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Abstract
For many applications, the observed data may be
incomplete and there often exist variables that are
unobserved but play an important role in captur-
ing the underlying relationships. In this work, we
propose a method to identify local latent variables
and to determine their structural relations with the
observed variables. We formulate the local latent
variable discovery as discovering the Markov Blan-
ket (MB) of a target variable. To efficiently search
the latent variable space, we exploit MB topol-
ogy to divide the latent space into different sub-
spaces. Within each subspace, we employ a con-
strained structure expectation-maximization algo-
rithm to greedily learn the MB with latent variables.
We evaluate the performance of our method on syn-
thetic data to demonstrate its effectiveness in iden-
tifying the correct latent variables. We further ap-
ply our algorithm to feature discovery and selection
problem, and show that the latent variables learned
through the proposed method can improve the clas-
sification accuracy in benchmark feature selection
and discovery datasets.

1 Introduction
Latent variable models have been extensively studied in the
literature. Learning latent variables can lead to the discov-
ery of previously unknown factors to a certain phenomenon,
and has many real-world applications such as human be-
havior analysis and medical diagnosis [Anandkumar et al.,
2013]. Latent variables can predict causal relationships and
interpret the hidden effects, and also provide more compact
representation of the data and a simpler model by which to
make better generalizations [Elidan and Friedman, 2005].
The vast majority of latent variable models assumes that
the number of latent variables and their exact locations with
other variables are pre-determined, including many success-
ful graphical models such as Latent Dirichlet Allocation [Blei
et al., 2003] and Hidden Conditional Random Fields [Quat-
toni et al., 2007]. Deep architectures of graphical mod-
els with latent variables, such as Restricted Boltzmann Ma-
chines [Hinton et al., 2006], have recently shown promis-
ing performance. A more challenging case of learning with

latent variables considers the problem where the number
of latent variables are known but their exact locations are
unknown. To learn their structural relationships with ob-
served variables, the most common structure learning method
is the structural expectation-maximization (SEM) algorithm
[Friedman and others, 1997; Elidan and Friedman, 2005;
Borchani et al., 2008]. When both the exact number and
locations of latent variables are unknown, identifying and
learning with latent variables becomes the most challeng-
ing, since it can create an infinite search space of possible
structures. In graphical models, several works aim to detect
the possible existence of structural latent variables by study-
ing structural signatures such as cliques [Elidan et al., 2000;
He et al., 2014]. Since it has been observed that the learned
graph structures tend to become more densely connected at
the presence of latent variables, it is possible to find some
densely-connected sub-graphs and introduce some latent vari-
ables to simplify the graph structures.

To constrain such a difficult problem, we aim to discover
local latent variables with respect to one target variable (such
as the class label in classification). We specifically formu-
late such a problem as MB learning with latent variables, or
latent MB learning for brevity. Except that assuming latent
variables must appear in the MB of the target variable, we
make no further assumptions on the number of latent vari-
ables and their specific locations inside the MB. Existing
MB discovery algorithms are generally constraint-based or
score-based approaches. Constraint-based approaches use in-
dependence tests to infer the MB [Koller and Sahami, 1996;
Tsamardinos et al., 2003; Aliferis et al., 2003]. Score-
based approaches, in particular the Score-Based Local Learn-
ing algorithm (SLL) [Niinimaki and Parviainen, 2012], use
exact BN structure learning algorithms [Chickering, 2002;
Cussens, 2011] with score criteria to find the local structures
and thus the MB. However, standard MB discovery algo-
rithms assume all the variables are observed. In comparison,
we focus on learning a better MB of a target by considering
latent variables: compared to the MB learned from observed
variables, the jointly learned MB of the target variable should
consist of both observed and latent variables, be more com-
pact, and contain more mutual information about the target
variable.
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2 Markov Blanket Learning with Latent
Variables

2.1 Preliminaries
A Bayesian Network for a set of random variables V is rep-
resented by a pair (G, ✓). The network structure G is a di-
rected acyclic graph (DAG) with nodes corresponding to the
random variables in V. The parameters ✓ indicate the condi-
tional probability distribution of each node given its parents.
If there is a directed path from X to Y , then X is an ancestor

of Y and Y is a descendant of X . Two nodes are adjacent if
they are connected by an edge. If nonadjacent X and Y have
a common child, X and Y are spouses of each other.

Markov Condition

[Pearl, 1988] states that a node in a BN
is independent of its non-descendant nodes, given its parents.
A DAG G and a joint distribution P are faithful to each other
if all and only the conditional independencies true in P are
entailed by G. The faithfulness condition has been assumed
in existing BN structure learning and Markov Blanket dis-
covery algorithms. Markov Blanket

[Pearl, 1988] of a tar-
get variable T , MBT , is the minimal set of nodes condi-
tioned on which all other nodes are independent of T , de-
noted as X ?? T |MBT , 8X ✓ V \ T \ MBT . The mini-
mal set means that none of a MB’s proper subsets satisfy the
MB’s property. Given an unknown distribution P that satis-
fies the Markov condition with respect to an unknown DAG
G0, Markov Blanket Discovery is the process of estimating
the MB of a target node in G0, from independently and iden-
tically distributed (i.i.d) data D of P . If a DAG G and a
distribution P are faithful to each other, then MBT , T 2 V,
is unique [Pearl, 1988] and is the set of parents, children, and
spouses of T . In addition, the parents and children set of T ,
PCT , is also unique. For example, in Figure 1, nodes P and
C form PCT . MBT contains its parent node P , its child
node C, and its spouses S1&S2. All other nodes are inde-
pendent of T , given MBT .

Score-based Markov Blanket discovery algorithms rely on
some score criteria to learn a best-fitting DAG G of the data
and then extract the MB of a target variable from G. A score

of a DAG structure G measures the goodness of fit of G on
data D. Let D be a set of data consisting of i.i.d. samples
from some distribution P . Let G be any BN structure and
G0 be the same structure as G but with an extra edge from a
node T to a node X . Let PaGX be the parent set of X in G.
A score criterion s is consistent if, as the size of the data D
goes to infinity, the following two properties hold true: 1) if
the structure G contains P and another structure G0 does not,
then s(G,D) > s(G0, D). 2) if G and G0 both contain P but
G has fewer parameters, then s(G,D) > s(G0, D). A score
criterion is decomposable if it is a sum of each node’s indi-
vidual score that depends on only this node and its parents.

2.2 Problem Statement
We treat local latent variable learning as the latent MB learn-
ing of a target in directed graphical models (i.e., the learned
MB must satisfy the DAG constraint). This procedure is dif-
ferent from other DAG structure learning methods with latent
variables, as we consider only local latent variables to the tar-
get. The target is often the class label variable. Let V be the
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Figure 1: a)A Sample Bayesian Network. Black node T is
the target node. b) If C is not observed, the learned MB set of
T consists of P , S1, S2, B, and F . c) The ground truth MB
set of T consists of P , S1, S2, and C.

observed variable space and H be the latent variable space.
Let T be a target variable in V . When some variables in the
MB of a target variable T from an unknown DAG are not ob-
served, the learned MB from observed variables, MBV

T ✓ V ,
will contain some false positive observed nodes. For exam-
ple, for the BN in Figure 1(a), if variable C is latent, MBV

T
would consist of P , S1, S2, B, and F by its definition as
shown in Figure 1(b). The ideal MB of T with latent vari-
ables should be P , S1, S2, and C as shown in Figure 1(c).
Lemma 1. Latent MB Advantage. When latent variables

exist in the MB of T , there exists a MBT that includes la-

tent variables and contains higher mutual information than

MBV
T , i.e., I(MBT ;T ) > I(MBV

T ;T ).

Proof. Let latent variable set X exists in the MBT . By defi-
nition X ?\? T |MBV

T . Therefore, I(MBT ;T |MBV
T ) > 0.

Also by the MB definition of MBT , I(MBV
T ;T |MBT ) =

0 =) I(MBT ; T |MBV
T ) > I(MBV

T ;T |MBT ).
Since I(MBV

T [ MBT ;T ) = I(MBV
T ;T ) +

I(MBT ;T |MBV
T ) = I(MBT ;T ) + I(MBV

T ;T |MBT ),
I(MBT ;T ) > I(MBV

T ;T ) hold.

Since we can always add unknown X to MBV
T without de-

creasing its mutual information to T , the problem would be-
come trivial. Hence, we are more interested in the case where
the size of latent MB set MBT is equal or smaller than that
of MBV

T , i.e., X in MBT have to replace some observed
variables in MBV

T
1. Since the latent variables are still depen-

dent of T given MBV
T , I(MBT ;T ) > I(MBV

T ;T ) holds.
For example, in Figure 1, MBT should resemble the ground
truth MB set {P,C, S1, S2} and be smaller than or equal to
MBV

T . It is our goal to learn and recover node C and the
ground truth MB set.

1False negative MB nodes can exist when they are spouses, but
only if their common children with the target variable has no descen-
dants. Since in this case the latent MB set size would be bigger than
the observed MB set, we do not consider this case by the problem
definition.
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2.3 Problem Formulation
We propose to learn the latent MB by using a score-based
method, fitting MBT to the data of observed variables so
that a certain scoring criterion of MBT increases from that
of MBV

T . Since MB represents the local structure of the tar-
get, we can use decomposable and consistent DAG learning
scores like Bayesian information Criterion (BiC) or Bayesian
scores to evaluate different possible MB structures in the en-
tire search space. Let H be the latent variables in MBT .
Let sT (MBT , D) be the score of a MB set MBT with re-
spect to a target T , based on observed data samples D. Ex-
ploiting the decomposable property of the score, we have
sT (MBT , D) =

P
Xi2MBT

sT (Xi, D), and each Xi de-
pends on T and a small subset of J = V [H (i.e., only Xi’s
parent set in J ). Then we have the following formulation for
MB discovery with latent variables H:

MB⇤
T , ✓

⇤
H = argmax

MBT ,✓H

X

Xi2MBT

sT (Xi, D)

subject to H ✓MBT

(1)

where MBT may contain subsets of variables from V and H
and ✓⇤H represents the unknown probability distribution of H .

It is easy to see that MBT would score higher than MBV
T

in Equation 1: since H is in MBT , the dependency between
H and T would make MBT to have a higher scoring function
than MBV

T by the score consistency property. By the prob-
lem definition, we also enforce that the size of MBT should
have smaller or equal to that of MBV

T .

2.4 Latent MB Learning with Constraints
Equation 1 with the constraints creates a difficult formu-
lation to solve directly, with multiple variables to be opti-
mized in a nonlinear nonconvex objective function. Instead
we propose a divide-and-conquer iterative approach for latent
MB learning with constrained structure EM algorithm (LMB-
CSEM), by discovering and learning the latent variables one
at a time in different MB subspaces. The approach primar-
ily divides the MB search space from Equation 1 into sev-
eral non-overlapping subspaces and learns in each subspace
separately. Then the optimal MBs within each subspace are
compared to each other to obtain the final optimal MB. The
overall methodology is summarized in Figure 2. Base on the
outline from Figure 2, the proposed LMB-SEM is shown in
Algorithm 1.

LMB-CSEM Algorithm
LMB-CSEM has three major steps. In the first step of

LMB-CSEM (Line 3), we use a standard MB discovery al-
gorithm to find a MB of a target T from observed variables
only, MBV

T . In the second step, we employ a constrained
structure EM (CSEM) algorithm to discovery and learn a MB
with one latent variable within each subspace. Then in the
third step, we compare MBs obtained from each space. If the
learned MB with one latent variable in one of three sub-cases,
Constraint Set A, B, and C, scores higher than that of Baseline

from Figure 2, we can make the learned MB as the new base-
line MB MBV , and repeat Step 2 ⇠ 3 to learn another latent

Baseline

One at a TimeConstraint Set A Constraint Set B Constraint Set C

MB Learning of a Target Variable

Without Latent 
Variables

With Latent 
Variables

One Latent Variable Multiple Latent 
Variables

IterativeLatent as 
Parent

Latent as
Child

Latent as 
Spouse

Figure 2: Breakdown of the proposed divide-and-conquer ap-
proach to learn the MB of a target variable with latent vari-
ables in the LMB-CSEM algorithm. Each subspace with dif-
ferent constraints is learned with CSEM.

variable. We repeat this process until adding more latent vari-
ables into the learned MB no longer improves the MB score
or violates the size constraint. Below we provide details for
each of the three steps.

Step 1: Learning the MB from Observed Variables Only
In the first step of LMB-CSEM, we learn MBV

T , which serves
as the Baseline case. When there are no latent variables, stan-
dard MB learning procedure such as the previously proposed
SLL [Niinimaki and Parviainen, 2012] can be used. SLL is
conjectured sound and complete, using an iterative procedure
to find all and only the MB variables of a target one at a time.

In addition, baseline MBV
T can also help the latent MB

learning in other subspaces, as all observed variables in the
highest scoring MBT from Equation 1 must exist in MBV

T
by Lemma 2. This enables us to find the latent MB based on
MBV

T , reducing the search space of MBT .
Lemma 2. Independence Consistency. Let MBT be the

highest scoring latent MB from Equation 1. Under the faith-

fulness assumption and using consistent scores, all the ob-

served variables X 2MBT are in MBV
T .

Proof. Consider X 2 MBT but X 62 MBV
T , then X ??

T |MBV
T by the MB definition and using consistent scores,

which means all path between T and X are blocked by
MBV

T . As the latent variables H are in the MBT by the
problem definition, there is an unblocked path from T to
H given MBV

T . Hence, MBV
T also blocks all paths from

X to H , otherwise there would be an unblocked path from
X to H to T , violating the MB definition2. Hence, X ??
H|MBV

T . By the faithfulness assumption and the compo-
sition property [Pearl, 1988], X ?? {T,H}|MBV

T , =)
X ?? T |MBV

T [H . Hence, X cannot be the true positive PC
node of T . Also by the MB definition, the true PC set must be
a subset of {MBV

T [H}. Hence, X cannot be a true positive

2The exception of this statement occurs when X is a spouse and
H is a latent child with no descendants, which is not considered
based on the problem definition.
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Algorithm 1 Latent MB Learning with Constrained Structure EM(LMB-CSEM) Algorithm

1: Input: D: Data; T : the target variable;
2: Output: MB: the learned local DAG of T

{Step 1: Learn the Observed MB}
3: [MBV , PCV

] Learn the MB of T without H;
4: N  variable size of MBV ;

{Step 2: Divide-and-conquer}
5: Create one H;
6: N  N + 1;

{Learn as H is a parent of T }
7: Constraint zeros(N,N);
8: Constraint(H,T ) 1; //strictly enforced
9: [MBP , score] CSEM(D, T, Constraint,MBV

);
{Learn as H is a child of T }

10: Constraint zeros(N,N);
11: Constraint(T,H) 1; //strictly enforced
12: Constraint(X,H)  �1, 8X 2 PCV ; //strictly pro-

hibited
13: [MBC , score] CSEM(D, T, Constraint,MBV

)

{Learn as H is a spouse of T }
14: if 9 a T ’s child X 2 MBV

T s.t. X has another parent
than T then

15: Constraint zeros(N,N);
16: Constraint(H,T )  �1; Constraint(T,H)  

�1; //strictly prohibit
17: Constraint(T,C)  1; Constraint(H,C)  1;

//strictly enforced
18: [MBS , score] 

CSEM(D, T, Constraint,MBV
)

19: end if
{Step 3: Find the best MB satisfied the constraints}

20: if none of MBP , MBC , and MBS satisfied Constraint
1 and 2 then

21: MB  MBV

22: else
23: MB  maxi2{P,C,S,V } score(MBi

) s.t. MBi satis-
fies constraints

24: end if
{To find more latent variables}

25: MBV  MB;
26: Repeat Step 2 ⇠ 3 to discover one more latent variable

H .
27: Return: MB;

spouse node of T if X ?? T |MBV
T [H . Therefore, X is not

in MBT , contradicting the assumption in the beginning.

Step 2: Learning with Constrained SEM
We use the observed MB set to help learn the latent MB set
via a divide and conquer approach. Depending on the MB
subspaces as shown in Figure 2, we impose different con-
straints on top of a structure EM-like procedure to learn one
optimal MB with latent variables.

Constraint Set A: When there exists a latent MB variable
H and H is a parent of T , we enforce the existence of link
H ! T and use Algorithm 2, the constrained structure EM
(CSEM) algorithm, to discover one latent MB. CSEM first
estimates the expectation of latent variable H given observed
variables, and estimates the values of H according to the ob-
served data samples. The expectation steps of CSEM are the
same as SEM, except that the initial graph structure must sat-
isfy the constraint set for each respective subspace (Line 5 of
Algorithm 2). The structure initialization has a big impact due
to many local optima during SEM learning procedure. One
can randomly initialize the graph, subject to the constraint
set. One can also use a similar approach from clique-based
SEM algorithms [Elidan and Friedman, 2005] to initialize the
graph structure: When H is a parent of T , H is initialized as
the sole parent of all observed PC set of T , the edges among
the observed PC set are all removed, and then H is set as ei-
ther a parent of T . The main intuition of this initialization
procedure is to use H to reduce the structure complexity. Af-
ter updating the parameter of H using EM, one can sample H
to complete the data D (Line 6 of Algorithm 2). To robustly
reflect the P (H|A), one can obtain multiple samples of H for
each observed samples in D. Since this additional sampling

procedure is done for every sample, the probabilistic distribu-
tions of observed variables remain unchanged.

Then in the maximization step, CSEM maximizes the now
completed data likelihood with respect to the graph struc-
ture and parameters. Different from SEM, CSEM also im-
poses constraints on H’s possible locations based on the MB
topology. We formulate constraints on the possible latent
MB variable relationships with the observed variables as edge
constraints (i.e., the enforcement or prohibition of edge ex-
istences) in a DAG, and then solve the MB learning with
constraints as a DAG structure learning problem with these
edge constraints. Some existing DAG learning algorithms
can enforce these edge constraints, such as the constrained
Branch-and-Bound (B&B) DAG structure learning algorithm
[De Campos and Ji, 2011], and we can use them with few to
no modifications. B&B first finds all the possible parent sets
for each node, by using edge constraints to eliminate those
parent sets that violates the constraints, and hence reduce the
overall search space for the valid DAGs. Then B&B uses an
efficient learning method to find the best scoring DAG from
the valid parent sets of each node. For more details, we refer
readers back to the original paper [De Campos and Ji, 2011].

Constraint Set B: When there exists a latent variable H
and H is a child of T , we can use the same CSEM algorithm
to learn a latent MB with Constraint Set B. Specifically, we
enforce the existence of the link T ! H . In addition, if H
is a child of T , an observed PC set variable X 2 PCV

T ✓
MBV

T can only connect to H as a child of H . If X were a
parent of H , X would form a V-structure with T and their
common child H . This V-structure cannot happen because a
V-structure would indicate independence between X and T 3.

3If X is also directly connected to T forming a fully connected
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Algorithm 2 CSEM, the Constrained Structure EM(CSEM)
Subroutine for Latent MB Learning

1: Input: D: Data; T : the target variable; C: the constraint
matrix; MBV

T : the MB from Observed Variables
2: Output: MBT : MB of the target with latent variables
3: A union(MBV

T , T );
{Step 2: Learning with LVs and Constraints}

4: for each iteration i until I iterations are reached do
5: Initialize MBi for A and H , s.t. Constraint C;
6: repeat
7: (MBi, P (H|A)) EM(DA,MBi);
8: DH

i  SampleData(DA, P (H|A));
9: DJ

i  Combine(DA,DH
i );

10: [MBi, score(MBi)] B&B(DJ
i , T, C)

11: until MBi does not change ;
12: end for

{Step 3: Find the best DAG}
13: Compute score(MBi) for each MBi with DJ

i ;
14: MB  maxi2n score(MBi)

15: Return: MB

Therefore the edge constraint H ! X must hold if H and X
are adjacent. An efficient way to enforce it is to prohibit the
existence of X ! H, 8X 2 PCV

T . For this subspace, H is
initialized as the sole parent of all observed PC set of T , the
edges among the observed PC set are all removed, and then
H is set as a child node of T .

Constraint Set C: When there exists a latent MB variable
H and H is a spouse of T , H and T should share at least
one common child. We enforce the latent MB variable H
as a spouse of T with the same common child X (i.e., with
the edge constraints H ! X and T ! X). For the ini-
tial graph structure, T is initialized as the parent of candidate
child nodes X , H is initialized to be the parent of X and T ’s
observed spouses with X , and all other edges among X and
these observed spouses are removed. We again use the same
CSEM to find one best latent MB set.

Step 3: Finding the Best MB from All Subspaces
In the last step of LMB-CSEM, learned MBs from different
subspaces are compared to each other to find the most op-
timal one. We directly enforce the constraint that the size
of MBT must be equal or smaller than that of MBV

T . If a
learned MBT violates the constraint, we disregard it; oth-
erwise, we choose the highest scoring latent MB set from
different subspaces. The score used for comparing differ-
ent MB subspaces in Line 23 of LMB-CSEM cannot be the
traditional Bayesian or BiC scores because of the existence of
latent variables. To be consistent with the MB property and
discovery selection criterion, we use the mutual information
of the latent MB set as the score criterion.

LMB-CSEM Algorithm with Multiple Latent Variables
When multiple variables in a target MB are not observed, we
can use a greedy method to iteratively learn one latent vari-

clique with T and H , we can always change some arc directions
between these three nodes to make X a child of H and preserve the
same independence relationships.

able at a time. Beginning with one latent variable, we can
compare scores of MBV

T with MBT . If MBT has a bet-
ter score, then there exists one latent variable. Then we pro-
ceed to assume there exist two latent variables. Using the
previously learned MB set with one latent variable as the new
observed MB set, we introduce one more latent variable and
repeat the same procedure. We keep adding more latent vari-
ables until the new latent MB score is lower or violates the
size constraint. This procedure is reflected by Line 25 ⇠ 26
of Algorithm 1 and converges to local optima.

3 Experiments

We first demonstrate the performance of the proposed meth-
ods on synthetic datasets, and then apply our method to
benchmark feature selection and discovery datasets. We fix
the cardinality of latent variables to be 2 in all experiments.

3.1 Synthetic Datasets for Latent MB Discovery

We test the proposed LMB-CSEM algorithm on synthetic
datasets if it can discover the latent variables and correctly
learn the graph structure. We make a 4BN, consisting of node
T , C, B, and F from Figure 1 with the same edges among
them. 7BN is also constructed similarly with We sample
10k data from the structure, and remove all samples for C.
We run the SEM [Friedman and others, 1997], semi-clique
SEM (SCSEM) [Elidan et al., 2000], and the proposed LMB-
CSEM algorithm to see whether three methods can recover
the ground truth MB sets of the target variable T in each
network. We randomly initialize the structures with one la-
tent variable and parameters for SEM. For SCSEM, we use
the semi-clique rules to initialize the structures with one la-
tent variable, and allow SCSEM with the complete flexibil-
ity in adapting the network structures. From the latent struc-
tures of each algorithm, we extract the latent MB set. We
use the same MB discovery error metric as previous works,
namely the distance between true MB set, including the la-
tent variable H , and the learned MB set of T in each net-
work: d =

p
(1� Precision)2 + (1�Recall)2. Precision

is the number of true positives in the detected MB divided
by the total size of the detected MB. Recall is the number of
true positives in the detected MB divided by the size of the
ground truth MB. Thus, the lower d is better. We repeat the
experiment 100 times using different samples, and compare
the errors of the learned latent MBs for different algorithms.
The learned results are shown in Table 1. LMB-CSEM out-
performs SEM and SCSEM algorithms in finding the correct
latent MB set, with lower MB discovery errors. SEM fails to
find H in the learned MB set 6 of 10 times, and SCSEM fails
to find H in the learned MB set 5 times. Both methods never
find H alone as the MB set. In comparison, the proposed
LMB-CSEM is able to find H as the entire MB set 8 out of
10 times. While previous latent BN structure learning algo-
rithms often find the highest scoring structures fitted to the
data, these structures are not necessarily the data-generating
structures [Elidan et al., 2000]. LMB-CSEM could alleviate
such a problem using constraints.
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Table 1: Latent MB Discovery Errors for Different Algo-
rithms in Synthetic Datasets

DATASET SEM SCSEM LMB-CSEM
4BN 1.04 ± 0.43 0.84 ± 0.38 0.26±0.58

3.2 Feature Selection and Discovery Datasets
We apply the proposed LMB-CSEM and current feature se-
lection algorithms to standard feature selection and discovery
datasets. We use five feature selection datasets from the UCI
machine learning repository and related works [Brown et al.,
2012] to show the effectiveness of LMB-CSEM on feature
selection applications. Although the feature sizes of these
datasets are not large, ranging from 13 to 30, they present
challenges, as training sample sizes are relatively low com-
pared to cardinalities of each variable in the datasets. We use
half the data size for training and half for testing.

Scaling up: In practice, the number of features can be large
to be directly used with the exhaustive nature of LMB-CSEM.
We employs a similar idea of random subspace projection as
the popular random forest classifier [Breiman, 2001]. We ran-
domly select a subset of variables with size dL to find one set
of MB with latent variables (usually dL =

p
N where N is

the total number of the observed variables). For each set of
MB, we use LMB-CSEM to find one latent MB set. By re-
peating this procedure L times, we learn a total of L sets of
MBs. During testing, we first infer latent values of each set
of MBs, given the values of observed variable values. Then
we can combine all the latent MB sets to infer the class label.
From inferred class labels of each individual classifier, we can
use either simple majority voting or the average probability of
all classifiers to obtain the final predicted class label.

Parameters: We run the proposed Algorithm 1 LMB-
CSEM to find L = 20 different latent MB sets. To show that
the learned latent features can improve classification tasks,
we learn only one latent feature per latent MB set in LMB-
CSEM. Experiments show that even one latent MB feature
per MB set can lead to strong performance improvement with
a good trade-off on efficiency. We also set the number of
different initializations I in Algorithm 1 to be 80. In our
observation, a higher number of I can lead to more perfor-
mance gain, as different initializations for the EM algorithms
can avoid local maxima better. Furthermore, we choose to
use the BiC score to learn different MB sets within each sub-
space, and the training errors as score(MB) to compare dif-
ferent MB sets across subspaces and from different initializa-
tions, which performs best compared to the mutual informa-
tion and conditional likelihood of the target label. Lastly, we
use both the predicted latent MB values and inferred proba-
bilities P (H|T,MBT ) as features to train a SVM to obtain
the final classification results, since the latent values alone
lose some information about the confidence of the latent vari-
ables.

We compare the performance of features of LMB-CSEM
to the MB learned without latent variables. Since MB-based
feature selection methods are a filter approach [Koller and Sa-
hami, 1996], we make a direct comparison to the state-of-the-

art filtered feature selection method, the minimum Redun-
dancy Maximum Relevance (mRMR) [Peng et al., 2005]. We
follow the standard experiment setups [Brown et al., 2012]
and use linear SVM classifiers to test the classification accu-
racy from the selected/learned features. We choose the top
N mRMR features, where N is the total feature size from
LMB-CSEM. Table 2 shows the error rates of different fea-
ture selection and LMB-CSEM algorithms with bold numbers
representing the best results. Learned latent MB variables
can improve the classification accuracy compared to the MB
learned just from observed features in all five datasets, with
the biggest absolute improvement of 14.7% observed in the
HEART dataset. It confirms that latent variables can comple-
ment the observed feature set. Compared to mRMR, LMB-
CSEM also performs better, with a 7% improvement on aver-
age.

Table 2: Testing Error Rates on Real Feature Selection
Datasets using linear SVM

DATASET MRMR SLL LMB-CSEM
CONGRESS 6.4% 7.3% 5.9%

HEART 16.5% 18.1% 14.3%
KRVSKP 24.1% 11.3% 9.4%
BREAST 5.3% 6.0% 4.2%

PARKINSONS 19.4% 25.5% 18.4%
MEAN 15.3% 11.6% 7.7%

4 Conclusion
We propose to learn local latent variables of a target variable,
in the form of Markov Blankets, to complement the observed
variables. The local latent variables can increase the mutual
information to the target and possibly help regulate the condi-
tional probability of the target. We formulate the local latent
variable learning as the MB learning in the presence of la-
tent variables, and propose a divide-and-conquer approach to
automatically determine the existence of latent variables and
learn the relationships they have with the target variable and
observed variables. The learned MB set of a target from both
the observed and latent variables is more compact, can pro-
vide more information for the target and improve the classi-
fication accuracy. We demonstrate the superior performance
of proposed methods to state-of-the-art methods on synthetic
networks and benchmark feature selection datasets. Future
work could study the cardinality of latent variables of LMB-
CSEM.
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