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Abstract

The performance of deep neural networks is well-
known to be sensitive to the setting of their hy-
perparameters. Recent advances in reverse-mode
automatic differentiation allow for optimizing hy-
perparameters with gradients. The standard way
of computing these gradients involves a forward
and backward pass of computations. However, the
backward pass usually needs to consume unafford-
able memory to store all the intermediate variables
to exactly reverse the forward training procedure.
In this work we propose a simple but effective
method, DrMAD, to distill the knowledge of the
forward pass into a shortcut path, through which we
approximately reverse the training trajectory. Ex-
periments on two image benchmark datasets show
that DrMAD is at least 45 times faster and con-
sumes 100 times less memory compared to state-
of-the-art methods for optimizing hyperparameters
with minimal compromise to its effectiveness. To
the best of our knowledge, DrMAD is the first re-
search attempt to make it practical to automatically
tunethousands of hyperparameters of deep neu-
ral networks. The code can be downloaded from
https://github.com/bigaidream-projects/drmad/

1 Introduction
Modern machine learning algorithms are rarely
hyperparameter-free. =~ Hyperparameters, such as learn-

ing rate or L2-norm penalties are important for training deep
models. Many works [Bergstra et al., 2011; Shahriari et al.,
2016; Snoek et al., 2012] have shown that the performance
of large-sized deep models is sensitive to the setting of
their hyperparameters. So, tuning hyperparameters is now
recognized as a crucial step in the process of applying
machine learning algorithms to achieve best performance
and drive industrial applications [Shahriari ef al., 2016]. For
decades, the de-facto standard for hyperparameter tuning in
machine learning has been a simple grid search [Shahriari
et al., 2016]. Recently, it has been shown that optimizing
hyperparameter in a principled and automatic way can reach
or surpass human expert-level hyperparameter settings for
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deep neural networks in a variety of benchmark datasets
[Shahriari et al., 2016; Snoek et al., 2012].

A common choice for hyperparameter optimization is
gradient-free Bayesian optimization [Wang et al, 2013].
Bayesian optimization builds a probability model to describe
the distribution of validation loss conditioned on specific hy-
perparameters, which is obtained by multiple observations
over the pairs of hyperparameter and validation loss. This
probability model is then used to optimize the validation loss
after complete training of the model’s elementary! parame-
ters. Although those techniques have been shown to achieve
good performance with a variety of models on benchmark
datasets [Shahriari et al., 2016], they can hardly scale up
to handle more than 20 hyperparameters [Maclaurin et al.,
2015; Shahriari ef al., 2016]. Here we mean effective hyper-
parameters. It has been shown in [Wang er al., 2013] that
Bayesian optimization can handle high-dimensional inputs
only if the number of effective hyperparameters is small. Due
to this inability, hyperparameters are often considered nui-
sances, encouraging researchers to develop machine learning
algorithms with fewer of them. We argue that being able to
richly hyperparameterize our models is more than a pedantic
trick. For example we can set a separate L2-norm penalty for
each layer,which has been shown to improve the performance
of deep models on several benchmark datasets [Snoek et al.,
2012].

On the other hand, automatic differentiation (AD), as a me-
chanical transformation of an objective function, can calcu-
late gradients with respect to hyperparameters (thus called
hypergradients) accurately [Baydin et al., 2015; Maclaurin
et al., 2015]. Although hypergradients enable us to optimize
thousands of hyperparameters, all the prior attempts [Ben-
gio, 2000; Baydin et al., 2015; Maclaurin et al., 2015] insist
on exactly tracing the training trajectory backwards, which is
impossible for real-world data and deep models from a mem-
ory perspective. Suppose we are to train a neural network on
MNIST dataset, the iteration number is 200,000, and every el-
ementary parameter vector takes up 0.1 GB. In order to trace
the training trajectory backwards, a naive solution has to store
all the intermediate variables (e.g. weights) at every iteration,

"Following the convention in [Maclaurin ef al., 20151, we use
elementary to unambiguously denote the traditional parameters up-
dated by back-propagation, e.g. weights and biases in a neural net-
work.



thus costing memory up to 200,000 x 0.1 GB = 20 TB. The
improved method proposed in [Maclaurin et al., 2015] needs
at least 100 GB memory even for this small-scale dataset.
The high memory cost stems from pursuing the exact re-
verse of the training procedure. In this work, we propose Dis-
tilling Reverse-Mode Automatic Differentiation (DrMAD),
to reduce the memory cost and make the hyperparameter op-
timization feasible in practice. Compared with exact reverse
methods, DrMAD chooses to reverse training dynamics in
an approximate manner. Doing so allows us to reduce the
memory consumption of tuning hyperparameters by a fac-
tor of 100,000 at least. On the MNIST dataset, our method
only needs 0.2 GB memory, thus enabling the use of modern
GPUs. More importantly, the memory consumption is inde-
pendent of the problem size as long as the deep model has
converged. Our convergence requirement is reasonable, as it
has been demonstrated that modern deep neural networks are
relatively easy to converge in practice [Choromanska et al.,
2014; Goodfellow and Vinyals, 2014]. In addition, DIMAD
only incurs negligible performance drop. Section 2 and Sec-
tion 3 describe this problem and our solution in detail respec-
tively, which is the main technical contribution of this paper.
In short, we make the following contributions in this work:

e We propose an algorithm that approximately reverses
stochastic gradient descent to compute gradients w.r.t.
hyperparameters. Our method can reduce memory con-
sumption significantly without sacrificing its effective-
ness, compared with state-of-the-art methods based on
automatic differentiation.

e We propose a hyperparameter server framework to solve
distributed hyperparameter optimization problems.

2 Background and Related Work

We review the general framework of automatic hyperparame-
ter tuning and previous work on automatic differentiation for
hyperparameters of machine learning models.

A learning algorithm A, » is described by a vector of
m elementary parameters w = (wi, ..., w,,) € W, where
W = W; x ... x W, define the parameter space, and a
vector of n hyperparameters A = (Aq, ..., A,) € A, where
A = Ay x ... x A, define the hyperparameter space. We fur-
ther use l;rqin, = L(Aw x, Xirain) to denote the training loss,
and lyqria = L(Aw x, Xoatid; Xirain) to denote the valida-
tion loss that A, 5 achieves on validation data X,4;;¢ When
trained on training data Xy,.4;,,. An automatic hyperparame-
ter tuning algorithm then tries to find A € A that minimizes
lyatiq in an efficient and principled way.

To make the definitions more concrete and concise, we
further denote the training objective function as: lyrqin =
‘C(w|Aa Xtrain) = C(w|>‘7xtrm’n) + P(w, A) = Ctrain +
P(w, ), where C(-) is the cost function on either training
(denoted by CYqin) or validation (denoted by Clq:q) data,
and P(-) is the penalty term.

2.1 Automatic differentiation (AD)

Most training of machine learning models is driven by the
evaluation of derivatives, which can be handled by automatic
differentiation (AD). AD systematically applies the chain rule
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Forward Pass

v_1 =T =3
Vo = X9 =6
V1 = In(vg) = In(6)
Vg =%, =32
I w3 =cos(v_q) cos(3)
V4 = V1 + Vg =1.794+9
Vs = V4 + U3 =10.79 — 0.98
Y = U5 =9.80
Backward Pass
Lfl = '17),1 = 586
T9 =1 =0.16
U1 =01 +0ap: =586
o 0o =0y 5u =0.16
vy = Dy =-0.14
U1 = 174275‘11 =1
Ty = 0458 =1
U3 = Vs gz: =1
Uy = @527:2 =1
s =y =1

Table 1: Reverse-mode automatic differentiation example,
with y = f(x1,72) = In(z2) + 2% + cos(z1) at (z1,22) =
(3,6). Setting § = 1, dy/0x1 and Qy/dxo are computed in
one backward pass.

of calculus at the elementary operator level [Griewank and
Walther, 2008]. Tt also guarantees the accuracy of evalua-
tion of derivatives with a small constant factor of computa-
tional overhead and ideal asymptotic efficiency [Baydin et al.,
2015].

AD has two modes: forward and reverse [Griewank and
Walther, 2008]. Here we only consider the reverse-mode
automatic differentiation (RMAD) [Baydin et al., 2015].
RMAD is a generalization of the back-propagation [Good-
fellow et al., 2015] used in the deep learning community. In
fact, one of the most popular deep learning libraries, Theano
[Bastien et al., 2012], can be described as a limited version
of RMAD and a heavily optimized version of symbolic dif-
ferentiation [Baydin et al., 2015]. RMAD allows the gradi-
ent of a scalar loss with respect to its parameters to be com-
puted in a single backward pass after a forward pass [Bay-
din et al., 2015]. Table 1 shows an example of RMAD for
y = f(x1,72) = In(z2) + 2% + cos(z1), using the “three-
part” notation in [Griewank and Walther, 2008], a trace of
f: RV — RM is constructed from (a) v;_ny = x;, i=1,...,.N
input variables, (b) v;,i = 1, ...,] working variables, and (c)
YM—i = Vi—i, ¢ = M — 1, ..., 0 output variables.

2.2 Gradient-based methods for hyperparameters

In this paper we focus on studying the tuning of continu-
ous hyperparameters. However, we can still hyperparame-
terize certain discrete designs using our proposed method,
which will be shown in Section 4.3. We consider stochas-
tic gradient descent (SGD), as it is widely used to opti-



mize large-sized neural networks [Goodfellow et al., 2015].
The elementary parameters updating formula is: w;4; =
Wi + NV L(wi |\, X¢rain ), where the subscript ¢ denotes
the count of iteration (i.e. one forward and backward pass
over one mini-batch), and 7, is the learning rate for elemen-
tary parameters.

The gradients of hyperparameters (hypergradients) are
computed on the validation data X,,;;4 without consider-
ing the penalty term [Foo et al., 2008; Maclaurin et al.,
2015; Luketina et al., 2015]:

8wt aQZtrain

VACvalid = vwcvalidaT = vwcvvalid

where Cyariq = C(w|Xyariq) is the validation cost.

The hyperparameters are updated at every iteration in
[Luketina et al., 2015; Foo et al., 2008]. In [Foo et al., 2008],
given the elementary optimization has converged, the hyper-
parameters are updated as:
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where 7 is the learning rate for hyperparameters. The au-
thors in [Luketina et al., 2015] propose to update hyperpa-
rameters by simply approximating the Hessian in Eq. 2 as
vi}ltrain =1

)\t+1 — A75 + nAv’vaalid(Vi;ltrain) (2)

(©))

However, updating hyperparameters at every iteration
would result in unstable hypergradients. Because this ap-
proach only considers the influence of the regularization hy-
perparameters on the current elementary parameter update, it
can hardly scale up to handle more than 20 hyperparameters
as shown in [Luketina et al., 2015].

In this paper, we adopt RMAD for computing hyper-
gradients, like [Maclaurin er al., 2015; Bengio, 2000;
Domke, 2012] by taking into account the effects of the
hyperparameters on the entire learning trajectory. Specif-
ically, different from Eq. 1 that only considers 2%t

X’
DrMAD considers the term 2%Z (here T represents

the final iteration number till a(?\onvergence): wr
Y octer Dwe g p1(we(Ar), Ak, Xy, ma)+wo, where the sub-
script k in Ay stands for the counter of meta-iterations used
for hyperparameter optimization (i.e. the number of entire
training of elementary parameters), X; is the mini-batch of
training data used in iteration ¢, and wy is the initial parame-
ter vector. Update of hyperparameters in this paper and also
[Maclaurin e al., 2015; Bengio, 2000; Domke, 2012] is:

App1 =

8wT
N “
Unfortunately, RMAD requires all the intermediate vari-
ables obtained in the forward pass should be maintained
in memory for the backward pass [Griewank and Walther,
2008]. Conventional RMAD with exact arithmetic stores the
entire training trajectory {wy, ..., wr} in memory, which is
totally impractical for even small-sized tasks.

Ak+1 = A + MV Coatia
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An “information buffer” method is proposed in [Maclau-
rin et al., 2015] to recompute the learning trajectory on the
fly during the backward pass of RMAD rather than storing
it in memory by making use of the SGD momentum mecha-
nism. Certain amount of auxiliary bits as information buffer,
which depend on the specific learning dynamics, to handle
finite precision arithmetic is needed in this case. Although
the proposed method in [Maclaurin ez al., 2015] is shown to
be able to tune thousands of hyperparameters and reduce the
memory consumption by a factor of 200 in the most ideal set-
ting, it needs 8 hours to run 10 epochs on a subset (10,000
training samples) of MNIST dataset. Furthermore, its mem-
ory and computational requirements grow without bound as
the problem size increases, which makes it impossible to run
on modern GPUs. In contrast, we will present in the next sec-
tion how to approxiate RMAD to reduce memory consump-
tion dramatically, thus enabling it to leverage the power of
GPUs in principle.

3 Approximating RMAD with a Shortcut

In this paper, we raise a crucial yet rarely investigated ques-
tion: do we really need to exactly trace the whole training
procedure backwards, starting from the trained parameter val-
ues and working back to the initial random parameters? If all
that we care about are good enough hyperparameters given
limited resources and time budget, the answer might be no.
Driven by this question, we demonstrate that a shortcut can
be established by distilling the knowledge from the forward
pass of RMAD with minimal compromise to its solution qual-

ity.
3.1 Distilling knowledge from the forward pass

Trying to trace backwards exactly can be wasteful as this ap-
proach does not take into account the highly structured nature
of training dynamics of deep models. One intuition motivat-
ing the investigation of this paper is the observation [Goodfel-
low and Vinyals, 2014] that if we knew the direction defined
by the final learned weights after convergence, a single coarse
line search is sufficient to visualize the training dynamics of
a neural network. In other words, there exists a linear sub-
space in which the training of a neural network rarely encoun-
ters any significant difficulties. This observation is consistent
with other recent empirical and theoretical work demonstrat-
ing that modern deep neural networks are relatively easy to
optimize [Choromanska et al., 2014; Montufar ef al., 2014].
It is also well-known that when doing elementary param-
eter optimization, second-order methods are more efficient
with fewer iterations compared to the naive gradient descent,
but they cannot be easily applied to high-dimensional models
due to heavy computations [Raiko er al., 2012]. In practice, it
is usually approximated by a diagonal or block-diagonal ap-
proximation [Schaul and LeCun, 2013]. Inspired by these ap-
proximation techniques, we make an aggressive approxima-
tion for RMAD here — discard all the intermediate variables
altogether. In other words, we choose a shortcut, which sim-
ply approximates the forward pass learning history used in
Eq. 4 as a series of parameter vectors w = (1— )wo+ Swr
for varying values of 0 < 8 < 1, which can be generated on
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Figure 1: Comparisons on the paths of hyperparameter opti-
mization by DIMAD and RMAD. RMAD uses the same path
for its forward and backward passes. While the backward
pass of DrMAD follws a shortcut, which is established by
distilling the knowledge from its forward pass.

the fly almost without storing anything. Figure 1 shows the
contour for the backward passes used by DrMAD and RMAD
respectively.

More concretely, DrMAD works by first obtaining the final
trained elementary parameter values using SGD algorithms.
Algorithm 1 demonstrates the procedure formally. Here we
could use any SGD variant and do not put constraints on the
momentum term. In contrast, the previous most similar work
[Maclaurin et al., 2015] is highly dependent on the momen-
tum setting in order to save memory during the backward pass
of RMAD.

Algorithm 2 shows how to compute the gradients of hy-
perparameters by DrMAD, where in step 4 we approximate
the learning dynamics. These hypergradients are used to up-
date hyperparameters using Eq. 4. In DrMAD, the approxi-
mated intermediate elementary parameters are independent of
each other. Whereas in RMAD proposed in [Maclaurin e al.,
2015] each elementary parameter relies on the previous one
implicitly, and thus a “information buffer” is needed. Since
that extra buffer is dataset and model dependent, RMAD’s
memory consumption is growing without bound.

In addition to reduction in memory, compared to [Maclau-
rin et al., 2015], Algorithm 2 also reduces the computational
operations as a byproduct, because it does not need to recom-
pute the elementary parameters exactly.

Algorithm 1 Stochastic gradient descent (SGD).

1: inputs: initial parameters wy, learning rate o, weight de-
cay =, hyperparameters A, loss function l4;.4y,, iteration
number 7.
initialize v < 0
fort =1toT — 1do
g; < Vawlirain //evaluate gradient
Vi1 < v — (1= 7)g,
Wit < Wi + 0y
end for
output: trained parameters wr

//update position

A A

3.2 Discussions on DrMAD

In fact, DrMAD can be seen as an operation of knowledge
distillation. As explained in [Hinton et al., 2014], the knowl-
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Algorithm 2 Distilling reverse-mode automatic differentia-
tion (DrMAD) of SGD.

1: inputs: initial parameter wy, learned parameter wr,
training 10ss lyqn, validation loss l,47;4, Weight decay
v, learning rate «
initialize dA < 0, dw < Vlyaiid, B7—1 < 1 — %
fort=T —1to1ldo

w1 < (1 — B)wo + Brwr

Bio1 < B — 7

dv + dv + adw

dX  dX — (1 — v)dvVAValirain
end for
output: gradient of [,,4;;¢ W.r.t. A

R ol

edge acquired by an ensemble of large-sized models as a
“teacher” can be distilled into a single small model, which is
called the “student”. For example, one can construct a teacher
model by training an ensemble of 5 deep neural networks with
10 layers. Then, a student model with 5-layer can be con-
structed to achieve similar performance as the teacher. How-
ever, it requires much less parameters as it only approximates
the teacher’s behavior rather than learning from scratch.

Considering our situation, the most valuable knowledge is
the initial random and final trained weight vectors once the
training process of a deep model has converged. Therefore,
the forward pass of SGD training provides the final weight
vector after convergence, which is defined as a teacher; the
reverse pass given by shortcut is a student here.

Obviously, obtaining derivatives from the shortcut may
never reveal more information about hyperparameters than
calculating derivatives from the exact trajectories. However,
when memory and computational costs are taken into ac-
count, the shortcut may convey more information per unit
cost. In fact, our approach explicitly separates the opti-
mization of the elementary parameters and hyperparameters,
which serves as a trade-off between accuracy and computa-
tional expense. In the experimental part, we will show that the
accuracy performance of DrMAD is slightly worse than the
RMAD with exact arithmetic. Nonetheless, this separation
gives rise to several positive implications. For example, we
can use distributed deep learning libraries, such as CNTK?, to
speed up the forward pass, because currently none of the au-
tomatic differentiation libraries, such as Autograd?, support
multiple GPUs. DrMAD is also orthogonal to the choices as-
sociated with the internal elementary parameter optimization;
it can work alongside other recent advances in neural network
training without modification.

3.3 Hyperparameter server

With current generation hardware such as large computer
clusters with GPUs, the optimal allocation of computing cy-
cles should include more hyperparameter exploration than
has been typical in the past [Bergstra et al., 2011]. Tt is
thus desirable to parallelize hyperparameter optimization pro-
cesses. Motivated by the parameter server approach to dis-

Zhttps://github.com/Microsoft/CNTK
*https://github.com/HIPS/autograd
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Figure 2: Hyperparameter server architecture.

tributed elementary parameter optimization [Li et al., 2013],
we propose a hyperparameter server framework for dis-
tributed hyperparameter optimization using hypergradients.
In parameter server [Li et al., 2013], computational nodes are
partitioned into clients and servers, and communication be-
tween nodes is asynchronous. In our hyperparameter server
framework, there is only one server and several clients, and
the communication between them is synchronous. Each
client is in charge of training a model replica with the same
hyperparameters on a subset of data, and the server maintain
the globally shared hyperparameters. At every meta-iteration,
we accumulate the hypergradients from the clients and av-
erage them. The averaged hypergradients then are used to
update the global hyperparameters maintained by the server.
The overall architecture is shown in Figure 2.

4 Experiments

In this section, we empirically demonstrate how DrMAD of-
fers high memory and computational efficiency yet achiev-
ing comparable predictive performance as computationally
expensive RMAD. Note that here we do not strive for state-
of-the-art performance on benchmark datasets, but focus on
showcasing the merits of DrMAD by comparing it with
RMAD. Therefore, even though we use image data in the ex-
periments, we do not use or compare to any image-specific
processing such as convolutional networks. Note that even
the best results achieved by RMAD [Maclaurin et al., 2015]
are not comparable with those obtained with for instance con-
volutional networks. All the experiments are done on a Mi-
crosoft Azure G5 server with 32 CPU cores and 448 GB
memory.

4.1 Optimizing continuous regularization
hyperparameters

Although DrMAD could work in principle for many different
types of continuous hyperparameters, we focus on tuning hy-
perparameters for regularization here. Following the settings
in [Maclaurin et al., 2015], we evaluate DrMAD for optimiz-
ing continuous regularization hyperparameters on a subset of
MNIST dataset (10,000 for training, 3,000 for validation, and
3,000 for testing) using a multilayer perceptron (MLP) with
tanh activation function. We do not include data shuffling and
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Figure 3: Left: The average values of hyperparameters with
variances obtained by DrMAD (2,000 iterations), DrMAD
(20,000 iterations) and RMAD (2,000 iterations), respec-
tively. Right: The test error rates obtained by DrMAD (2,000
iterations), DrMAD (20,000 iterations) and RMAD (2,000 it-
erations), respectively.

use a fixed set of random initial parameters for every meta-
iteration. The MLP has 4 layer, containing 784, 50, 50, and
50 neurons respectively. Each neuron has its own L2-norm
penalty on its parameter and thus we are going to optimize
934 hyperparameters in total. The learning rate for optimiz-
ing elementary parameters is fixed as 0.05, the number of el-
ementary iterations is set as 2000, the learning rate for hyper-
parameters is 0.07, the mini-batch size is 50, and the number
of meta-iterations is 30. The adopted data pre-processing op-
erations only includes centering each feature. The code of
DrMAD is modified from a public toolbox for hypergradient
calculation*. We use the original code from [Maclaurin et al.,
2015] for experiments on RMAD.

Figure 3 shows the curve of averaged hyperparameter val-
ues w.r.t. optimization iterations and the corresponding test
error from DrMAD and RMAD. The running time of Dr-
MAD and RMAD are 16 minutes and 717 minutes, respec-
tively. One can observe that the average hyperparameter val-
ues and test error rate curves of DrMAD are close to RMAD
on MNIST dataset while Dr-MAD only costs 2% computation
time of RMAD.

In contrast to [Maclaurin et al., 20151, we set the mini-
batch size to a small number (v.s. 300 in [Maclaurin et al.,
2015]) and the number of elementary iterations to a large one
(v.s. 200 elementary iterations in [Maclaurin et al., 2015]) on
purpose, because these settings result in highly zigzag and
long learning trajectories. The shaded areas in Figure 3 (left)
represent the variances of individual hyperparameters. We
can see that the variances are quite high, which implies that
diverse hyperparameter values might be beneficial to the pre-
dictive performance. Another observation is that the tuned
hyperparameters seem to prefer positive values. Figure 3
(right) shows that DrMAD can provide similar performance
of RMAD. Also note that DrMAD consumes 100 times less
memory than RMAD does.

To demonstrate that DIMAD can handle even longer learn-
ing trajectories, we increase the number of elementary itera-
tions to 20,000. But due to the time budget, we do not com-
pare it with RMAD, which is at least 45 times slower. Fig-
ure 3 (left) shows that for DrMAD with 20,000 iterations, the

*https://github.com/HIPS/hypergrad
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Figure 4: Left: The average values of hyperparameters with
variances obtained by the hyperparameter server version of
DrMAD and the original DrMAD, respectively. Right: Test
error rates obtained by the hyperparameter server version of
DrMAD and the original DrMAD, respectively.

mean of hyperparameters tends to be larger compared to the
ones obtained using 2,000 iterations. Also, the variances of
the hyperparameters obtained by DrMAD with 20,000 itera-
tions are towards larger positive values. One possible expla-
nation could be that taking more iterations increases the risk
of overfitting, and thus heavier penalties are needed. We can
observe in Figure 3 (right) that D-MAD with 20,000 itera-
tions achieves better performance compared to DrMAD and
RMAD with only 2,000 iterations.

4.2 Hyperparameter server

We apply the hyperparameter server framework to a subset
of MNIST dataset. Specifically, the number of total train-
ing datapoints is 30,000, and the numbers of both validation
and test data are 5,000. For the hyperparameter server based
DrMAD, we have 5 clients, each being trained with 12,000
training samples. The number of meta-iterations is 20. All
the other settings are the same as our previous experiments.

Figure 4 (right) shows the effectiveness of our proposed
hyperparameter server framework on MNIST dataset. For
the hyperparameter server, the test errors are estimated by
a model trained with 30,000 datapoints and the average hy-
perparameters from clients. We can observe that in Figure 4
(left), the evolution of the average values and the variances
of L2 penalties obtained by the hyperparameter server looks
similar to that of the original DrMAD. Figure 4 (right) shows
that DrMAD with the hyperparameter server framework can
approach the performance of the original DrMAD. Overall,
it seems that diversity of hyperparameters is beneficial to the
predictive performance of deep neural networks on MNIST
dataset.

We can see from Figure 4 (left) that the variance of hyper-
parameters seems unbounded. One might be tempted to fur-
ther increase the number of meta-iterations to make the vari-
ance even larger. But Figure 4 (right) indicates that with the
increase in variance, the predictive performance increases ini-
tially and then stops changing dramatically. Furthermore, ac-
cording to our experiments and the observations in [Maclau-
rin et al., 2015], hypergradients become unstable after certain
number of meta-iterations.

The computations of hypergradients are dependent on
their hyperparameters through thousands of iterations of
SGD. Furthermore, within each iteration of SGD, it involves
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forward- and then back-propagations through a deep neural
network. Overall, the stacking of all the above operations
would result in vanishing gradient problems [Glorot and Ben-
gio, 2010]. It should be noted that both DrMAD and RMAD
have this problem.

We would argue that this instability may not be a serious
problem in practice, because due to the limited computing
and time budget, running too many meta-iterations (e.g. 50)
is not reasonable anyway.

4.3 Learning continuously hyperparameterized
architectures

Popular deep learning architectures, such as convolutional
neural networks, can be obtained by forcing particular
weights to be zero and tying particular pairs of weights to-
gether with hard constraints. It has been shown in [Maclaurin
et al., 2015] that the learning of softened architectural con-
straints can be seen as a multitask learning problem using a
MLP with 2 hidden layers. They learn a penalty for each
alphabet pair, separately for each layer in neural networks.
Specifically, the hypergradients are computed by a pairwise
quadratic penalty on the hyperparameters, AT AN, where A
is described by three 10 x 10 matrices, each matrix for a par-
ticular layer, and A is the hyperparameter vector. They also
use the Omniglot dataset [Lake et al., 2015]. The dataset con-
sists of 10 alphabets with up to 55 characters in each alphabet
but only 15 examples of each character. Each character is
represented by a 28 x 28 pixel greyscale image. More details
about the dataset are presented in [Lake et al., 2015].

Here, we reproduce the above experiment with the same
settings in [Maclaurin er al., 2015], but use DrMAD instead.
Our experiments show that the training and test error obtained
by DrMAD are 0.42 and 1.13 respectively, whereas RMAD’s
training and test error are 0.60 and 1.13 respectively. If we in-
crease the number of elementary iterations from 50 to 2,000,
the training and test error of DrMAD are 0.52 and 1.10 re-
spectively.

5 Conclusion and Future Work

In this paper, we proposed a highly memory efficient hyper-
parameter optimization method — distilling reverse-mode au-
tomatic differentiation (DrMAD) to optimize continuous hy-
perparameters in deep neural networks. We demonstrated
how DrMAD is able to optimize validation loss w.r.t. thou-
sands of hyperparameters in practice, which was previously
impossible due to its unreasonably large memory consump-
tion. We demonstrated its effectiveness and efficiency on two
benchmark datasets.

While DrMAD gives comparable results on small image
datasets, it is not clear if this approach will work for larger
datasets. Since DIMAD makes it possible for the first time
to run on GPUs, rewriting DrMAD to train models on larger
datasets with GPUs would be our future work.
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