SVM, considering the generalization capac-
ity, in 3 of the 6 considered datasets. Such result, according
to [Watkin, 1993] and [Herbrich, 2001], indicates that our
method provides a better approximation of the center of mass
of the version space than the approximations given by SVM
and BPM.

We performed the Friedman Rank Sum test which as-
sumes, as null hypothesis, the equivalence of the generaliza-
tion capacity of the 3 algorithms analyzed. Friedman test in-
dicates significance (2 = 6.3333, df = 2, p-value = 0.04214),
which allows us to reject the null hypothesis, since we ob-
tained relevance at 5%. After, we applied the post-hoc Ne-
menyi test, which provides pairwise comparisons. From this
test we concluded that the proposed VSRM differ significant
from SVM and BPM at 10%, with p-value = 0.955 and p-
value = 0.055 respectively.

6 Discussion

In this work, we proposed the VSRM, a novel method to es-
timate the center of mass of the version space. We define
the EBPd as an oracle for the VSRM due to its kernel im-
plementation and the diversity of the components provided
by this method. From the reported experimental evaluation,
we observed that the results obtained by our method were
very relevant. In all analyzed cases, our method wase able
to provide a better approximation of the center of mass than
the BPM, considering the ideias proposed by [Watkin, 1993]
and [Opper and Kinzel, 1996] according to the generalization
capacity. Moreover, considering the approximation given by
SVM, our method outperforms the SVM solution on 5 of the
6 datasets. Statistical tests show that our results are relevant
according to both SVM and BPM.

As future work, we intend to apply our method to non-
linearly separable datasets, extending its formulation to the
kernel space. Also, we intend to investigate other oracles, in
order to obtain a better distribution of the components of the
ensemble in the version space.
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