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Abstract
Network coarsening refers to a new class of graph
‘zoom-out’ operations by grouping similar nodes
and edges together so that a smaller equivalent rep-
resentation of the graph can be obtained for big net-
work analysis. Existing network coarsening meth-
ods consider that network structures are static and
thus cannot handle dynamic networks. On the other
hand, data-driven approaches can infer dynamic
network structures by using network information
spreading data. However, existing data-driven ap-
proaches neglect static network structures that are
potentially useful for inferring big networks. In this
paper, we present a new semi-data-driven network
coarsening model to learn coarsened networks by
embedding both static network structure data and
dynamic network information spreading data. We
prove that the learning model is convex and the Ac-
celerated Proximal Gradient algorithm is adapted
to achieve the global optima. Experiments on both
synthetic and real-world data sets demonstrate the
quality and effectiveness of the proposed method.

1 Introduction
Network coarsening refers to collapsing similar nodes and
edges in a network so that the size of the network can be sig-
nificantly reduced [Karypis and Kumar, 1998]. With massive
data generated from online social networks, it is challenging
to perform complicated network analysis on social networks.
Network coarsening provides a new tool for big social net-
work analysis by condensing a big network into a smaller ap-
proximating one without much loss of information.

Existing studies on network coarsening assume that net-
work structures are known in advance and they merely fo-
cus on using popular network metrics, such as edge-cut
based [Dhillon et al., 2007], link based [Mathioudakis et al.,
2011], and heavy-edge-matching based [Karypis and Kumar,
1998]. In particular, a recent work [Purohit et al., 2014] stud-
ies graph coarsening by grouping similar nodes together to
find a succinct representation of subgraphs. However, all
these models are based on static network structures.

⇤C. Zhou is the corresponding author, zhouchuan@iie.ac.cn.

On the other hand, dynamic network structure analysis has
been widely studied in recent years, which refers to networks
that either evolve by time (i.e., new links are continuously
formed and existing links get obsolete) [Sun et al., 2014; Bhat
and Abulaish, 2015] or different subsets of links are activated
at different time windows [Rodriguez et al., 2011]. Many
data-driven models [Rodriguez et al., 2011; Cui et al., 2013;
Du et al., 2014] have been proposed to enable dynamic net-
work analysis by building maximum likelihood estimation
models on information spreading data. However, existing
data-driven approaches neglect the fact that static network
structure data can be also beneficial for learning when the
network is large and the training data set is relatively sparse.

Motivated by the above observations, we study in this pa-
per a new problem of network coarsening which embeds both
static network structures and dynamic network information
spreading data. The basic idea is that if two nodes tightly
connect with each other and co-occur frequently in the same
information cascade, they are likely to be combined together.
Because of the heavily skewed degree distribution in net-
works and a large portion of edges and nodes are relatively
unimportant for network analysis [Purohit et al., 2014], we
aim to find a smaller equivalent network to describe the origi-
nal large yet sparse network. Based on the smaller representa-
tion, sophisticated network analysis can be solved efficiently.

In deed, learning from both static network structures and
dynamic information spreading data is a very challenging
problem, including 1) Network structure data and network
information spreading data are heterogeneous data that need
to be modeled jointly; and 2) Combining two different data
sources for network coarsening leads to a complicated opti-
mization problem which requires efficient algorithm.

To address the challenges, we propose a semi-data-driven
network coarsening approach (Semi-NetCoarsen for short) to
condense the networks. The corresponding learning function
is constructed by simultaneously minimizing the graph regu-
larization on the static network structures and maximizing the
network coarsening likelihood on information spreading data
(Challenge #1). We prove that the learning function is convex
and the Accelerated Proximal Gradient algorithm is adapted
to obtain the global optima (Challenge #2). Moreover, as a
case study, we conduct the influence maximization analysis
on the coarsened network. Experiments on both synthetic and
real-world data sets demonstrate the algorithm performance.
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2 Preliminaries
Information Spreading data: In a network G := (V,E,W ),
where V denotes the nodes set, E the edges set and W the
weighted adjacency matrix, assume that a message c propa-
gates through the network and leaves a trace of passed nodes
u
i

2 V at time stamp t
i

, denoted by (u
i

, t
i

)
c

. An informa-
tion spreading cascade tc can be denoted by a N -dimensional
vector tc := (tc1, . . . , t

c

N

), where tc
i

2 [0, T c] [ {1}. The
symbol1 labels nodes that the message does not reach dur-
ing the observation window [0, T c], in which T c corresponds
to the underlying temporal dynamics [Rodriguez et al., 2011].
A collection of cascades is denoted as C := {t1, . . . , t|C|}.

Similar Nodes: Given a network G and a collection of cas-
cades C, if nodes i and j tightly connect with each other with
higher W

i,j

and W
j,i

, and also co-occur frequently in the
same cascade tc, we call nodes i and j as similar nodes.

Supernodes and Superedges: Given a coarsened network
G

coarsen

:= (V 0, E0,W 0), m 2 V
0

represents a supernode,
and e 2 E

0
represents a superedge. The node set V

0
is ob-

tained by merging all the similar nodes. The edge set E
0

is
obtained by inferring the weighted adjacency matrix W

0
from

the coarsened network.
In this paper, we merge similar nodes under two assump-

tions: 1) One-time merge. A pair of nodes can be activated
for the network coarsening operation by only one time. If the
merge does not succeed, the nodes will not be merged ever af-
ter; and 2) One-way merge. In a cascade tc, given two nodes
j and i, if tc

j

< tc
i

, we merge node i into node j because node
j is more likely to be the information source of the message
c in terms of i.

3 Problem Formulation
3.1 Problem Statement
Given a network G, a collection of cascade data C, and a
network coarsening rate 0  ↵ < 1, the proposed Net-
work Coarsening aims to infer a smaller coarsened network
G

coarsen

by finding and merging the nodes that both tightly
connect each other in the adjacency matrix W and frequently
appear together in the cascade data C, with |V 0 | = (1�↵)|V |.

3.2 Principle
For a given ↵, we merge similar nodes and edges and remove
redundant ones to obtain the coarsened network that contains
K nodes, where K = (1 � ↵)N . Thus, the node i in G
is eventually merged into a supernode s. The supernode can
be regarded as a cluster with label l

s

. All the nodes in s are
labeled as l

s

. The aim of network coarsening is to predict the
class labels assigned to each node in G.

Given a non-negative vector y
i

= [y
i,1, . . . , yi,K ]T that de-

notes the distribution of class labels of the ith node, where
y
i,m

2 (0, 1) represents the probability of node i being
merged in the supernode m. The edge coarsening is de-
termined accordingly by the merging of nodes. Assume
Y = [y1, y2, . . . , yN ]T 2 RN⇥K , which models the class
label distribution of all nodes of G. The key point is to op-
timize Y to ensure that nodes from the same class label are

grouped together into the same supernode. Thus, if two nodes
i and j are similar, y

i

and y
j

are more likely to be the same.
After defining the label distribution matrix Y , we formu-

late the learning objective function that maximizes the net-
work coarsening likelihood on the network cascade data C
and minimizes the graph regularization on the prior network
structure data W . By solving the learning function, we can
obtain the optimal Y ⇤, based on which we deliver the coars-
ened network G

coarsen

.

3.3 Network Coarsening Model
Modeling Dynamic Information Spreading Cascades
If two nodes i and j co-occur frequently in the same cascade
tc, they are likely to be coarsened together, i.e., they have
close distribution y

i

and y
j

. yT
i

y
j

is adopted to measure their
similarity [Cai et al., 2011].
Definition 1. (Node Merging Status)
For cascade tc, if tc

j

< tc
i

, we call node j as node i’s parent
and node i as node j’s child. For the child node in an obser-
vation window T c, the result of the merging status is binary,
i.e., either merged or unmerged by a parent. For the child
node outside T c, the result of its merging is unmerged.

Let f c

j,i

= f(tc
i

|tc
j

; yT
i

y
j

,�
c

) be the probability density
function that describes the conditional likelihood of merging
node j and node i (tc

j

< tc
i

). The MLE of �
c

is 1/�t, where
�
c

is the diffusion speed and �t is the average information
propagation delay time between two neighboring nodes in tc
[Wang et al., 2014]. Specifically, we use exponential distribu-
tion to model f c

j,i

, where f c

j,i

= (yT
i

y
j

+�
c

) · exp(�(yT
i

y
j

+
�
c

)(tc
i

� tc
j

)). For the given f c

j,i

, the symbol P (tc
j

! tc
i

|f c

j,i

)
denotes the probability that node j merges node i.

From Definition 1, the unmerged status of node i towards
one of its parents j denotes that label l

i

is very different from
l
j

. By contrast, the merged status denotes that l
i

is close to l
j

.
Thus, the label distribution of nodes of G can be determined
by the node merging status.

Given cascades data C, assume the independent cas-
cade with respect to the network coarsening process, letQ

tc2C l(t
c;Y,�

c

) represent the network coarsening likeli-
hood. l(tc;Y,�

c

) denotes the likelihood in terms of cascade
tc, which is calculated by combining the coarsening likeli-
hood of all the nodes, which is divided by T c,

l(tc;Y,�c) = l(tcTc ;Y,�c)⇥ l(tc>Tc ;Y,�c). (1)

where l(tc
>T

c ;Y,�
c

) is the likelihood function shown in Eq.
(3) in terms of the cascade tc

>T

c = (tc1, . . . , t
c

N

|tc
i

> T c),
which denotes that nodes outside T c haven’t been merged by
any parents. l(tcT

c ;Y,�
c

), calculated in Eq. (2), denotes the
network coarsening likelihood in terms of the cascade tcT

c =
(tc1, . . . , t

c

N

|tc
i

 T c) for the given T c.

l(tcTc ;Y,�c) =
Y

tciTc

f(tci |tc1, . . . , tcN\tci ;Y,�c). (2)

l(tc>Tc ;Y,�c) =
Y

tciTc

Y

tcm>Tc

(1� P (tci ! T c|fc
i,m)). (3)

Obviously, l(tcT

c ;Y,�
c

) in Eq. (2) can be decomposed into
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Figure 1: An simple illustration of the network coarsening
process based on a cascade tc. The dashed blue lines in Part
I and Part II represent that node i (in unmerged status when
tc
i

 T c) has not been merged by any node j (tc
j

< tc
i

). The
dashed blue line in Part III represents that any node m (in
unmerged status when tc

m

> T c) has not been merged by the
node i (tc

i

 T c). The solid red line in Part I represents that
node i (in merged status when tc

i

 T c) has been merged by
the node j (tc

j

< tc
i

).

two parts: 1) the first part is the nodes (in unmerged status)
observed in the window T c that have not been merged by any
of its parents; 2) the second part is the nodes (in merged sta-
tus) observed in T c that have been merged by one of its par-
ents, as shown in Fig. 1. Thus, the likelihood of the first part
can be calculated as Eq. (4). Considering that the likelihood
of a node being merged can be calculated by combining the
probability of each its potential parent initializing the merge
operation, thus, the likelihood of the second part is calculated
as Eq. (5). Therefore, l(tcT

c ;Y,�
c

) in Eq. (2) can be com-
puted by multiplying Eq. (4) and Eq. (5).

Y

u:tcu<tci

(1� P (tcu ! tci |fc
u,i)). (4)

X

j:tcj<tci

f(tci |tcj ; yT
i yj ,�c)

Y

j 6=k,tck<tci

(1� P (tck ! tci |fc
k,i)). (5)

Thus, Eq. (1) can be represented as,

l(tc;Y,�c) =
Y

tciTc

Y

u:tcu<tci

(1� P (tcu ! tci |fc
u,i))⇥

Y

k:tck<tci

(1� P (tck ! tci |fc
k,i))

X

j:tcj<tci

f(tci |tcj ; yT
i yj ,�c)

1� P (tcj ! tci |fc
j,i)

⇥

Y

tcm>Tc

(1� P (tci ! T c|fc
i,m)). (6)

Modeling Static Network Structures
If two nodes i and j tightly connect with each other, they
will have high probability to share the same class label (i.e.,
graph regularization [Zhou et al., 2005; Gu and Han, 2011]).
The problem can be formulated as a graph clustering problem
where the graph Laplacian can be taken as an effective tool.

We use ky
i

� y
j

k2 to measure the ”dissimilarity” between
y
i

and y
j

[Cai et al., 2011]. The formulation of graph regular-
ization R(Y,W ) for network coarsening is shown in Eq. (7).
Due to the fact that the closeness of y

i

and y
j

is symmetric,

in this case, if W
i,j

6= W
j,i

, we use the larger one to measure
the connection between node i and j.

R(Y,W ) =
1
2

X

i

X

j

kyi � yjk2Wi,j

=
X

i

yT
i yiDi,i �

X

i

X

j

yT
i yjWi,j

= Tr(Y TDY )� Tr(Y TWY ) = Tr(Y TUY ). (7)

where the matrix D is a diagonal matrix with entries being
the row sums of W , D

i,i

=
P

j

W
i,j

, and U is the graph
Laplacian [Chung, 1997] given by U = D �W .

3.4 Node Label Distribution Learning Function
In this paper, we maximize the network coarsening likeli-
hood

Q
tc2C l(t

c;Y,�
c

) based on the dynamic network cas-
cade data C, together with minimizing the graph regulariza-
tion R(Y,W ) based on the static network structure data W .

The maximum likelihood estimation (MLE) of Y is a solu-
tion to min

Y

�
P

tc2C

logl(tc;Y,�
c

). In addition, as a node
in G is merged into only one supernode, it is expected that
Y·i and Y·j is orthogonal, where i 6= j. We set constraints as
Y TY = I to ensure the above conditions. Meanwhile, the
row vector Y

m· is expected to be sparse. Thus, the network
node label distribution learning function is formulated as

argmin
Y

�
X

tc2C

logl(tc;Y,�c) + �Tr(Y TUY ) + �ykY k1

s.t. Y TY = I. (8)

To solve the above problem efficiently, we relax the equality
constraint as follows,

argmin
Y

�
X

tc2C

logl(tc;Y,�c) + �Tr(Y TUY )

+ �ykY k1 + ⇢kY TY � Ik2F . (9)

where �, �
y

and ⇢ are non-negative parameters. When � = 0,
the model degenerates to data-driven method that only mod-
els the network coarsening process on the cascade data C.
Theorem 1. The problem in Eq. (9) is convex and the global
optima can be obtained by using gradient-based algorithms.

Obviously, the first term of the negative likelihood function
�logl(tc;Y,�

c

) is convex, and the other three regularization
terms Tr(Y TUY ), kY k1 and kY TY � Ik2

F

are also convex,
so the function is jointly convex.

4 The Semi-Data-Driven Framework
We first learn the optimal solution Y ⇤ to the objective in Eq.
(9) in Section 4.1. Then, we use the optimal Y ⇤ to obtain
the coarsened network G

coarsen

by applying the semi-data-
driven network coarsening framework in Section 4.2. As a
case study, in Section 4.3, we solve the influence maximiza-
tion on the coarsened network G

coarsen

.

4.1 Node Label Distribution Learning Algorithm
In this work, we adapt the Accelerated Proximal Gradient
(APG) [Beck and Teboulle, 2009] to learn the optimal node
label distribution Y ⇤. Let ⌘(Y ) = �

P
tc2C logl(tc;Y,�

c

) +
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Algorithm 1: Network Node Label Distribution Learning
Input: � 2 (0, 1), Y 0 2 S+

N

, Z1 = Y 0, Lipschitz
constant L

f

, L = L
f

and t1 = 1, k = 1
Output: The optimal solution of Eq. (9)

1 for j = 0, 1, . . . , do
2 G = Zk � 1

L

r⌘(Zk), compute p
L

(G) (Eq. (12))
3 if F (p

L

(G))  Q
L

(p
L

(G), Zk) then
4 ;
5 set Lk = L, stop
6 else L = ��1L;

7 Set Y k = p
L

(G); tk+1 =
1+
p

1+4(tk)2

2

8 Set Zk+1 = Y k + ( t
k�1
t

k+1 )(Y k � Y k�1); L = �Lk

9 k = k + 1

10 Stop if F (Y k)�F (Y k+1)
F (Y k)  ✏; otherwise, go to 1

11 return The optimal solution Y ⇤

�Tr(Y TUY ) + ⇢kY TY � Ik2
F

, and ⇠(Y ) = �
y

kY k1, then,
Eq.(10) is the summation of ⌘(Y ) and ⇠(Y ).

F (Y ) = ⌘(Y ) + ⇠(Y ). (10)

The derivative of ⌘ is denoted asr⌘ which is Lipschitz con-
tinuous on Y , kr⌘(Y )�r⌘(Z)k  L

f

kY � Zk, Z 2 S+
N

,
where S+

N

is N⇥K non-negative matrix. Given Z, for L > 0,
the quadratic approximation of F (Y ) can be defined as,

QL(Y, Z) = ⌘(Z)+ < Y � Z,r⌘(Z) > +
L
2
kY � Zk2F + ⇠(Y )

=
L
2
kY �Gk2F +⇠(Y )+⌘(Z)� 1

2L
kr⌘(Z)k2F . (11)

where G = Z � 1
L

r⌘(Z). To minimize Q
L

(Y, Z) with
respect to Y , it is reduced to solve the following p

L

(G) by
ignoring the constant terms in Z:

pL(G) = argminY 2S+
N

L
2
kY �Gk2F + ⇠(Y ). (12)

Then, the solution of Eq. (12) is p
L

(G) = UDiag((⌧ �
�
y

/L)+)V T [Toh and Yun, 2010], where G = U⌃V T , ⌃ =
Diag(⌧), ⌧ 2 Rq is the vector of positive singular values
arranged in a descending order and x+ = max{x, 0}. We use
0 to replace the negative entries in Y . The parameter learning
is shown in Algorithm 1.

In experiments, we empirically set � = 0.4, ✏ = 0.001,
and L

f

= 10�6NN
c

, where N
c

is the cardinality of C.

4.2 The Semi-NetCoarsen Algorithm
Algorithm 2 lists the steps of the network coarsening method
Semi-NetCoarsen. Given an upper bound of ↵, the network
is coarsened by merging ↵N nodes. Based on Y ⇤, for each
node i, we merge i into the supernode m with the largest y

i,m

,
where m = argmax

k

{y
i,k

}, k = 1, . . . , (1� ↵)N .
Next, based on the previous work [Purohit et al., 2014], we

use the following principle to assign new weights between
supernodes. Let y

0

s

denote the label distribution of the node
s in the node merging process, y

0

s

=
P

k y

⇤
k

n

, where n is the

Algorithm 2: The Semi-NetCoarsen(G, C,↵) algorithm
Input: Network G, cascades C, the coarsening rate ↵
Output: The coarsened network G

coarsen

1 V
0
= ;; Network coarsening based on Eq. (9)

2 Update label distribution matrix Y ⇤ using Algorithm 1
3 for i = 1 to N do
4 Assign label l

m

to node i with m argmax
k

{y⇤
i,k

}
5 V

0  {l
m

} [ V
0

6 while (|V 0 | < K) do
7 for j = 1 to K do
8 if l

j

/2 V
0 then

9 i argmax
i

{y⇤
i,j

}, c = 2
10 while (l

i

labels only one node) do
11 i the row-coordinate of c-th larger of

j-th column in Y ⇤; c = c+ 1
12 Assign label l

j

to node i

13 Update V
0

(remove i from the previous
labeled class); V

0  {l
j

} [ V
0

14 for (Each pair of supernodes s1 and s2 in V
0
) do

15 Assign weights to s1 ! s2 and s2 ! s1
16 return G

coarsen

number of node k that has been merged into s. We also denote
 i(v) (respectively  o(v)) as a set of in-neighbors and out-
neighbors [Purohit et al., 2014] of a node v. Let vi

u

= W
u,v

and vo
u

= W
v,u

denote the weight of the corresponding edges.
If nodes a and b are merged into a new node c, the edge weight
ci
t

is defined in Eq. (13). co
t

is corresponding defined.

cit =

8
>>>>>><

>>>>>>:

(1+bia)(a
i
t+y

0
a

T
y
0
t)

3 , 8t 2  i(a)\ i(b)
(1+ai

b)(b
i
t+y

0
b

T
y
0
t)

3 , 8t 2  i(b)\ i(a)
(1+bia)(a

i
t+y

0
a

T
y
0
t)

6

+
(1+ai

b)(b
i
t+y

0
b

T
y
0
t)

6 , 8t 2  i(a) \  i(b)

(13)

Complexity Analysis: It takes O(N
c

NK) time to model
the network coarsening process and assign labels to nodes.
In the coarsening process, merging node i and j takes time
O(deg(i) + deg(j)) = O(n

✓

), where n
✓

is the maximum
degree of any nodes at any time. To sum up, the total worst-
case time complexity of Algorithm 2 is O(N

c

NK +↵Nn
✓

).

4.3 Semi-NetCoarsen Influence Maximization
As a case study, we show how to apply the network coarsen-
ing approach Semi-NetCoarsen to the well studied influence
maximization [Lu et al., 2015; Zhou et al., 2015], which aims
to select the most influential nodes to maximize the spread of
influence. The coarsened network is expected to approximate
the original network and speeds up the calculation. Specif-
ically, we design a framework CFSInflu based on the Semi-
NetCoarsen algorithm, including the following main steps.

• Coarsen the network: Given cascades data C, we
coarsen the large original network G using the proposed
algorithm Semi-NetCoarsen to obtain a coarsened net-
work G

coarsen

. A mapping function ! : G! G
coarsen

from nodes in G to that in G
coarsen

is required.
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• Find the most influential nodes: Find the most influ-
ential k nodes s1, . . . , sk in G

coarsen

to maximize the
spread of influence. A ranking function rank(s) that
ranks the supernode s of G

coarsen

, in terms of the num-
ber of nodes of G merged in s, is required. We select
the nodes s1, . . . , sk based on rank(s) which gives the
top-k answers as the seed nodes of G

coarsen

.
• Select the most influential nodes in G: Given the seed

node s
i

in G
coarsen

, we select a node v 2 !�1(s
i

)
in G as a new seed. We should select v for v =
argmax

u2!

�1(si)(�(u)), where �(u) is the expected in-
fluence function of node u. Based on the network
coarsening process, we select a seed v with the max-
imal value of I(v) =

Pm
i=1 �i(v)

m

from !�1(s
i

), i.e.,
s
0

i

= argmax
v2!

�1(si)I(v), where �
i

(v) denotes the
number of nodes generated from v in the cascade ti, and
m denotes the number of cascades generated from v.

Note that “coarsen the network, solve the problem in the
coarsened network, and then project the solutions back to-
wards the original graph”, can be applied to other social anal-
ysis [Karypis and Kumar, 1995; Purohit et al., 2014].

5 Experiments
We evaluate the effectiveness of the proposed Semi-
NetCoarsen approach on both the synthetic and real-world
data sets. All experiments are conducted on a Linux system
with 6 cores 1.4GHZ AMD CPUs and 32GB memory.

5.1 Data Sets
For synthetic data, we consider the Kronecker graph
model [Leskovec et al., 2010] with a parameter matrix
[0.9, 0.1; 0.1, 0.9] to generate synthetic Kronecker data, and
the Forest Fire model [Barabási and Albert, 1999] to gen-
erate FFire data with forward burning probability 0.2, back-
ward burning probability 0.17. For real-world data, we col-
lect Twitter data1 [Zhang et al., 2013]. Following the work
[Wang et al., 2014], we select users with a large number of
friends (213 friends in our work) as the nodes and extract their
social connections as edges. For each tweet record, we extract
its diffusion path after eliminating all the isolated nodes and
edges. Table 1 gives the statistics of the data sets.

5.2 Experimental Settings
As the network coarsening rate ↵ increases, the network is
condensed smaller. With randomly selected k nodes, if the
influence spread of the selected k nodes in the original net-
work is the same as that in the coarsened network, then the
network is taken as accurately coarsened.

Given a node set S, for the original and coarsened net-
works, we calculate the expected number of influenced nodes
under the Independent Cascade model [Goldenberg et al.,
2001]. Specifically, for each influenced supernode m, let
C(m) represent a set of cascades generated from m. We uni-
formly sample one cascade from C(m) to calculate the ex-
pected number of influenced nodes G(m) which have been

1http://aminer.org/billboard/Influencelocality

Table 1: Data Statistics
Dataset #Nodes #Edges #Cascades
Kronecker 1,000,000 8,048,000 834,000
FFire 1,000,000 14,770,000 5,000,000
Twitter 288,416 2,265,210 2,683,729

merged into m. We repeat the process by 100 times and re-
port the average results. We repeat to randomly select the
seed sets S by 100 times. Thus, we obtain the average result
G
c

(S) for G
coarsen

and G(S) for G.

Metrics
We use two metrics to evaluate the performance, 1) the run-
ning time; and 2) the average influence spread error rate E(S),
which is calculated as E(S) = 1

n

P
n

i

|Gc(S)�G(S)|
G(S) . n is set to

100. The smaller E(S) is favored in comparisons.

Baseline Methods
We implement the following methods for comparisons.

• Random: A random network coarsening algorithm that
randomly chooses node pairs for join.

• CoarseNet: A recent network coarsening method based
on static network structures [Purohit et al., 2014].

• Data-driven: A data-driven approach that only uses in-
formation cascade data C for network coarsening.

Parameter Setup
The parameter � is searched from � 2 {0.1, 1, 10, 100}, �

y

is searched from �
y

2 {0.01, 0.1, 1}, and ⇢ is selected from
⇢ 2 {0.01, 0.1, 1}. The parameters are tuned by the smallest
E(S) on a sub-graph with 1,000 nodes and 2,000 cascade data
for each dataset when ↵ = 0.5. Table 2 reports the results.

5.3 Experimental Results
Fig. 2 reports the results under the metrics with varying ↵
from {0.3, 0.4, 0.5, 0.6, 0.7}, in which we randomly select
20 source nodes, |S| = 20. From Fig. 2, we have the
following observations. 1) The average influence spread er-
ror rate of Semi-NetCoarsen is much smaller than the base-
lines, and shows robustness and consistency across both syn-
thetic and real-world datasets. For example, for the Twit-
ter dataset when ↵ = 0.3, the result of Semi-NetCoarsen is
0.0214, while it is 0.0911, 0.1802, 0.6029 respectively for
Data-driven, CoarseNet and Random method. The main rea-
son is that our method embeds both the static network struc-
ture and dynamics occurring on the network (i.e., information
cascade). 2) The Semi-NetCoarsen method uses more time
than its peers, which is a trade-off between the mean influ-
ence spread error rate and running time. 3) To sum up, our

Table 2: Parameters Setup
Dataset � �

y

⇢ T c �
c

Kronecker 1 0.1 0.1 600 10
FFire 10 0.01 0.01 600 10
Twitter 100 1 0.01 720 0.2
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Figure 2: Performance comparisons of the network coarsening approaches.
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Figure 3: Performance comparisons on a case study: influence maximization on the Twitter dataset.

method outperforms baseline methods in terms of accuracy
without significantly raising time cost.

5.4 Influence Maximization: A Case Study
We implement the following influence maximization meth-
ods for comparison with the CFSInflu method proposed in
Section 4.3: Random-based, CoarseNet-based [Purohit et
al., 2014], Data-driven-based, InfluLearner-based [Du et al.,
2014] and PMIA [Chen et al., 2010]. Among these baselines,
the InfluLearner-based and PMIA approaches are carried out
directly on the original networks. The rest three approaches
work on the coarsened networks based on the corresponding
network coarsening methods.

Fig. 3 reports the experimental results, where we vary ↵
from {0.3, 0.4, 0.5, 0.6, 0.7} (the number of seeds k = 20),
and k from 1 to 30 (↵ = 0.5). Due to the limited space, we
only report the results on the Twitter dataset.

With respect to influence spread metric. The InfluLearner-
based and PMIA methods directly work on the original net-
works, and thus obtain the best results. Fig. 3(c) shows
that the influence spread derived from the proposed CFSIn-
flu method approximates the result on the original network.
Meanwhile, CFSInflu method outperforms all the baseline

methods that conducted on the coarsened networks.
With respect to running time. When more pairs of nodes

are merged, the coarsened graph is smaller. Thus, the su-
pernodes in G

coarsen

can be found faster and we can conduct
the influence maximization analysis efficiently on the coars-
ened network. For example, Fig. 3(b) shows that the run-
ning time of the CFSInflu method drops with increasing ↵.
Furthermore, Fig. 3(d) shows our method can obtain about
100 ⇥ speedup based on the coarsened network. we can con-
clude that our method runs orders of magnitude faster than
the InfluLearner-based or PMIA methods while maintaining
the influence spread results.

6 Conclusions
In this paper, we propose a new semi-data-driven framework
Semi-NetCoarsen to study the network coarsening problem
by both maximizing the network coarsening likelihood on the
dynamic information cascade data and minimizing the graph
regularization on the static network structure data. We ap-
ply the coarsened network to conduct case study on influ-
ence maximization analysis. Experiments and comparisons
on both synthetic and real-world data demonstrate the effec-
tiveness of the proposed method.

1488



Acknowledgments
We would like to thank the anonymous reviewers for their
valuable comments and suggestions. This work was sup-
ported by the 973 project (No. 2013CB329605), NSFC (No.
61502479 and 61370025), Strategic Leading Science and
Technology Projects of CAS (No. XDA06030200), and Aus-
tralia ARC Discovery Project (DP140102206).

References
[Barabási and Albert, 1999] Albert-László Barabási and
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