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Abstract
Crowdsourcing has been a helpful mechanism
to leverage human intelligence to acquire useful
knowledge for well defined tasks. However, when
aggregating the crowd knowledge based on the cur-
rently developed voting algorithms, it often results
in common knowledge that may not be expected.
In this paper, we consider the problem of collecting
as specific as possible knowledge via crowdsourc-
ing. With the help of using external knowledge
base such as WordNet, we incorporate the seman-
tic relations between the alternative answers into
a probabilistic model to determine which answer
is more specific. We formulate the probabilistic
model considering both worker’s ability and task’s
difficulty, and solve it by expectation-maximization
(EM) algorithm. Experimental results show that
our approach achieved 35.88% improvement over
majority voting when more specific answers are ex-
pected.

1 Introduction
Crowdsourcing [Howe, 2006] has been successfully used for
leveraging human intelligence to perform tasks that comput-
ers are currently unable to do well. It has been applied to
many applications such as named entity resolution [Wang
et al., 2013], image annotation [Russell et al., 2008], audio
recognition [Hwang and Lee, 2012], video annotation [Von-
drick et al., 2013], etc. However, when crowdsourcing is
applied to knowledge acquisition, such as information ex-
traction and image annotation, a problem of what kind of
knowledge should be acquired arises. To our best knowl-
edge, most aggregation algorithms for crowdsourcing results
are based on majority voting or its variants. In voting ap-
proaches, aggregated answers tend to converge to common
or commonsense knowledge which is usually labeled with
entry-level concepts (or basic level concepts) [Waggoner and
Chen, 2014]. For object recognition, it is more consistent
with human that machine can recognize objects with their en-
try level concepts. [Ordonez et al., 2013; Feng et al., 2015].
However, for knowledge acquisition, more specific concepts
are often preferred. On the one hand, more specific knowl-
edge means more concrete annotations or answers to an in-

stance or a question. On the other hand, we can easily map
the specific concepts to more general concepts when having
a good enough knowledge base of taxonomy. Whereas it is
more difficult to instantiate a general concept to more specific
concepts by a computer on the fly. For example, if we want to
annotate a picture of a hummingbird and most workers label
it as bird, and the voting algorithm consequently annotates it
as bird, then there is no chance to acquire the knowledge of
hummingbird given the fact that the decision has been made.

In this paper, we focus on how to generate more spe-
cific knowledge from crowdsourcing results. There are two
major challenges for the problem. First, more specific an-
swers are often labeled with less workers compared with
common and commonsense knowledge. Therefore, it is un-
likely to directly obtain such information from the voting
results. Nonetheless, if we have some external knowledge
showing that some concepts are subconcepts of higher level
concepts, then we can derive a model to incorporate this
knowledge into voting to re-weight the more specific con-
cepts. Several knowledge bases have broad coverage of this
kind of concept-subconcept relationship [Fellbaum, 1998;
Lenat and Guha, 1989; Speer and Havasi, 2012; Wu et al.,
2012]. We employ WordNet [Fellbaum, 1998] here to serve
as external knowledge.

Second, since human behaviors can contain strategies, mis-
takes and malevolence, how to aggregate from these unreli-
able multiple answers to a credible one is an important prob-
lem in crowdsourcing. Different workers may have differ-
ent answering ability while different tasks may be of differ-
ent difficulty for different workers. Therefore, it has been
shown that incorporating worker ability and/or task difficulty
into crowdsourcing decisions can significantly improve the
results [Whitehill et al., 2009; Salek et al., 2013; Zhou et al.,
2012]. For more specific knowledge, the worker ability and
task difficulty are more critical issues, since crowdsourcing
platforms are usually not developed for any specific domain,
and workers on the platforms may not be domain experts.
Therefore, it will be more important to consider these two
factors into the decision models. For example, we need to
consider how these factors interact with the external knowl-
edge in our case.

Given the above challenges and considerations, we pro-
pose a probabilistic model called Simplicity-ability Estima-
tion model with External Knowledge (SEEK), in which we
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Figure 1: Example of hierarchical knowledge labels.

factorize the conditional probability of the most specific trust-
worthy labels with respect to task difficulty, worker ability,
and the external knowledge. Here we use the term “task
simplicity” instead of “difficulty” to make this factor consis-
tent with worker ability. Then the expectation-maximization
(EM) algorithm is adopted to solve this model. There have
been some great studies on acquiring binary relationships
to construct a taxonomy of concepts [Chilton et al., 2013;
Bragg et al., 2013; Sun et al., 2015], and also using the
taxonomy to classify items based on multi-label classifica-
tion [Bragg et al., 2013]. Compared to their approaches
that ask any binary questions in a taxonomy and intelligently
choose which questions to ask by the control algorithm, our
approach asks the workers input one label and decides which
one among all the labels is more specific.

The contributions of this paper are summarized as follows.
• We propose a crowdsourcing problem which targets to

acquire more specific knowledge from workers.
• We propose a decision making algorithm that can esti-

mate task simplicity, user ability, and incorporate exter-
nal knowledge to solve the problem.

• We conducted a set of experiments to demonstrate the
effectiveness and advantages of our work in comparison
with the state-of-the-art approaches.

2 Problem Formulation
In this section, we introduce our problem formulation of
knowledge acquisition with crowdsourcing.

2.1 Definition of KAC
We call our problem as the knowledge acquisition with
crowdsourcing (KAC) problem in general. Formally, we de-
fine the KAC problem as follow.
Definition 1 KAC Problem. Let D = {d

j

|j 2 I

D

} be the
unlabeled task set, W = {w

i

|i 2 I

W

} be the workers set, and
⌦ = {x

k

|k 2 I⌦} be the label domain set.1 We denote the
label set L = {L1, L2, ..., Ln

} where L
j

2 L contains labels
that workers give to d

j

. Namely, for 8d
j

2 D we get label
set L

j

= {l
ij

|i 2 I

W

, j 2 I

D

} from workers. The problem
of KAC is to find a function f : ⌦

|D|⇥|W | ! ⌦

|D|, which
generates the most specific label from all the labels provided
by workers for each task.

Let F = {f |f : ⌦

|D|⇥|W | ! ⌦

|D|} be the universal set of
aggregation algorithms of KAC. Then with the well-defined

1
I

X

is an index set of set X

Knowledge Base

N Results

…Result
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Figure 2: Workflow of crowdsourcing with external knowl-
edge.

value function v : F ! R which measures quality of the al-
gorithms, we can formulate the aggregation problem of KAC
as to find a function f

⇤:

f

⇤
= argmax

f2F

v(f). (1)

For instance, if there are 100 tasks, 10 workers, and 4 candi-
date labels for workers to choose, then the aggregation algo-
rithm is to find a function with a 100⇥10 label matrix as input
and a 100 dimensional label vector as output. Each element
of the label vector is the final answer to the corresponding
task in one of the 4 candidate labels.

2.2 Definition of HKAC
When the alternative answers from workers have concept-
subconcept relationship with each other, we call the prob-
lem Hierarchical Knowledge Acquisition with Crowdsourc-
ing (HKAC). In this case, the labels has the hierarchical ar-
borescence structure as shown in Figure 1. If a label is an-
other label’s parent node, this means the concept of the first
label is more general than that of the second one. Conversely,
if a label is one of the child nodes of another label, this means
the concept of the first label is more specific than that of the
second one. The HKAC problem is to choose a label as spe-
cific as possible even when workers provide more common
labels than relatively specific labels. Since voting cannot help
us choose the more specific labels, we propose to use external
knowledge base, i.e. WordNet, to identify the semantic rela-
tions among alternative labels. Specifically, we denote the
relation function as R : ⌦⇥⌦ ! R. We introduce following
notations and properties for further use.
Definition 2 Transitivity and Symmetry. If concept c

k

is
a parent node of c

l

, then c

k

2 hypernym(c

l

). For 8c
k

2
hypernym(c

l

), we have hypernym(c

k

) 2 hypernym(c

l

).
Moreover, if c

k

2 hypernym(c

l

), then c

l

2 hyponym(c

k

)

and vice versa.

2.3 Workflow
To incorporate the hierarchical knowledge, we propose a
crowdsourcing workflow as shown in Figure 2. Different
from general crowdsourcing workflows, we incorporate ex-
ternal knowledge to conquer the convergence of labels to
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common knowledge. The steps of this workflow is listed as
follows.
Step 1: A requester publishes tasks to a crowdsourcing plat-

form, e.g. Crowdflower2.
Step 2: The platform assigns tasks to workers according to

its scheduling policies and user-specified constraints.
Step 3: For each received task, a worker provides a label

which s/he believes the best to describe the object or an-
swer the question in the corresponding task.

Step 4: After collecting all the labels from workers, we run
our model with the external knowledge base to infer the
aggregated result for each task. Finally, all the aggre-
gated results are returned to the requester.

3 SEEK Model
In this section, we first show the relation function derived
from external knowledge base WordNet (Section 3.1). Then
we propose a naively modified majority voting algorithm to
incorporate the external knowledge (Section 3.2). We further
introduce a probabilistic model to let the external knowledge
interact with task difficulty and worker ability (Section 3.3).
Finally, we complete SEEK model and give a solution to it
using EM algorithm (Section 3.4)

3.1 External Knowledge
We derive a relation function R : ⌦ ⇥ ⌦ ! R over the label
domain based on external knowledge to describe the semantic
relation of labels. Specifically, R(x

k

, x

l

) is defined as:

R(x

k

, x

l

) =

8
><

>:

1 if x
k

= x

l

1�Dist(x

k

, x

l

) if x
k

2 hypernym(x

l

)

0 otherwise

, (2)

where Dist(x

k

, x

l

) is a normalized distance between two
nodes on WordNet graph. It is computed as the length of the
shortest path between two nodes to their common ancestor
over the length of the path from the shallower node to the
root.3 The value of function R(x

k

, x

l

) means the scale of
x

k

giving a support to x

l

to find the most specific labels x

l

if x
k

is a hypernym of x
l

. Note that here we only consider
two nodes being the same and single-direction hypernym re-
lationship, and exclude other relations including hyponym.

3.2 Majority Voting with External Knowledge
In original majority voting, we evaluate each label x

k

2 ⌦

j

based on its frequency: �

jk

=

P
i I(lij=xk)P

k

P
i I(lij=xk)

, where I is
an indicator function. In weighted majority voting, which
we call Majority voting With ability Weight (MWW) algo-
rithm, we weight each label with worker i’s ability a

i

: �
jk

=P
i aiI(lij=xk)P

k

P
i aiI(lij=xk)

. We can compute the work’s ability simply

using the aggregated label confidence a
i

=

P
j,k �jkI(lij=xk)P

j,k �jk
.

Given the relation function, we can derive a simple Major-
ity voting With external Knowledge (MWK) algorithm based

2https://www.crowdflower.com
3https://rednoise.org/rita/reference/RiWordNet.html

Algorithm 1 Majority Voting with External Knowledge
Input: Label set L = {l

ij

2 ⌦|i 2 I

W

, j 2 I

D

} and relation
matrix R sized of |⌦|⇥ |⌦| with elements varying form 0 to 1

Output: Aggregation labels LT

= {lT
j

2 ⌦

j

|j 2 I

D

}
1: Initialization:
2: Worker i’s ability parameter a(0)

i

= 1

3: Score for label x
k

in task j as �(0)
jk

=

P
i a

(0)
i I(lij=xk)

P
k
P

i a

(0)
i I(lij=xk)

4: for n = 1 to maxIter do
5: if ability error < tolerance then
6: break
7: end if
8: �

0
jk

= �

(n)
jk

+

P
k

0 6=k

R(k

0
, k)�

(n)
j,k

9: Update �

(n+1)
jk

=

�

0
jkP

k �

0
jk0

10: Update a

(n+1)
i

=

P
j,k �

(n+1)
jk I(lij=xk)

P
j,k �

(n+1)
jk

11: end for
12: l

T

j

= argmax

xk
�

jk

on MWW algorithm which is shown in Algorithm 1. Given
the label set L and relation matrix R, it infers an answer to
each task. First, the parameters of worker ability and the
score of each label are initialized to be 1 and the label fre-
quency in the corresponding task respectively. Then, it iter-
ates the process, during which the ability and scores update
themselves using the relation matrix until convergence. Line
8 is the core of this algorithm which updates the new scores
by itself �(n)

jk

and the support
P

k

0 6=k

R(x

k

0
, x

k

)�

(n)
j,k

0 which
is the aggregated quantity from other equal or more general
labels corresponding to the same task. The sum of the new
scores corresponding to one example is not 1 because of the
addition in line 8. Thus we normalize it as shown in line 9.
The remaining process is the same as MWW algorithm.

3.3 Probabilistic Modeling
MWK considers the external knowledge and worker ability in
a naive way. Now we introduce a more general and fine tuned
model to incorporate both worker ability and task simplic-
ity. From the probabilistic point of view, we regard R(x

k

, x

l

)

as a non-negative, monotonically increasing function of the
probability of the label l

ij

= x

k

given the aggregated label
L

T

= {lT
j

|j 2 I

D

}, namely

R(x

k

, x

l

) = g(p(l

ij

= x

k

|lT
j

= x

l

)), (3)

where g(·) is a monotonic function. For instance, given task
j’s label domain ⌦

j

= {dog, husky, poodle} and assuming
worker i has normal intelligence and will do the work to her
best, if we consider LT

= {lT
j

|j 2 I

D

} as the perfect estima-
tion of groundtruth labels, we have three cases as follows.

• l

T

j

= husky and l

ij

= l

T

j

= husky. As the definition
in Eq. (2), we have p(l

ij

= husky|lT
j

= husky) =

g

�1
(1) where g

�1 is the inverse function of g. It means
that for a normal worker i, she will give the most specific
trust label with very high probability.

• l

T

j

= husky and l

ij

= dog. So p(l

ij

= dog|lT
j

=

husky) = g

�1
(1 � Dist(dog, husky)), where for ex-
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Figure 3: Factor graph of SEEK model.

ample we have 1�Dist(dog, husky) = 0.86) based on
WordNet. It means that worker i does not know the con-
cept of husky and she has a high probability of labeling
it as “dog.”

• l

T

j

= husky and l

ij

= poodle. Here we have p(l

ij

=

poodle|lT
j

= husky) = g

�1
(0) (note that we only

have positive scores when two concepts are equal or has
“hypernym” relationship) which does not mean p(l

ij

=

poodle|lT
j

= husky) = 0 but means the probability of
this case is small. It also means that worker i misunder-
stands the conceptual relationship of “husk” and “poo-
dle.”

Based on the discussion above and inspired by [Whitehill
et al., 2009], we represent the conditional probability of l

ij

given l

T

j

, a

i

, s

j

with a softmax function:

p(l

ij

|lT
j

, a

i

, s

j

) =

e

(ai+sj)R(lij ,l
T
j )

P
l2⌦j

e

(ai+sj)R(l,lTj )
, (4)

where a

i

2 R is the ability parameter of worker i and s

i

2 R
is the simplicity parameter of task j. We define the advantage
score t

ij

= a

i

+ s

j

which demonstrates the advantage for
worker i to figure out the task’s trustworthy answer label. For
a positive t

ij

> 0, the larger t
ij

is, the more possibly worker
i gives the trustworthy specific label to task j. Otherwise,
worker i will be regarded as venomous when t

ij

< 0. Par-
ticularly when t

ij

= 0, the distribution of l
ij

turns out to be
uniform which means worker i has no idea about task j and
gives label randomly.

By our definition, obviously p(l

ij

|lT
j

, a

i

, s

j

) distributes
over ⌦

j

if we decompose ⌦ by

⌦ =

[

j2ID

⌦

j

. (5)

The size of ⌦
j

depends on the unique labels workers provide
for task j. Thus, for a certain task, we have a small range of
distribution while the total label domain can be quite large.

3.4 Inference
Based on the discussion in Section 3.3, we formally intro-
duce the SEEK model as shown in Figure 3. We have l

ij

being the observed labels falling in label domain ⌦

j

. The
unobserved variables are the “perfect” label lT

j

, the ability
parameter a

i

, the simplicity parameter s
j

, the advantage t

ij

,

and l

ij

’s conditional probability variable D

ijk

. In addition
there is known parameter set of the relation matrices {R

kl

}
as external knowledge. In this model, our goal is to find the
posterior distribution of l

T

j

and select the label lT
j

with the
maximum a posterior estimation as the final answer to task j.

Through the addition of a
i

and s

j

we get variable advan-
tage t

ij

= a

i

+ s

j

. D
ijk

= p(l

ij

= x

l

|lT
j

= x

k

, a

i

, s

j

), x

k

2
⌦

j

which is the probability in multinomial distribution. The
prior distribution of lT

j

is a uniform discrete distribution over
label domain ⌦

j

. D
ijk

and l

T

j

determines the distribution of
l

ij

which is observable.
For simplicity, we ignore the prior of a

i

and s

j

and we use
EM algorithm to obtain maximum likelihood estimates of the
parameters of a

i

and s

j

similar to [Whitehill et al., 2009].
Expectation Step: Let L

j

= {l
ij

|i 2 I

W

}, a = {a
i

} and
s = {s

j

}. Then for 8j 2 I

D

, we compute p(l

T

j

|L, a, s) as:

p(l

T

j

|L, a, s) =
p(l

T

j

)

Q
i

p(l

ij

|lT
j

, a

i

, s

j

)

P
l

T
j 2⌦j

p(l

T

j

)

Q
i

p(l

ij

|lT
j

, a

i

, s

j

)

. (6)

Maximization Step: Let L = {l
ij

|i 2 I

W

, j 2 I

D

}, and
L

T

= {lT
j

|j 2 I

D

}. We compute the standard auxiliary func-
tion Q:

Q(a

old

, s

old

, a, s)

=E

⇥
ln p(L,L

T |a, s)
⇤

=

X

j

E

⇥
ln p(l

T

j

)

⇤
+

X

ij

E

⇥
ln p(l

ij

|lT
j

, a

i

, s

j

)

⇤

=Const+

X

ij

X

l

T
j 2⌦j

p(l

T

j

|L, aold, sold) ln p(l
ij

|lT
j

, a

i

, s

j

).

(7)
We use the old parameters aold and s

old to update new a and
s via gradient ascent by

(a, s) = argmax

(a,s)
Q(a

old

, s

old

, a, s). (8)

The derivation detail is omitted due to the lack of space. We
will provide the details and the code upon the publication of
this paper. The EM algorithm is summarized in Algorithm 2.

4 Evaluation
In this section, we report the evaluation results of the pro-
posed SEEK model in terms of correctness and effectiveness.
We first introduce how to generate the data we used in Sec-
tion 4.1. Then we show the results based on the data we have,
and compare different approaches in Section 4.2.

4.1 Data Preparation
We used the images shown in LEVAN (learn everything about
anything) project [Divvala et al., 2014] which provides many
categories of images in different granularities of concepts.
The concepts we used were chosen from the following set of
top-level concepts {bird, dog, cat, crow, horse, sheep}. We
crawled the images in different concepts and filtered out the
images with dead URLs and finally obtained 631 unambigu-
ous images for experiments.
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Algorithm 2 EM Algorithm for SEEK Model
Input: Label matrix L = {l

ij

2 ⌦|i 2 I

W

, j 2 I

D

} and relation
matrix R sized of |⌦|⇥ |⌦| with elements varying form 0 to 1

Output: aggregation labels LT

= {lT
j

2 ⌦

j

|j 2 I

D

}
1: Initialization:
2: worker i’s ability parameter a

i

= 1 v
3: task j’s simplicity parameter s

j

= 0

4: for n = 1 to maxIter do
5: if sum of ability and simplicity errors < tolerance then
6: break
7: end if
8: E step:
9: compute p(l

T

j

|L, a, s)
10: M step:
11: update a, s by max

a,s

E[ln p(L,L

T |a, s)]
12: end for
13: l

T

j

= argmax

l

T
j
p(l

T

j

|L, a, s)

We followed the workflow shown in Section 2.3 based on
Crowdflower, and ensured that the quality of labels by em-
ploying level 3 worker which is the maximum level of worker
in the platform. We gave a brief instruction for workers to
provide as specific labels as possible. For each task, workers
were asked to fill a textbox with the label they gave to the
image.

Originally, we planned to present the candidate label set
with the corresponding concepts in WordNet on Crowdflower.
However, Crowdflower does not support to dynamically ex-
tract concepts from WordNet, we have to ask workers in-
put labels in a textbox. Hence, after we retrieved these 631
tasks and their 6,310 labels where 10 labels for each task and
corrected misspelling manually, we checked the labels with
WordNet and retained the labels which can be found in Word-
Net.

For evaluation, the “groundtruth” is not the right category
provided by LEVAN but the best one that contains the most
specific knowledge for each image. Moreover, the original
LEVAN’s annotation of the most specific category is not good
enough. Thus, we fixed the groundtruth of labels l

T

j

from
task j’s label domain ⌦

j

manually.4 Each task was labeled
by two colleagues in our lab and only the labels agreed by
both of them were retained as ground truth. Then 344 tasks
remained, and in which there were 142 tasks whose label do-
mains contained only one label that means no aggregation is
needed. Thus, we further filtered out these 142 tasks out of
344 tasks, and had finally 202 tasks for evaluation. During
our labeling process, we found that the challenge of deter-
mining the “groundtruth” lies in the difficulty to distinguish
very conceptually similar labels. For example, example con-
flict cases like crow and raven, eagle and hawk etc. Moreover,
⌦

j

may contain two labels which describe different objects in
the same image that we cannot tell which is more specific.

Among the selected 202 tasks, there are 1789 labels anno-
tated by 154 workers and the number of unique labels is 92,
which is considerably large compared to other crowdsourcing
tagging tasks. The partial distribution of these labels is shown

4We have released our data on https://github.com/maifulmax/
IJCAI16-SEEK.git.
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Figure 4: Partial distribution of labels.

in Figure 4. We sorted the unique labels in descent order of
the frequency of original workers’ labels, which is indicated
as “Total” in the figure. We also show the “groundtruth” la-
bels fixed by us in the same figure. Then comparing the dis-
tribution the labels of “Total” and “Groundtruth,” we can see
that the labels with high frequencies in original workers’ la-
beling results are mostly common knowledge. Contrarily, the
labels in groundtruth set are more specific labels.

4.2 Comparison Results
We implemented six algorithms for comparison: our SEEK
algorithm, Majority Voting (MV), Majority voting With abil-
ity Weight (MWW), Majority voting With external Knowl-
edge (MWK), Zhou’s minimax entropy method (Zhou) [Zhou
et al., 2012] and “get another label” [Sheng et al., 2008;
Ipeirotis et al., 2010] which is based on Dawid and Skene’s
method (DS) [Dawid and Skene, 1979]. Among these al-
gorithms, SEEK and MWK incorporate external knowledge.
MWK uses the knowledge in a naive way, while SEEK
“learns” the parameters of a

i

and s

j

respectively.
The precisions of all the algorithms are shown in Table 1.

Since in our overall problem, we have a much larger set of
unique labels, the problem is more difficult than the prob-
lems that have been evaluated in previous works [Sheng et
al., 2008; Ipeirotis et al., 2010; Zhou et al., 2012]. We can
see from Table 1 that precisions of Zhou and DS are com-
parable to that of MV and MWW, since they are essentially
the same category of algorithms. The difference among them
is how to incorporate the worker ability and task simplicity.
However, it seems for our problem, the difference of how to
evaluate these parameters does not affect the final results too
much. Since they do not consider the specificity of the la-
bels, purely estimating the worker ability and task simplic-
ity may even hurt the result when the model is too complex.
MWW also considers the weights to enhance the influence
of the majority labels through the worker “ability.” Because
of the scarcity of data, the way MWW estimating the ability
does not affect the results at all and MWW and MV result
in the exact same accuracy. Finally we can see that SEEK’s
precision is 61.88% and it is 35.88% improvement compared
to majority voting. It is interesting to see that MWK is also
significantly better than majority voting. This means that for
our problem, incorporating external knowledge may be more
useful than incorporating the worker ability and task simplic-
ity. Nonetheless, the way to estimate the worker ability and
task simplicity and the way to interact with knowledge also
help, which results in SEEK being better than MWK.
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Table 1: Precision of different algorithms on our data.

Methods Precision
Zhou 43.07%
DS 42.57%
MV 45.54%

MWW 45.54%
MWK 55.94%
SEEK 61.88%
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Figure 5: Log frequencies of resulting labels.

We finally report the resulting label distribution in Figures
5 and 6. In Figure 5, we compare the distribution of different
algorithms separately, where the horizontal axis represents
the same labels shown in Figure 4. Due to the space limit,
we only show the IDs of labels instead of the labels them-
selves. We can see the distributions of MV/MWW, Zhou,
and DS concentrate mostly on high frequency labels, which
shows that they tend to vote for common labels among all
the data. For SEEK and MWK, they have longer tailed dis-
tribution compared to MV/MWW. However, because of the
scarcity of the data, it seems the estimation of the total label
distribution is still not perfect. We also show a more detailed
partial distribution in Figure 6, where we only compare MV,
SEEK, and the “groundtruth” labels. We can see that for the
low frequency labels like “hawk,” “bluebird,” and “seagull,”
SEEK’s results are closer to the “groundtruth.”

5 Conclusions and Discussion
In this paper, we identify a new problem of acquiring more
specific knowledge based on crowdsourcing. We propose a
novel probabilistic model that can leverage the knowledge in
external knowledge bases such as WordNet. In the proba-
bilistic model, we automatically learn the worker ability and
task simplicity to customize the algorithm to fit the data. We
show that using the external knowledge can achieve great im-
provement over voting-like methods, and learning the worker
ability and task simplicity also helps improve the perfor-

mance compared with naive weighting for the worker ability.
Therefore, we can conclude that for the problem of acquir-
ing more specific knowledge using crowdsourcing, both ex-
ternal knowledge and crowdsourcing specific parameters (e.g.
worker ability and task simplicity) are important.

One remaining problem is that when we designed the
crowdsourcing tasks, the workers cannot see the external
knowledge base. We presume that if we can show workers
with the knowledge base or if the workers can interact with
the knowledge base, the final result may be better than the
current one. Another problem is that majority voting still suf-
fers from the scarcity of the data. In our problem, we have
a lot of unique labels compared to previous crowdsourcing
tasks, and each task may be more difficult than traditional
crowdsourcing problems (if we compare common concepts
with more specific concepts). Therefore, each task may need
more workers to vote for a good result. Thus, if we allow
more workers to label the same task, the majority voting re-
sults may also be improved. However, in this case, the cost of
crowdsourcing also increases. Previously crowdsourcing has
been proven to be more useful for simpler tasks. This work
can be regarded as one of the first attempts that try to work
on more difficult problems by combining both crowdsourcing
and traditional knowledge bases.
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