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Abstract

Many conventional statistical machine learning algo-
rithms generalise poorly if distribution bias exists in
the datasets. For example, distribution bias arises in
the context of domain generalisation, where knowl-
edge acquired from multiple source domains need
to be used in a previously unseen target domains.
We propose Elliptical Summary Randomisation (ES-

Rand), an efficient domain generalisation approach
that comprises of a randomised kernel and ellipti-
cal data summarisation. ESRand learns a domain
interdependent projection to a latent subspace that
minimises the existing biases to the data while main-
taining the functional relationship between domains.
In the latent subspace, ellipsoidal summaries replace
the samples to enhance the generalisation by further
removing bias and noise in the data. Moreover,
the summarisation enables large-scale data process-
ing by significantly reducing the size of the data.
Through comprehensive analysis, we show that our
subspace-based approach outperforms state-of-the-
art results on several activity recognition benchmark
datasets, while keeping the computational complex-
ity significantly low.

1 Introduction

Domain generalisation is an emerging area of machine learn-
ing that explores how to acquire knowledge from various
related domains, and apply it to unseen target domains. In ac-
tivity recognition via wearable sensors, for example, training
samples may be collected under specific conditions involv-
ing device type, device placement, orientation, sampling fre-
quency, and activity performance style [Stisen et al., 2015]. In
such applications, the classification model built using learning
algorithms operating on samples from one dataset may not be
directly applied to other related datasets. This problem mainly
concerns conventional classification techniques built based
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on the assumption that training and test data follow the same
distribution. In many real-world applications, however, this as-
sumption is violated; the data might have been collected from
heterogeneous sources, introducing bias to the samples and
resulting in poor generalisation across datasets. Developing
learning algorithms that are invariant to data distribution bias
is therefore an important and compelling problem.

More formally, a domain is defined as a probability distri-
bution P. Although domains are not observed directly, their
samples can be drawn {(x

i

, y
i

)}m
i=1. A classification algo-

rithm is trained on the samples provided by multiple source
domains, whereas distinct target domains are used for test-
ing. Discrepancy (or inconsistency) in the underlying data
collection process in different domains can lead to deviation
in marginal P(X) and conditional P(Y |X) distributions of
the samples. To mitigate this issue, the sampling process
with adjusted settings should be replicated, which may not
always be feasible; or a large number of samples should be
collected, which requires accessing large storage and process-
ing resources. Consequently, the challenge is to build a system
that is robust to bias and performs well on unseen datasets.

Domain adaptation and domain generalisation overcome
the above problem by finding a shared subspace for related
domains. The aim of domain adaptation is to produce robust
models on a target domain, by leveraging supplementary in-
formation during training from the unlabelled target domain,
as well as taking labeled samples from multiple source do-
mains. Domain adaptation produces target-specific models,
indicating that the training process should be repeated for each
target domain. Moreover, the target domain samples may not
always be available. Domain generalisation, in contrast, gen-
erates a model independent of target domains. It only assumes
that samples from multiple source domains can be accessed,
and makes no further assumption regarding the target domain.
More specifically, domain generalisation aims to cope with the
deviations in the marginal distribution P(X) and conditional
distribution P(Y |X) among different domains. Blanchard et
al. [2011] first introduced the notion of domain generalisation.
Muandet et al. [2013] developed a domain invariant feature
representation incorporating the distributional variance across
domains to reduce the dissimilarity. Domain generalisation
algorithms have also been exploited in computer vision for
object recognition [Khosla et al., 2012].

The goal of our work is to efficiently extract features that
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improve generalisation performance across domains, i.e., fea-
tures that transfer across domains. We introduce ESRand, an
efficient domain generalisation method based on a randomised
kernel algorithm, which finds a subspace that minimises the
difference between the marginal distributions P(X) of do-
mains, while maintaining the functional relationship P(Y |X).
In the lower (projected) space, ESRand exploits label infor-
mation from the training domains and summarises the data
by replacing the domains with a set of ellipses and their focal
points. While significantly reducing the training time, data
summarisation also improves generalisation by eliminating
the effect of noisy samples and anomalies.

Through a comprehensive analysis we demonstrate that
ESRand has the following desirable properties that distin-
guish it from previous approaches. Unlike existing domain
generalisation approaches that are built based on nonlin-
ear kernels [Blanchard et al., 2011; Muandet et al., 2013;
Khosla et al., 2012], ESRand exploits random features in an
invariant sub-space to reveal nonlinear patterns in the data.
It enables large-scale data processing of computationally ex-
pensive machine learning algorithms by significantly reducing
the size of the data. Moreover, it outperforms state-of-the-art
results on several sensor-based activity recognition benchmark
datasets, while being computationally efficient.

2 Background and Related Work

ESRand is a domain generalisation method based on ran-
domised kernels, therefore we briefly review these two lines
of research in this section.

Domain generalisation: Given several labeled training
samples drawn from different sources with biased distribu-
tions, domain generalisation assigns class labels to target sets.
Fluctuations in the distributions arise in a variety of several ap-
plications due to technical, environmental, biological, or other
sources of variation. This problem has been addressed in other
areas of machine learning such as domain adaptation [Jiang,
2008] and transfer learning [Pan and Yang, 2010]. However,
they require the incorporation of target samples or even access
to a few of the target labels, while domain generalisation can
be performed independent of the target set.

Blanchard et al. [2011] first raised the domain generalisation
problem and proposed a kernel-based approach that identifies
an appropriate Reproducing Kernel Hilbert Space (RKHS) and
optimises a regularised empirical risk over the space. Two
projection-based algorithms, Domain-Invariant Component
Analysis (DICA) and Unsupervised DICA (UDICA), were
then developed by Muandet et al. [2013] to solve the same
problem. Extending Kernel PCA (KPCA), DICA and UDICA
incorporate the distributional variance across domains to re-
duce the dissimilarity.

Domain generalisation algorithms also have attracted the
computer vision community for object recognition. Khosla et
al. [2012] proposed Undoing Dataset Bias (UDB), a multi-task
max-margin classifier exploiting dataset-specific biases in fea-
ture space. The encoded biases are used to push each dataset’s
weight to be aligned with the global weights. Xu et al. [2014]
proposed an exemplar SVM based method by exploiting the
low-rank structure in the source domain. They formulated a
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Figure 1: An example of ESRand algorithm.

new optimisation problem as a nuclear norm-based regulariser
that captures the likelihoods of all positive samples. Niu et
al. [2015] extended [Xu et al., 2014] and proposed a multi-
view domain generalisation approach for visual recognition
by fusing multiple SVM classifiers. They built upon exemplar
SVMs to learn a set of SVM classifiers by using one positive
sample and all negative samples in the source domain each
time. More recently, Ghifary et al. [2015] proposed a multi-
task autoencoder that leverages naturally occurring variation
in sources as a substitute for the artificially induced corrup-
tion, and learns a transformation from the original image into
analogs in multiple related domains.

Kernel randomisation: Various nonlinear kernel-machine
formulations are used to improve the capacity of learning ma-
chines while making learning feasible, e.g., quadratic program-
ming (QP) solvers. In particular, these kernel-based methods
rely on the computation of a kernel matrix over all pairs of data
points, which limits the scalability of the algorithm on large
datasets, and also can limit its effectiveness on high dimen-
sional inputs, given the need to have sufficiently large training
samples spanning the variation in the high dimensional space.

To address the scalability problems of kernel-machines,
techniques have been proposed that either preprocess the data,
e.g., by using dimensionality reduction techniques such as
PCA or deep learning [Erfani et al., 2016b], or alleviate the
QP problem, e.g., by breaking the problem into smaller pieces,
for example by using chunking. A more recent trend explores
the use of randomisation, such as linear random projection
[Blum, 2006] as a substitute for the computationally expensive
step of kernel matrix construction. The work of Rahimi and
Recht [2007; 2009] made a breakthrough in this approach.
They replicated an Radial Basis Function (RBF) kernel by
randomly projecting the data to a lower dimensional space
and then used linear algorithms. Random projection avoids
the complexity of traditional optimisation methods needed for
nonlinear kernels. Recently, randomisation has been applied
to other kernel methods, such as dot-product kernels [Kar
and Karnick, 2012], and one-class SVM [Erfani et al., 2015;
2016a].

3 ESRand: Elliptical Summary

Randomisation

ESRand is a domain generalisation approach based on ran-
domised kernels and elliptical data summarisation, see Fig-
ure 1 for an example. The randomised kernel projects the data
to a lower-dimensional latent space that minimises the effect
of domain bias, while preserving the functional relationship
of the data. The Johnson-Lindenstrauss (JL) Lemma provides
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probabilistic guarantees that the random projection of a dataset
to a lower feature space preserves the relative distances be-
tween data points. However, the probabilistic nature of the
JL-lemma and random projection results in a small number of
noisy or outlying data points. To improve the generalisation by
further removing noise and outliers in the projected data, we
use ellipsoidal summaries to replace the samples. The focal
distance between pairs of ellipsoids are then utilised as the
dissimilarity measure among domains. In the following, we
first formulate the problem and our objective function, and
then formally introduce ESRand.

Let P
ij

denote the distribution of observations over an input
space Rn, X

ij

⇢ Rn, for a specific setting i 2 {1, . . . , q}
which corresponds to a class j 2 {1, . . . , c}. For example, P

ij

can be the distribution of observations collected from a subject
(setting) performing a certain activity (class). Therefore, there
are two sources of dissimilarity between data distributions
in the input space. ESRand transforms the data into a new
space Rh to minimise the unwanted dissimilarity introduced
by different settings and to preserve/increase the dissimilarity
between different classes.

Let D denote the dissimilarity (e.g., focal distance) be-
tween two distributions, our objective is to find a transforma-
tion � 2 Rn ⇥ Rh that minimises D(�(X

j

),�(Y
j

)), while
maximising dissimilarity between classes D(�(X

j

),�(Y
l

)),
where X and Y are samples from any two subjects. So the
objective function has two discordant goals of reducing the
distance between some distributions, while increasing the dis-
tance between some other distribution, i.e., the functional rela-
tionship between dissimilar distributions should be preserved.
This leads to the following optimisation problem:

min

�2R

n⇥Rh
�

cX

j=1

D(�(X
j

),�(Y
j

))

� (1� �)

c� 1

cX

j=1

cX

l=j+1

D(�(X
j

),�(Y
l

)),

(1)

where � and 1 � � show the relative importance of each
goal. Note that to yield the best separation, the embedding
� can be different for each activity. The search space of all
functions over Rn⇥Rh is not tractable, so normally the search
is conducted over a family of parametric models. In this way,
only the parameters of the models have to be found.

3.1 Featurised Kernel Mean Embedding

To learn from data distributions P, we employ a Hilbert space
embedding to represent the data distribution as a mean function
in a RKHS H

k

. The embedding enables efficient computation
of the dissimilarities, while maintaining the necessary infor-
mation of data distributions. Let H

k

be an RKHS function
f : X ! R, and k be a positive definite function. The kernel
mean map of X is defined as

µP := E
x⇠P[k(·, x)] =

Z

X
k(·, x)dP(x) 2 H

k

. (2)

However, since in practice distribution P is unknown, one
can use sample data X 2 Rm⇥n drawn from P. Therefore,
the sample data is interpreted as the empirical distribution

ˆP =

1
m

P
m

i=1 �xm(·), where �
xm(·) is the Dirac delta func-

tion at point x 2 X . The empirical kernel mapping (2) is
approximated by

µ̂P :=

1

m

mX

i=1

k(·, x
i

) 2 H
k

. (3)

In practice, the feature embedding in (2) and (3) may be
infinite-dimensional and lack a closed form for some kernels,
making it cumbersome for processing large scale datasets.
To overcome this limitation, we propose to exploit a lower
rank approximation using nonlinear random Fourier features
[Rahimi and Recht, 2007], which serves as a good approxima-
tion of a nonlinear kernel. For shift-invariant kernels we can
exploit Bochner’s theorem to generate h-dimensional random
features Z 2 Rm⇥h, and for i = 1, . . . ,m

z

i

= [cos(w

T

i

x1 + b
i

), . . . , cos(wT

i

x

h

+ b
i

)]. (4)

The vectors (w1, . . . ,wh

) ⇠ p(w) are sampled from the
Fourier transformation, and (b1, . . . , bh) ⇠ U(0, 2⇡). Then
(3) reduces to

µ̃P =

1

m

mX

i=1

z

i

2 Rh. (5)

3.2 Elliptical Data Summarisation

In the latent space h, our system converts the projected data to
elliptical summaries. Then a dissimilarity image of the data
is built from a measure of the focal distance between pairs of
ellipsoids. Bezdek et al. [2011] defined elliptical summaries
for anomaly detection and summarisation of a set of noisy data
points. A hyperellipsoidal summary with effective radius t

i

centred at the sample mean µ̃Pi of Z
i

, with covariance matrix
S

i

is defined as

e
i

(µ̃Pi ,S
�1
i

; t) =
�
Z

i

2 Rh|(Z
i

� µ̃Pi)
T

S

�1
i

(Z

i

� µ̃Pi) 6 t2
 
.

(6)

Remark: (Z

i

� µ̃Pi)
T

S

�1
i

(Z

i

� µ̃Pi) is the Mahalonobis
distance from Z

i

to µ̃Pi and S

�1
i

is the matrix of the hyperel-
lipsoid e

i

. We use µ̃Pi and S

�1
i

to represent a hyperellipsoidal
cluster e

i

for Z
i

, whose boundary is defined as

�
ei(µ̃Pi ,S

�1
i

; t
i

) =

�
Z

i

2 Rh|(Z
i

� µ̃Pi)
T

S

�1
i

(Z

i

� µ̃Pi) = t2
 
.

(7)

We choose t2 = (�2
)

�1
h

(�) (i.e., the inverse of the chi-
squared statistic with h-degrees of freedom). This results in
an ellipsoid that covers at least 100�% of the data under the
assumption that the data has a Gaussian distribution [Tax and
Duin, 2000]. The Gaussian assumption is rarely true for real
datasets. However, this threshold is a close approximation
for any unimodal distribution. This means that the ellipse for
� selection of h covers the majority points and some of the
outlying points are left outside.

The ellipsoid in (7) summarises the data points while re-
moving the effect of outlying samples. We use these ellipsoids
instead of the data points as the inputs to the classification tech-
niques. Classification techniques require a distance measure
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to classify the input objects. This distance measure should cap-
ture the differences between the input objects. Three distance
measures have been proposed in [Moshtaghi et al., 2011] to
measure distances between pairs of ellipsoids. These distances
are designed to capture the difference between ellipsoids in
terms of eccentricity, location and orientation. Here, we
briefly explain the best performing measure called the focal
distance.

Let d(e
i

, e
j

) be the distance between two ellipsoids
e
i

(µ̃Pi ,S
�1
i

; t
i

) and e
j

(µ̃Pj ,S
�1
j

; t
j

). Every plane ellipse
e(µ̃P,S

�1
; t) can be constructed by tracing the curve whose

distance from a pair of foci f1 and f2 is a positive con-
stant. The foci always lie on the major axis of the ellipse.
If {��

S�1 ,�
+
S�1} are the minimum/maximum eigenvalues of

S

�1 with corresponding eigenvectors {v�,v+}, the foci are

f1,2 = µ̃P ± 1

2

s
(�+

S�1 � ��
S�1)

�+
S�1�

�
S�1

v

+. (8)

The focal distance between a pair of ellipses e
i

and e
j

is an
average of a set of four distances. Each component in the
average is a distance to one of the focal elements from the
other one. Let �(x,y) = kx� yk be the Euclidean distance
between vectors in x and y. We have two focal segments
with endpoints {f

i,1,f i,2} and {f
j,1,f j,2}. We compute

four distances from �
ijl

and �
jil

for l 2 {1, 2}:

�
ijl

= min{�(f
j,l

,f
i,l

), �(f
i,l

,f
j,l�1)}. (9)

Then the focal distance between e
i

and e
j

is computed as:

d(e
i

, e
j

) =

1

4

2X

l=1

(�
ijl

+ �
jil

). (10)

3.3 ESRand Procedure

To train ESRand, the data collected from c classes of q subjects
is first embedded in a subspace using (4) and (5). Then in the
feature space, we replace the samples with c ⇥ q ellipsoids
using (7), generating one ellipsoid per class of each subject.
Instead of solving the optimisation problem in (1), we follow
the description in Section 4 and generate a projection � 2
Rn⇥h that obtains dissimilarities satisfying the conditions
in (1). The test procedure is similar to the training procedure,
projecting the test data to the feature space by applying �,
and summarising the samples with ellipsoids. When ESRand
is used in conjunction with k�NN, the test ellipsoids are
classified w.r.t. their focal distance to the closest training
ellipsoids; and when used with SVM the focal points and their
associated labels are the input to the algorithm.

4 Theoretical Justification

Random projection is a dimensionality reduction method that
has been widely adopted in machine learning [Rahimi and
Recht, 2007; Oymak and Tropp, 2015]. The first result, known
as the JL-Lemma, states that for a given a set of points in a
high-dimensional space, there is a projection into a lower-
dimensional random subspace that preserves the functional
relationship of the data (e.g., the inter-point distances and

angles with high probability). Here, the most important impli-
cation is that if we have data that is separated by some small
margin, then a random linear separator would probably be
a weak learner with error less than 1/2. Therefore, we can
combine kernel functions with the JL-Lemma to note that if a
learning problem has a large margin under the kernel k(·, x),
then a random linear projection of the Hilbert space down to a
sub-space approximately preserves linear separability.

While the random projector should preserve geometric fea-
tures of the set, we do not want to map a point in the set to the
origin. To ensure this, we refer to the results in [Oymak and
Tropp, 2015]: the success probability and stability of a random
projection for a given set depends on the embedding dimen-
sion that can be quantified through universality theorems in
high-dimensional stochastic geometry.
Theorem 1 A Universality Law for the Embedding Di-

mension. Given the n ⇥ h random projector � with the pa-

rameters p > 4, ⌫ � 1, % 2 (0, 1), and " 2 (0, 1), there is a

number N := N(p, ⌫, %, ") for which the following statement

holds. Suppose that the ambient dimension n � N ; E is a

nonempty, compact subset of Rn

that does not contain the

origin; the statistical dimension of E is proportional to the

ambient dimension: %n  ✓(E)  n. Then h � (1 + ")✓(E)

implies P{0 /2 �(E)} � 1 � C
p

n1� p
4

. Furthermore, if

✓(E) is spherically convex, then h  (1 � ")✓(E) implies

P{0 2 �(E)} � 1� C
p

n1� p
4

.

This theorem ensures that the random projection succeeds
for a spherically convex set E when the embedding dimension
h exceeds the statistical dimension ✓(E) where 0 < ✓(E)  n
and can be computed through ✓(E) = E[(max

b2✓

g.b)2+], g 2
N(0, I). To simplify this, let ⌦ be a closed, spherically
convex set in Rn; and the entries of the random projector
� : Rn ! Rh be small, constant, partly non-zero, standard-
ised, independent, and symmetric, with a modest amount of
regularity. For this class of random projectors, it has been
proved that

h ✓(⌦)� o(n) implies 0 2 �(⌦) with high prob.;
h �✓(⌦) + o(n) implies 0 /2 �(⌦) with high prob, (11)

where o(n) depends only on the regularity of the random vari-
ables. Therefore, over the mentioned class of random pro-
jectors, the phase transition in the embedding dimension is
universal, provided that ⌦ is not too much smaller than the
original dimension n. In the other words, there is a substantial
class of random projectors for which the phase transition in the
embedding dimension is universal. Moreover, it is important
to quantify the stability properties of randomised dimension
reduction. The stability of the random projector on a compact,
convex set E in Rh can be quantified using the universality
theorem for the restricted minimum singular value.
Theorem 2 Universality for the Restricted Minimum Sin-

gular Value. Given the random projector � : Rn ! Rh

with the fixed parameters p, ⌫, % 2 (0, 1), � 2 (0, 1),
and ✏ 2 (0, 1), there is a number N := N(p, ⌫, %, ✏) for

which the following statement holds. Suppose that the am-

bient dimension n � N ; E is a nonempty, compact sub-

set of the unit ball Bn

in Rn

; the embedding dimension d
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is in the range �n  h  n6/5
; the h-excess width of E

is not too small: "
h

(E) � %
p
h. Then P{�min(�;E) �

(1� ✏)("
h

(E))+} � 1�C
p

n1�p/4. Furthermore, if E is con-

vex, then P{�min(�;E)  (1+✏)("
h

(E))+} � 1�C
p

n1�p/4

where the constant C
p

depends only on the parameter p in the

random matrix model.

For any random projector, Theorem II proves that the dis-
tance of the random projection from the origin cannot be much
smaller than the h-excess width "

h

(E). Similarly, when E is
convex, the distance of the random projection from the origin
cannot be much larger than the h-excess width. The excess
width "

h

(E) is not much smaller than the embedding dimen-
sion

p
h. Correspondingly, the random projection is stable

and far from the origin, i.e., the embedding succeeds, if the
restricted minimum singular value is large enough. Detailed
proofs can be found in [Oymak and Tropp, 2015].

5 Empirical Analysis

In this section, we illustrate the effectiveness of ESRand via
a visualisation of a toy dataset. Furthermore, we compare
the performance and efficiency of the proposed algorithm
with state-of-the-art algorithms through classification tasks on
multiple benchmark datasets.

Datasets: The experiments are conducted on four real life
datasets from the UCI Machine Learning Repository: (i) Daily
and Sport Activity (DSA), (ii) Heterogeneity Activity Recog-
nition (HAR), (iii) Opportunity Activity Recognition (OAR),
(iv) PAMAP2 Physical Activity Monitoring, with the number
of 19, 6, 5, 13 activities collected from 8, 9, 4, 8 subjects,
respectively1. All the records in each dataset are normalised
between [0,1].

Baselines: To evaluate the performance and efficiency of
ESRand, we compare it with the following baseline methods:
(i) KPCA, (ii) DICA and UDICA: kernel-based optimisation
algorithms that learn an invariant transformation to minimise
the dissimilarity across domains, (iii) AE (Autoencoder) [Ben-
gio et al., 2007]: a basic autoencoder trained by stochastic
gradient descent, (iv) CAE (Contractive Autoencoder) [Rifai
et al., 2011]: an autoencoder with an additional penalty, the
Frobenius norm of the Jacobian matrix of the encoder acti-
vations with respect to the input, to yield robust features on
the activation layer, (v) k�NN: k Nearest Neighbour, we use
k = 1, (vi) SVM: Support Vector Machine with RBF kernel,
(vii) UDB: a max-margin SVM-based framework for reducing
dataset bias, (viii) LRE-SVM

[Xu et al., 2014]: a non-linear
exemplar-SVMs model with a nuclear norm regularisation to
impose a low-rank likelihood matrix.

The hyper-parameters of all the algorithms are adjusted
using grid search based on their best performance on a vali-
dation set. Algorithms i� iv are used for feature extraction.
For classification purposes, the learnt features from these al-
gorithms are used with k�NN and multi-class SVM with a
linear kernel l-SVM. Since the focus of the experiment is to

1DSA, HAR and PAMAP2 are large datasets including millions of
samples. We used a subset of these datasets. For DSA and PAMAP2
the first 1000 samples of each activity from each user were used, and
for HAR the first 2000 samples were used.
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Figure 3: iVAT images of the projected toy dataset

evaluate the effectiveness of feature extraction methods, we
utilise simple classification algorithms, otherwise more ad-
vanced approaches can be employed. For algorithms v � viii
no feature extraction has been conducted, and the algorithms
have been applied directly on the (normalised) raw datasets.

Metric: We use the Receiver Operating Characteristic
(ROC) curve and the corresponding Area Under the Curve
(AUC) to measure the performance of all the methods. The
reported AUC values of each algorithm are the average ac-
curacies of leave-one-domain-out test (domain), i.e., taking
one domain as the test set and the remaining domains as the
training set. The reported training times are in seconds, and
the stated AUC values and training times are the average of 20
folds for each experiment. For SVM based methods LIBSVM
was used.

5.1 Visualisation

To demonstrate the impact of ESRand, we used a toy dataset,
a subset of the DSA dataset including the first 375 sam-
ples from three activities of two subjects, and a visualisation
tool called improved Visual Assessment of cluster Tendency
(iVAT) [Wang et al., 2010]. iVAT helps to visualise the pos-
sible number of clusters in a set of objects, by reordering the
dissimilarity matrix of the objects so that it can display any
clusters as dark blocks along the diagonal of the image.

Figure 2, from the left, shows the images of the raw toy
dataset from subject 1, subject 2, and their combination, re-
spectively. The first two images show three dark blocks indi-
cating three activities of each subject. When combining the
two datasets, it is expected that similar activities of the two
subjects should overlap, however, the image shows six distinct
blocks due to bias in the domains’ distribution.

Figure 3 compares the impact of ESRand with i� iv pro-
jection baselines on the toy dataset. Among all, only the
autoencoder based approaches (AE and CAE) and ESRand
manage to reduce the six clusters, in the combined dataset,
to the three main clusters. It is noteworthy that unlike all the
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Table 1: Comparison of the leave-one-domain-out classification accuracies and standard deviations. Bold-face values indicate
the two best performance for each dataset.

k � NN l-SVM

Dataset KPCA DICA AE CAE ESRand KPCA DICA AE CAE ESRand k�NN SVM UDB LRE

DSA 87 ± 6 88 ± 5 90 ± 3 95 ± 3 95 ± 1 85 ± 9 87 ± 4 92 ± 2 94 ± 1 96 ± 0 88 ± 6 86 ± 6 89±3 92 ± 4
HAR 61 ± 10 68 ± 9 76 ± 6 84 ± 2 87 ± 2 60 ± 8 63 ± 6 77 ± 3 83 ± 1 86 ± 1 65 ± 8 74 ± 11 76 ± 4 80 ± 3
OAR 72 ± 5 73 ± 3 79 ± 5 85 ± 2 89 ± 1 73 ± 8 74 ± 5 76 ± 4 86 ± 2 88 ± 1 72 ± 4 71 ± 7 77 ± 5 79 ± 6
PAMAP2 81 ± 4 81 ± 3 91 ± 2 95 ± 2 97 ± 0 79 ± 3 82 ± 5 91 ± 1 97 ± 2 97 ± 1 79 ± 4 83 ± 3 85 ± 3 89 ± 2

Avg. 75 ± 7 78 ± 5 84 ± 4 90 ± 2 92 ± 1 74 ± 7 77 ± 5 84 ± 2 90 ± 2 92 ± 2 76 ± 6 79 ± 7 82 ± 4 85 ± 4

other feature extraction methods, algorithms i� iv, ESRand
summarises the dataset, reducing the total number of sam-
ple points from M = 2250, i.e., M = mqc the number of
samples⇥subjects⇥activities, in this example to 6 (qc). This
major reduction in data size is expected to alleviate classifica-
tion time significantly. In the following, we explore whether
these feature extraction yields better classification accuracy,
and how data summarisation accelerates classification time.

5.2 Accuracy Evaluation

Table 1 compares the accuracy values of the baselines against
ESRand. The reported values are the percentage of accuracy ±
the standard deviation. Since the accuracy results of UDICA
and DICA are comparable on these dataset, only the results of
DICA have been included in the table. On average, the algo-
rithm with the best performance on these datasets is ESRand
with an average accuracy of 92%. The closest results are from
CAE, with 90% accuracy. To statistically assess the signif-
icance of the performance between the two algorithms, we
use the Wilcoxon signed-rank test. The test returns a p�value
0.0312 rejecting the null hypothesis for the accuracy with a
level of significance of ↵ = 0.05. This result implies a signif-
icant improvement of ESRand over the CAE. Although the
added penalty term to CAE enhances the feature learning of
the basic autoenoder AE, it does not yield comparable accu-
racy to ESRand. This indicates that enhancing the feature
learning strategy can provide better discriminative features
with respect to unseen samples. Observing the standard divi-
sions from Table 1, ESRand also yields more consistent results
with the lowest standard deviation on average.

A possible explanation for the effectiveness of ESRand can
relate to the dimensionality of the manifold in feature space
where samples concentrate. We hypothesise that if features
concentrate near a low dimensional sub-manifold, then the
algorithm has found invariant features and will generalise well.
Moreover, the data summarisation eliminates noisy records
and outliers, which can give a boost to the generalisation.

5.3 Efficiency Evaluation

A desirable property of ESRand is that it summarises datasets,
substantially reducing the number of samples as well as the
number of features. To study this impact we compare the
training time of ESRand with CAE, which has the second
best accuracy and linear time complexity of O(Mn). In this
experiment we used DSA and PAMPA2, the datasets with a
large number of activities. The first comparison is between
ESRand and CAE, which shows the training time of these two
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Figure 4: Comparing the training time of ESRand and CAE.

algorithms without including the classification time. As can be
seen in Figure 4, the training time of ESRand grows linearly
with a much more gentle slope than CAE.

Comparing the training time of l-SVM on the output of
these two algorithms (i.e., l-SVM(ESRand) and l-SVM(CAE))
reveals the advantage of ESRand’s data summarisation. The
training time of l-SVM on the summarised output of ESRand
remains fairly low, while on CAE it soars. The total training
time of ESRand+l�SVM remains significantly lower than
CAE+l�SVM. With large datasets, searching for the pair of
variables that maximise class separation is a computationally
expensive procedure. The computational complexity of most
common algorithms such as k�NN and SVM is quadratic in
the total number of records M . As discussed earlier, ESRand
reduces the size of training data to q ⇥ c. More specifically,
the time complexity of ESRand is computed as O(Mn) +
O(Mh2

), and when h ⌧ n then the complexity reduces to
O(Mn), and the size of ESRand’s output reduces from RM⇥n

to Rqc⇥h.

6 Conclusion

We have presented ESRand, an efficient domain generalisation
method that aims to reduce distribution bias in multi-domain
learning. ESRand incorporates a simple but effective random
projection with an elliptical data summarisation to overcome
distribution variance across domains. Our analysis on several
benchmark activity recognition datasets reveals that ESRand
successfully learns domain-invariant features, yielding state-
of-the-art performance from unseen target domains. Moreover,
ESRand enables large-scale data processing by significantly
reducing the size of data, in both the dimensionality and the
number of samples.
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