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Abstract

With the rapid development of data sensing and col-
lection technologies, we can easily obtain large vol-
umes of data (big data). However, big data poses
huge challenges to many popular machine learning
techniques which take all the data at the same time
for processing. To address the big data related chal-
lenges, we first partition the data along its feature
space, and apply the parallel block coordinate de-
scent algorithm for distributed computation; then,
we continue to partition the data along the sample
space, and propose a novel matrix decomposition
and combination approach for distributed process-
ing. The final results from all the entities are guar-
anteed to be the same as the centralized solution.
Extensive experiments performed on Hadoop con-
firm that our proposed approach is superior in terms
of both testing errors and convergence rate (compu-
tation time) over the canonical distributed machine
learning techniques that deal with big data.

1 Introduction

Machine Learning (ML) has been a hot research area in the
past few decades. Traditionally, a bottleneck that prohibits
the development of more intelligent systems is the limited
amount of data. Without enough data, computers can hardly
make intelligent decisions as human beings do. However, this
situation has changed with the rapid growth of data sensing
and collection technologies in recent years. This has opened a
wide range of new opportunities, both because the best algo-
rithm for a given problem may change dramatically as more
data becomes available [Mayer-Schnberger, 2013], and be-
cause such a wealth of data promises solutions to problems
that could not be previously approached.

Besides opportunities, challenges are also coming along.
Big data not only changes the tools that can be used for in-
telligent decision making, but also changes our entire way
of thinking about knowledge extraction and interpretation.
Many of the traditional machine learning algorithms require
the loading of the entire data set into one computer; this
step becomes impossible when data sets are incredibly large.
Therefore, big data is driving the need for scalable, parallel
and online intelligent algorithms.
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In this paper, we propose a novel matrix decomposition
and combination approach combined with the parallel block
coordinate descent (PBCD) algorithm to make the com-
putation effort distributed for several of the most popular
machine learning algorithms, e.g., support vector machine
(SVM) [Burges, 1998], and logistic regression [Lee et al.,
2006]. After applying our proposed approach to these ma-
chine learning algorithms, they can be readily used to solve
problems involving big data. To be more specific, the key
challenge in big data processing is that both feature space
and sample space are very large. In our proposed approach,
we first decompose the feature space of the data and use the
PBCD algorithm to iteratively compute the optimal solution.
However, since the data sample space is also large, we still
cannot process the whole data at the same time. In this case,
we continue to separate the data along the sample space, and
apply our novel matrix decomposition and combination ap-
proach to generate the final results.

Experimental results on large data sets verify that our
approach achieves better convergence rate than four other
canonical distributed or big data machine learning algorithms,
on both regression and classification tasks.

2 Related Work

There are two popular groups of distributed machine learn-
ing algorithms. The first group decompose/distribute the first-
order derivative information, i.e., gradient, so as to make the
canonical machine learning algorithms distributed [Zinkevich
et al., 2010; Mateos et al., 2010; Gopal and Yang, 2013;
Forero et al., 2010; Zhu et al., 2008]. When faced with
various coupled constraints, they usually apply distributed
optimization techniques like dual decomposition [Sontag
et al., 2010], alternating direction method of multipliers
(ADMM) [Boyd et al., 2011] to unify the constraints into
objectives and perform decomposition thereafter. For ex-
ample, Mateos et al. [2010] propose a distributed algo-
rithm for sparse linear regression. They first formulate the
LASSO [Tibshirani, 1994] linear regression as a convex opti-
mization problem, and then apply ADMM to make the com-
putation process distributed.

The second group investigate the special (usually sparse)
structure of the problem, and propose efficient distributed
algorithms accordingly [Defazio et al., 2014; El Ghaoui et
al., 2011; Wang et al., 2013; Mairal, 2013; Yin et al., 2013;



Mairal, 2014]. For example, Defazio et al. [2014] propose a
permutable incremental method for big data processing. They
target at a specific problem which is to minimize the summa-
tion of squares. The specific problem nature (finite summa-
tion of squares) allows to take advantage of its strong convex-
ity. EL Ghaoui et al. [2011] make use of the sparse connec-
tion information within high-dimensional data, and revise the
principal component analysis (PCA) and graphical computa-
tion methods to their respective sparse version. The algorithm
has been applied to understand text information.

In summary, making use of the first order information, i.e.,
the gradient information, can be general in terms of appli-
cation domains. However, since the higher-order informa-
tion of a problem is completely ignored, this kind of algo-
rithms usually do not guarantee a high convergence rate. In
the worst case, some of the algorithms (when using dual de-
composition) only guarantee convergence in infinity. On the
other hand, making use of the specific structure of the prob-
lem (i.e., sparsity) usually has very good convergence perfor-
mance. However, since they are exploiting the specific na-
ture of the problem, the generality of the algorithm is limited.
Our proposed approach is trying to bridge the gap between
the two groups. On one hand, our approach makes use of
both the first order information and the second order infor-
mation which is the inverse of the Hessian matrix, thus per-
forms faster than the algorithms in the first group, as will be
demonstrated in Section 5. On the other hand, our approach
does not exploit the specific structure (i.e., sparsity) of spe-
cific problems, hence has a wider application compared to
the algorithms in the second group.

As will be shown in the next section, we are, in essence,
proposing an efficient matrix manipulation approach for large
scale matrix inversion. Hence, we provide the brief litera-
ture review on large scale matrix inversion. The bottleneck of
many large scale problems attributes to the efficient compu-
tation of the inverse of large scale matrices [Bai et al., 1996].
Csanky [1976] summarizes the canonical parallel computa-
tion methods for the large scale matrix inversion problem and
gives the theoretical lower bounds of the computation com-
plexities of such methods. Our proposed matrix inversion ap-
proach actually reaches that lower bounds.

3 Our Distributed ML Approach

In this section, we propose a distributed and efficient ap-
proach to solve the following mathematical problem:

N
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where X € R™*" and Y € R™. The most challenging part
of this problem is that both m and n are large (i.e., in the
scale of millions), which cannot be solved by default central-
ized solutions. In fact, for most supervised machine learning
algorithms, when the data size (m) and data dimension (n)
are very large, the key challenging computation step is also
how to calculate 3 out of the problem formulated in Eq. 1.
For example, in SVM, the key step is to solve K3 =Y,
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where K is the kernel matrix; in linear discriminative analy-
sis (LDA) and logistic regression, H3 = Y, where H is the
Hessian of the respective objective functions; and for linear
regression, X3 =Y, where X € R™*" is the data matrix.

Since the challenging problem in the aforementioned ma-
chine learning algorithms share the similar nature, we only
illustrate how to solve the general problem in Eq. 1 in a dis-
tributed and efficient manner.

We first clarify the mainly used symbols here: 1) m: the
size of data (the number of data samples); 2) n: the number
of features of the raw data; 3) Ni: the number of computa-
tion entities for column (feature space) separation; 4) N: the
number of computation entities for row (data size) separation;
5) m;: the number of data samples in computer 7; 6) n;: the
number of features in computer j; 7) X € R™*": the (trans-
formed) data matrix with m data samples and n features; 8)
Y € R™: The label information of the data; 9) B € R™: the
parameters to be learned by the machine learning algorithm.

3.1 Divide and Conquer Strategy

We consider the case where both the data size (m) and feature
space (n) are very large. In this case, we perform the divide-
and-conquer strategy as demonstrated in the parallel block
coordinate descent (PBCD) algorithm [Bradley et al., 2011].
More specifically, we first partition the data matrix X along
its column, and represent it as X (X1,Xa,..., Xn,)
where X; € R"™*"; we then partition 3 along its row ac-

cordingly, and have 8 = (8, ',82",..., ﬁNlT)T where
B € R™.

The idea of the parallel block coordinate descent method
is that at each iteration, we update the block parameter (3;)
by a little bit assuming that all the other block parameters are
not changing. The update rule is as follows:

g

Ny
B = (1-a)Bf + (X, X) (Y - Y X;85) @
J=1,g#i

where we superscript with k& to denote the value of the
scripted quantity at iteration k.

The convergence proof and convergence rate of PBCD
have been provided in [Tseng, 2001]. The key extensive com-
putation part of Eq. 2 is (X; " X;)~!. Since X; is only large
in one dimension (m), we will use our proposed matrix de-
composition and combination approach to solve it.

3.2 Matrix Decomposition and Combination

Here we introduce a novel approach to compute the inverse
of X; "X, in an efficient and distributed manner. Note that
X, € R™*"i and m is very large, therefore it is impossible
to store the matrix X; in one computer’s memory. In this case,
(X;"X;)~! is only a conceptual representation. However,
note that n; is within a reasonable range, because we already
divide the data along its feature space in Section 3.1.
Suppose we have Ny computers, each of which stores a
subset of the data samples. Then, we partition X; into N,
parts, and each part contains m,; samples. For each of the m;
samples, the computer contains its whole feature space of X;.



Now, in essence, we have partitioned the data into N» parts,
so the matrix X; can be represented as:

X; = (X1, X2, XM)' 3)
(X; "X;)~! can then be represented as:
(X TX) =) TX) “4)

So, the key computation step is to obtain the result of
o ;V:Ql(X'Z)TXﬁ_l in a distributed and efficient manner,

where Xf is an m; x n; matrix. In order to refer to this
term easily, we define it as M. Therefore, we have:

M=) 5)

Since n; is not very large, each computer is able to perform
the singular value decomposition (SVD) [Zhang, 2004] over
its data matrix (X?), which can then be represented as:

X/ - Ul (V)"

(X)X,

(6)

where Ug is an m; x m; orthogonal matrix, Qz isanm; xn;

rectangle diagonal matrix with non-negative real numbers on

the main diagonal, and (V?) T is an n; x n; orthogonal ma-

trix. Here, an orthogonal matrix is a square matrix with real

entries whose columns and rows are orthogonal unit vectors.
Substituting Eq. (6) into Eq. (5), we can get:

M = Z (X)) TXJ
=Y g v)hhHrulevht o
=Y Evie) ) Tueiv)
Since Ug is an orthogonal matrix, and we define A{ =
(Q27) T, then, we can continue from Eq. (7) and get:
M=% VIAI(V])T (8)

where V7 is an n; X n; orthogonal matrix, and A} is an

nj X n; diagonal matrix with non-negative diagonal elements.

Now, the inverse of each to-be-summed element in Eq. (8)

is very easy to compute. Considering the fact that V7 is an

orthogonal matrix, we have
(VIAlVD)T) = Vi)

vt ©)

The computation process of (Aj )~1 is just to compute the

inverse of each diagonal element of matrix AJ However,
computing the inverse of M which is the summation of those
terms, is not a trivial task. It will be addressed next.

Matrix Merging Process
Ideally, if we can represent M in such a form:

M=VAV' (10)

where V is an orthogonal matrix, and A is a diagonal ma-
trix with positive diagonal values, then, it is easy to compute
the inverse of M. Before transforming Eq. (8) into the form
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of Eq. (10) directly, we start with an easier step by merging
two matrices. The problem is to represent V7' A7 (V7)) T +
V72 A2 (V)T into the form of Eq. (10). Let us define:

Mi; = VIAP (VI T+ VEAZ(VE)T. A

Since both of the two terms in Eq. (11) are symmetric positive
definite matrices, according to Theorem 1 below, there exists

an invertible matrix P, such that PTV/' A7 (V) TP =1,
and PTV2AR(V2)TP = diag(A1, A2,...,A\n,;). This
conclusion means that P satisfies the following equation:

P M, P =1+ diag(Ai, Mg, ..o, Ay )- (12)
After simple deduction, we can get that:
M;; = (P~H T (I +diag(A1, Aoy ..., A, ) )P ! (13)
=P Y Tdiagh + 1, 0 +1,--- Ay, + P,

Continuing to apply the singular value decomposition to the
second half of Eq. (13), which is (P~1) "diag(\; + 1, A2 +
A, + )P, we can represent M;; as:
Next, we first propose and prove a theorem for the exis-
tence of such a P matrix, and then deliver the method for
computing P!
Theorem 1. VA € S, B € S", 3P, s.t.: (1) 3P~ 1, (2)
PTAP =1; 3) PTBP = diag(\;, Mo, ..., An).
Here, S} , refers to symmetric positive definite n X n ma-
trices and S™ refers to symmetric n X n matrices. Suppose
that A and B are both n x n matrices, A is positive definite,
and B is symmetric. Then, there exists an invertible matrix
P, which makes A congruent to the identity matrix [Zhang,
2004] and in the meantime, makes B diagonal. Here, the
symbol I denotes the identity matrix.

j

Proof. Since A is positive definite, then A is congruent to
the identity matrix. A € S7, = JPy, st. P; AP,
I. Since PlTBPl is symmetric, then we can orthogo-
nally diagonalize it to a diagonal matrix. B € S =
P,'BP, € S= 3Py st. (1) Py Py = PP, = 1I;
(2) P, ' P, 'BP, P, = diag(A1, A, ..., A\n). Defining P =
P, P, we then have PT AP = I, in the meanwhile, we have
PTBP = diag(A1, A2, ..., Ap). O

Now, we have finished the merging process of the matri-
ces. The merged matrix (IM,;) is also represented in the same
form as that before the merge. We can continue with the
merging process when M,;; ‘meets’ another matrix. Thus,
the key computation step now is to find matrix P 1.

The Computation Process of P!
In Eq. (11), AJ" is a diagonal matrix with all positive di-

agonal elements. So, suppose Aj1 = diag(A1, A2, ..., AL)
_1
and define (Agl) T = diag(\ 2 A0, A2, Py =
_1
(Agl) : V., then:
%
Pl =V, (Aﬁ) (14)



Multiplying Eq. (11) by Py from the left and by P{ from the
right, then we can obtain:

P,M,;P{ =P, V,A?V/P] + P,V,A?V]P

—1+ (A{1>_% VIV,AZV] Y, ((A{l)_%)T . (15

1

2

. 11 1
Here, we define (AJ? )~ = diag(A?, A3, ..., \?), and then

Eq. (15) can be further transformed to:

_1
2

V]V, (Agz)%

<((A{2)é>T VIV, <(Ag’1)_é>T . (16)

P, M,;P] =I+ (Ag'l)

1
2

1
Define Q = (A7") " VIV, (A", then Eq. (16) is sim-

plified as
P,M,P] =1+QQ". (17)
Applying singular value decomposition on Q, we can get:
Q=U,A,V, (18)

where U, and V, are orthogonal matrices, and A, is a diag-
onal matrix. Replacing Q in Eq. (17) by Eq. (18), we get:

P\M,;P] =1+ UA,V, (UA V)" (19)
=I+UAV,  V,(A) U] =T+ UA.(A,)TU/]
= UqU;r + Uqu(Aq)TUqT = Uq(I + AqA;r)UqT

Solving Eq. (19) for M;; and replacing Pfl by Eq. (14),

Mij = Pfqu(I + AQAZ)U;(Pfl)T

=V, (Ag'l) : U,I+A.A,)U, (Vi (Azl) é) T Q0

So, the inverse of the matrix P as described in Eq. (12) can
be directly calculated out as:

1 T
pl= (Vi (Ag‘l)E Uq> .

Transforming Merged Matrix into Standard Form
Now, we know P, and then the merged matrix can be rep-
resented as:

2

M

=P HTI+AA)PL (22)

M, is an n X n matrix. Applying singular value decomposi-
tion over M;;, we can represent it as:

M;; = Vi Ay V) (23)

where V; is an orthogonal matrix and A;; is diagonal matrix
with all positive diagonal elements.

So far, we are able to merge two matrices, each of which is
of the form as represented in Eq. (10), and continue to repre-
sent the merged matrix in the form of Eq. (10). As the process
goes on, we will in the end reach the final representation also
in the form of Eq. (10).
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4 Analysis of Computation Complexity

In this section, we only analyze in detail the computation
complexity of our proposed matrix manipulation (decompo-
sition and combination) approach, as for the PBCD part, it
has been well analyzed in [Tseng, 2001]. The number of iter-
ations needed for PBCD to converge is O(N7), where N is
the number of blocks. Within each iteration, the computation
complexity mainly relies on how to compute the inverse of
X, X,. Thus, if the computation complexity of X, X; is C,
then the overall computation complexity is C' x O(Ny).

4.1 Analysis of Matrix Manipulation Approach

Before analyzing the matrix manipulation approach’s compu-
tation complexity, we first lay down the evaluation metric.

Flops and Computation Complexity on Basic Operations
The computation cost of an operation can often be expressed
through the number of floating-point operations (flops). A
flop is defined as an addition, subtraction, multiplication or
division of two floating-point numbers [Boyd and Vanden-
berghe, 2004]. To evaluate the complexity of an approach,
we count the total number of flops, express it as a function
(usually a polynomial) of the dimensions of the matrices and
vectors involved, and simplify the expression by ignoring
all terms except the leading terms. So, we can express the
computation complexity of an SVD operation over a matrix
A € R™*™ as O(m?n + n3). The computation complexity
of a matrix-matrix product M = AB, where A € R™*"
and B € R"*P, is O(mnp).

Worst Case Complexity over a Single Computer

Since we are developing a distributed approach, computing
the overall computation complexity is not meaningful. So,
we here analyze the computation complexity over one single
computer. Since the data size is not necessarily the same, and
the computation process for one computer may end before the
approach exits, we consider the computation complexity of
the ‘worst’ computer. Here, the term ‘worst computer’ refers
to the computer performing the most complex computation
over the whole process.

Examining the approach flow process, we can see that we
are required to perform SVD over matrices X;, which needs
O(min; + n?) flops. Since we are considering the ‘worst
computation unit’, the computation complexity can be ex-
pressed as O(max; (m?) max; n; + max; (nj)) Then, the
approach requires the computation of U, and P~!. The com-
putation of U, requires three steps of max; n; x max; n;
matrix-matrix multiplication, and one step of SVD over a
max; n; X max;n; matrix, and the computation complex-
ity of the matrix-matrix multiplication and SVD are both
O(max; (n3)). Thus, the computation complexity of cal-
culating U, is O(max; (n?)). Likewise, the computation
of P~! requires two steps of max;n; X max;n; matrix-
matrix multiplication, and thus the computation complex-
ity is O(max; (n;)’ )). Multiplying the matrices together in-
volves two steps of max; n; X max; n; matrix-matrix mul-
tiplication, and hence the computation complexity is also
O(max; (n3)). Performing SVD over the final max; n; x
max; n; matrix requires O(max; (n?)). Summing together,
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Figure 1: Error versus computation cycles: (a) classification error comparison for classification data set 1; (b) classification
error comparison for classification data set 2; (c) mean square error comparison for regression data set 1; (d) mean square error

comparison for regression data set 2.

and dropping the constant terms, we can conclude that the
computation complexity is O(max; (n?)) The above com-
putation complexity is for one matrix merge operation. Now
we need to count how many operations of matrix merge we
actually need. We have N> computation units. After one
round of two-computer merge, we are left with [22] com-
puters, where [z] is the ceiling operator returning the small-
est integer which is larger than z. So, after at most [log, N ]
operations of matrix merge process, the approach ends.

In summary, the computation complexity for the
worst computer is O(max; (m?) max; n; + max; (n3) +
[log, No]max; (n?)). Dropping constant terms, we can

J
"
reach O(max; (m?) max;(n;) + [logy Na| max;(n;3)).

4.2 The Overall Computation Complexity

To sum up, the overall computation complexity of the pro-
posed matrix manipulation approach together with PBCD,
is O(Ny(max; (m7) max; (n;) + [logy No| max; (n3))). If
we assume a uniform division among the data feature space
among Nj, and also a uniform division among data sam-
ples over Ny (which is suggested), the worst case computer’s
computation complexity would be O(Ni([#£1*[ =1 +

N2
[logy Na 115, 1°))-

5 Experimental Evaluation

We evaluate the proposed approach through answering the
following common questions: 1) How accurate is our dis-
tributed approach? Are we computing the same results as
the centralized algorithm? 2) How fast is our approach? Is
it (much) faster than canonical distributed machine learning
methods that deal with big data?

5.1 Experimental Settings

In order to test the efficiency of the inherently distributed al-
gorithm, we implement it in a distributed computation frame-
work (Hadoop). Experimental settings are as follows: ama-
zon instance category—r3 large; number of instances—5; op-
erating system—Red Hat Enterprise Linux7.1(HVM)-64bit;
RAM-15GB; Number of virtual CPUs for each instance—2
We test the performance of our algorithm and two bench-
mark algorithms on both regression and classification tasks.
For classification, we select two data sets. One is the URL
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Reputation data set [Ma er al, 2009] from the UCI ma-
chine learning repository. The total number of instances is
2,396,130 and the total number of attributes is 3,231,961. We
name this data set as classification data set 1. The other
one is the UJIIndoorLoc data set [Joaquin Torres-Sospedra,
2014]. The number of instances is 21,048, and the number of
features is 529. We name the data set as classification data
set 2. For regression, the first data set is the Relative location
of CT slices on axial axis data set [Graf et al., 2011] from
the UCI machine learning repository. The total number of in-
stances is 53,500 and the total number of attributes is 386. We
name the data set as regression data set 1. The second data
set we choose is the BlogFeedback data set [Buza, 2014]. The
number of data samples is 60,021, and number of features is
281. We name it as regression data set 2.

For the classification task, we apply our approach on sup-
port vector machines, and compare it with two other state-
of-the-art algorithms, namely Consensus-Based Distributed
Support Vector Machines (CB-DSVM) [Forero et al., 2010]
and Parallelizing Support Vector Machines on Distributed
Computers (P-SVM) [Zhu et al., 2008]. For the regression
problem, we apply our proposed distributed machine learning
approach on linear regression, and compare the performance
with two canonical distributed linear regression algorithms,
namely distributed sparse linear regression (DS-LR) [Mateos
et al., 20101, and Finito [Defazio et al., 2014]. It is worth
noting here that Finito was not proposed specifically for mak-
ing linear regression algorithms distributed. However, since
Finito targets at distributing the optimization problem of min-
imizing summation of squares, it is straightforward to apply
it to linear regression algorithms.

Since almost all canonical distributed machine learning al-
gorithms, including our proposed approach, guarantee to con-
verge to the optimum, i.e., the same result as the correspond-
ing centralized machine learning algorithm, the key perfor-
mance index is then the convergence rate, i.e., how fast these
approaches can converge.

5.2 Experimental Results

We implement all the competing distributed machine learning
algorithms in the same environmental context (i.e., the same
number of machines, the same configuration of Hadoop and
EC2, the same training and testing data set, the same cross
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Figure 3: Convergence time versus data feature space (n): (a) classification convergence time comparison over classifica-
tion data set 1; (b) classification convergence time comparison over classification data set 2; (c) regression convergence time
comparison over regression data set 1; (d) regression convergence time comparison over regression data set 2.

validation scheme (10-fold cross validation)), and compare
the testing error decreasing curves in Fig. 1a to Fig. 1d. In
these four figures, we bring about a concept called cycle. We
define a cycle as the time point, in which all the computers
have finished one round of computation. The average com-
putation time needed for one cycle for our approach as well
as the other four algorithms (two for classification and two
for regression) is given in Table 1. Note that for both classi-
fication and regression data sets, it is impossible to perform
the centralized machine learning algorithm, thus there is no
performance measurement being plotted in the figures.

Table 1: System execution time per cycle for the our ap-
proach, P-SVM, CB-SVM, Finito and DS-LR (in minutes)

Classification | Ours | P-SVM | CB-SVM
Data Set 1 6.46 | 18.56 25.85
Data Set 2 2.10 4.89 5.70
Regression Ours | Finito DS-LR
Data Set 1 0.53 4.55 243
Data Set 2 0.48 442 2.58

As shown in all the four figures in Fig. 1, our algorithm
achieves better testing error performance in every cycle. It
means that, given time constraint, if we have to stop the al-
gorithm at an arbitrary time point, our approach would yield
better performance. Here, we wish to point out (details are
explained in [Defazio et al., 2014]) that the regression error
might increase as the number of iterations (cycles in our fig-
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ure) increases, because the underlying random sampling ap-
proach might temporarily drive the parameters further away
from the optimum. This phenomenon appears in Fig. 1c and
Fig. 1d in our experimentation.

Now, we further evaluate how the computation time of our
approach changes when the size of the data (m) and the num-
ber of features (n) vary. We argue that this evaluation process
is quite important in that it verifies the scalability of our ap-
proach with respect to data size and feature space.

Fig. 2a to Fig. 2d show how the system convergence time
changes as we change the number (m) of data samples for
different data sets and different tasks, i.e., classification and
regression. Likewise, Fig. 3a to Fig. 3d show how the system
convergence time changes as we change the number (m) of
data samples for different data sets and different tasks. Here,
the system converges if the computed error at the current cy-
cle is the same as the error at the previous cycle. The total
time consumed (for the ‘worst’ computer) till the end of the
current cycle is defined as system convergence time. We can
see that our approach has better scalability performance when
the number of data samples (m) and the number of features
(n) increase.

6 Conclusion and Future Work

This paper proposes a distributed approach for large scale ma-
chine learning. We show the performance comparison of our
approach when applied to SVM and linear regression with
four other canonical distributed or big data machine learn-
ing algorithms. Experimental results verify that our approach



achieved better convergence rate. In the future, we will fur-
ther investigate the PBCD part of our approach, since it still
requires a lot of computation efforts.
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