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Abstract

Last decades have witnessed a number of studies
devoted to multi-view learning algorithms, how-
ever, few efforts have been made to handle on-
line multi-view learning scenarios. In this paper,
we propose an online Bayesian multi-view learn-
ing algorithm to learn predictive subspace with
max-margin principle. Specifically, we first de-
fine the latent margin loss for classification in the
subspace, and then cast the learning problem into
a variational Bayesian framework by exploiting
the pseudo-likelihood and data augmentation idea.
With the variational approximate posterior inferred
from the past samples, we can naturally combine
historical knowledge with new arrival data, in a
Bayesian Passive-Aggressive style. Experiments
on various classification tasks show that our model
have superior performance.

1

Nowadays, multi-view data are often generated from mul-
tiple information channels continuously, e.g., hundreds of
YouTube videos consisting of visual, audio and text fea-
tures are uploaded every minute. Multi-view learning arouses
amounts of interests in the past decades [Blum and Mitchell,
1998; Yarowsky, 1995; Gonen and Alpaydin, 2011; Quang et
al., 2013; Sun and Chao, 2013]. Among them, the multi-view
subspace learning approaches aim at obtaining a subspace
shared by multiple views and then learning models in the
shared subspace [Sharma et al., 2012; Hardoon et al., 2004,
Guo and Xiao, 2012]. They are very useful for cross-view
classification and retrieval. However, these approaches are
prone to overfitting to small training data without consider-
ing the maximum margin principle. In [Chen er al., 2012],
a large-margin harmonium model (MMH) based on latent
subspace Markov network is developed for multi-view data.
But MMH is under the maximum entropy discrimination
framework and cannot infer the penalty parameter of max-
margin models in Bayesian style automatically. In [Du ef al.,
20151, a posterior-regularized Bayesian approach is proposed
to combine Principal Component Analysis (PCA) with the
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max-margin learning, which can infer the penalty parameter
of max-margin models but cannot address multi-view data.

On the other hand, multi-view data often cannot be col-
lected in a single time due to temporal and spatial constric-
tions in applications, while the traditional multi-view algo-
rithm need store the entire training samples. Online learn-
ing is an efficient method to address this problem. Many ef-
forts have been made on the studies of online learning [Cesa-
Bianchi and Lugosi, 2006; Hazan et al., 2007; Chechik et
al., 2010]. Unfortunately, there are few studies about on-
line multi-view learning. OPMYV is one of the few online
multi-view learning [Zhu et al., 2015]. OPMV is not in a
Bayesian framework and does not introduce the max-margin
principle, thus it is prone to overfitting to small training data.
And OPMV is formulated as a point estimate by optimiz-
ing some deterministic objective function. Online Passive-
Aggressive (PA) learning provides a method for online large-
margin learning [Crammer et al., 2006]. Although it enjoys
strong discriminative ability suitable for predictive tasks, it is
also formulated as a point estimate by optimizing some de-
terministic objective function. The point estimate can be af-
fected seriously by inappropriate regularization, outliers and
noises, especially when the training data arrive sequentially.
Based on the online PA learning, Shi proposes a Bayesian PA
learning method [Shi and Zhu, 2013] which infers a posterior
under the Bayesian framework instead of a point estimate.
Nevertheless, these online learning methods cannot process
multi-view data. To the best of our knowledge, there has been
few efforts focused on online multi-view learning under the
Bayesian framework.

In this paper, we address the aforementioned problems by
developing an online Bayesian multi-view subspace learn-
ing method with max-margin principle. Specifically, we first
propose a predictive subspace learning method based on fac-
tor analysis and define a latent margin loss for classification
in the subspace. Then we cast the learning problem into a
variational Bayesian framework by exploiting the pseudo-
likelihood and data augmentation idea which allows us to
automatically infer the penalty parameter. With the varia-
tional approximate posterior inferred from the past samples,
we can naturally combine historical knowledge with new ar-
riving data, in a Bayesian Passive-Aggressive style. We up-



date our model with the training data coming one by one,
instead of storing all training data. Experiments on synthetic
and various real classification tasks show both our batch and
online model have superior performance, compared with a
number of competitors.

Related Work
The earliest works of multi-view learning are introduced
by Blum and Mitchell [Blum and Mitchell, 1998] and
Yarowsky [Yarowsky, 1995]. Nowadays, there are many
multi-view learning approaches, e.g., multiple kernel learn-
ing [Gonen and Alpaydin, 20111, disagreement-based multi-
view learning [Blum and Mitchell, 1998] and late fusion
methods which combine outputs of the models constructed
from different view features [Ye er al., 2012]. Especially,
the multi-view subspace learning algorithms learn latent
salient representation of multi-view data [Sharma et al., 2012;
Hardoon et al., 2004]. This approach aims at obtaining a sub-
space shared by multiple views and then learn models in the
shared subspace.

Online learning starts from the Perceptron algo-
rithm [Rosenblatt, 1958] and has attracted much attention

during the past years [Cesa-Bianchi and Lugosi, 2006;
Hazan et al., 2007; Grangier and Bengio, 2008;
Chechik er al., 2010]. Crammer proposes the Online

Passive-Aggressive (PA) learning which provides a general
framework for online large-margin learning[Crammer et al.,
2006], with many applications [Chiang et al., 2008]. Online
Bayesian Passive-Aggressive learning presents a generic
framework of performing online learning for Bayesian
max-margin models [Shi and Zhu, 2013].

2 The Model

In this section, we firstly propose the max-margin subspace
learning based on factor analysis. Then we develop a multi-
view classification with max-margin subspace learning under
the Bayesian framework. Finally, we extend the batch model
to the online scenario which trains the model with the samples
coming one by one.

2.1 Max-margin Subspace Learning

Suppose we have a set of N observations x(™), n
1,---, N in d-dimension feature space and a 1 x N label vec-
tor y with its element y,, € {+1,—1}, n =1,--- , N. Factor
analysis projects an observation into a low dimensional space
that captures the latent feature of data. The generative process
for the n-th observation x(™) is as follows:
€ N(glo, ®)
x(™ p+ Wz e,

where ¢ € R%*! denotes the Gaussian noise, & € R?*d
is a variance matrix of €, u € R*1 is the mean value of
x(™ W € R¥*™ is the factor loading matrix, z(™ is a m-
dimensional latent variable.

The estimates of model variables (u, W, ®, Z) can be ob-
tained as follows:

~

&)

%\%Z&(M,W, ®,7Z) =

%a;f log H

b~ (X(n)

d/2|¢.‘

e

1 n n n
-exp(—i(x( ) — i — Wiz )) —p—Wz™)).
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However, factor analysis is an unsupervised model, which
learns the latent variables of the observations without using
any label information. The max-margin principle can be in-
troduced to incorporate label information into the factor anal-
ysis model. We define Z = [z, 1]T as the augmented latent
representation of observation x, and let f(x;z,n) = n’z be
a discriminant function parameterized by 7. Now for fixed
values of Z and 7, we can compute the margin loss on train-
ing data (X,y) by

N
) =Y max(0,1—yaf(x";2"), m).

n=1

lm(Z, (@)

The max-margin subspace learning model can be formu-
lated as follows:

3)

max

%W’@’Z’nﬁs (u, W, 2,Z) —

CEm(Z7 77)7

where C'is the regularization parameter.

2.2 Multi-view Classification with Bayesian M2SL

Then we propose a Bayesian max-margin subspace multi-
view learning (BM2SMVL) model. We assume that IV, is
the number of views, N, is the number of classes, d; is the
dimension of the ¢-th view, the data matrix of the i-th view

(n) in di-

dimension feature space, x(™) = {x -, Ny} de-
notes the n-th observation, and Y is a N X N label matrix
consisting of N label vectors y () = {ygn),c =1,---,N.}.
If the n-th observation’s label belongs to the c-th class, we

define yé ) = +1 otherwise yg " - 1.

In our BM2SMVL model, each view x( n) of the n-th ob-

servation x(") is generated from the latent variable z("™). We
impose prior distributions over all variables shown in Eq.(1).
The generative process for the n-th observation is as follows:

is X; € R%*N consisting of N observations x;
(n)
0 =1,

z(™ o~ /\/'(z(n>|07 L.)
pi o~ N(ul0, 87 '1a,)
o~ ]I Dlaijlaa;, bay)
Wil ~ TI§L, N(wi;|0, diag(s))
i~ T(dilag,,bs;)
X§H)|Z(7L) ~ N(xgn)|wiz(n) + i, ‘751'_1141’)?

where T'(-) is the Gamma distribution, 5;, @a;. ba;» Gg,s
by, are the hyper-parameters, and W; € R%>™_ The
prior on W; and «; is introduced according to the auto-
matic relevance determination [Reents and Urbanczik, 1998].
In order to improve the efficiency of our algorithm, we de-

fine the variance matrix ®; of the XE”) as a diagonal ma-

trix ¢; 'Iy,. Let Q = (1,0, W, ¢, Z) denote all variables.
Po(€2) = po(1)po(W, a)po(é)po(z) is the prior of (2. We
can verlfy the Bayesian posterior distribution p(|X)
po(Q)p(X]|Q2)/p(X) is equal to the solution of the following
optimization problem:
in KL(g(£2 Q
Jin KL(q($)l|po(€2))
where KL(q/||p) is the Kullback-Leibler divergence, and P is
the space of probability distributions. When the observations
are given, p(X) is a constant.

—Eqy@) [logp(X|Q)], 4)



Next, we adapt our model with the one-VS-rest strategy
like that for SVM for multi-class classification problems. We
have N, classifiers, and take the c-th classification for an ex-
ample: f.(x";z(") n,) = nTz(™ denotes a discriminant
function. Under the Bayesian framework, we impose a prior
on 7). as follows:

T'(v|av,c, bu,c)

N(nc|0,ve

Ve ~ pO(Vc) =

p(Nelve) = 1I(m+1))7

where a, . and b, . are hyper-parameters. For simplify, let

Nc
O = {(Me, ve) by . .
Then we can replace the margin loss with the expected
margin loss for the classification. We introduce

N N

H H exp{—2C-max(0,1—y

n=1c=1

(

(Y, \|Z,n) = Mnlz™My 5)

as the pseudo-likelihood of the n-th data’s label variable. We
can get our final model as follows:

minep KL(q(2,0)[lpo(£2,©)) —

q(Q,0) Eq(2) [logp(X[€2)]

— Eq(0.0)[log(¢(Y|Z,n))], (6)

where po(€2,©) is the prior, po(Q,0) = po(Q)po(O),
P0(Oc) = p(nc|ve)po(ve.) and C is the regularization param-
eter. Solving problem (6), we can get the posterior distribu-
tion

Po(€2, ©)p(X[)p(Y|Z, n)

Q(Q7@) = ¢(X,Y)

) @)
where ¢(X,Y) is the normalization constant. In order to ap-
proximate ¢(€2, ©) we use variational approximate inference
which is introduced in the Section 3.

2.3 Online BM2SMVL

The goal of online learning is to minimize the cumulative
loss for a certain prediction task from the sequentially ar-
riving training samples. In this section, we present an on-
line BM2SMVL (OBM2SMVL) based on the online Passive-
Aggressive learning framework [Crammer et al., 2006]. This
generic framework for online large-margin learning has been
used in many applications [Chiang er al., 2008]. Online
Bayesian Passive-Aggressive learning was presented for on-
line Bayesian max-margin topic models [Shi and Zhu, 2013].

Assuming we have already got the posterior ¢;(€,©)
at time ¢, when a new data (x(**+1) y(+1D) is coming,
we need update the new posterior distribution ¢;41(£2, ©).
For simplify, We denote x(*+1) = {XEtH)}f\Zl,y(t“) =
{v 3,

Generally, we define w as the parameterized model
and £(w;x#1) y(+D) a5 the loss for the new data

(x(t+1) y(E+1))  Our OBM2SMVL sequentially infers a
new posterior distribution ¢;41(w) on the arrival of new data

(x(+1) y(t+1) by solving the following optimization prob-
lem:

— By () logp(x " |w)]

(t+1)

in KL(g(w)llg:(w)

+l(w;x 1),

Y
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The online model includes three main updating rule. Firstly,
we hope KL(g(w)||g:(w)) is as small as possible. It means
that ¢;41(w) is close to ¢;(w). Secondly, the likelihood of
the new data E,,, [logp(x**1)|w)] is high enough. Thirdly,

the loss of the new data £(w;x(*+t1) y(#+1) is as small as
possible. It means that the new model ¢;1(w) suffers little
loss from the new data.

To introduce the online idea to the above multi-view clas-
sification BM2SMVL, we let (€, ©) denote w. A new pos-
terior distribution ¢;11(92,©) on the arrival of new data
(x(+1) y(#+1) can be gotten by solving the following op-
timization problem:

— Eqa,0)logp(x"V]Q, 0)]

(t+1))'

min
a(Q,0)EP

+4(Q,0;x" y

KL(q($2, ©)]|¢:($2, ©))

As above, we introduce ¢(+) function to replace the hinge
loss as the pseudo-likelihood. So the formula is replaced by:

Eq(o llogp(x"V|0)]
DY ).
Similar to Eq.(7), we can get the posterior distribution:

(2, ©)p(x V) p(y ) [2¢+D) | )
H(xtHD) yE+D)

(Qmegl KL( (Qv @)HQt (Q7 9)) -

— Eq(a,0)[log(e(y

@+1(2,0) = ;
where ¢(x(*+1) y(#+1)) is the normalization constant. Note
that, the latent variable z(®) is unrelated to the new posterior,
because the variable z(**1)’s prior is po(z). Let (Q,0\z®)
denote all variables in €2 and © except z(*), then we can fur-
ther get

q:(22,0\z")po (2)p(x TV |Q2)
P(x(HD), y(+D)
(t+1) ‘i(t+l)7 77)-

qe+1(9,0) =

®)

In order to approximate ¢;+1(€2, ©) we use variational ap-
proximate inference which is introduced in Section 3.

oy

3 Variational Inference

Because the posterior is intractable to compute, we apply the
variational inference method[Beal, 2003] to approximate the
posteriors in (7) for BM?SMVL and in (8) for OBM2SMVL.
This method is much more efficient than sampling based
methods [Gilks, 2005].

3.1 Data Augmentation

Since the pseudo-likelihood function ¢(+) involves a max op-
erater which is difficult and inefficient for posterior inference.
We re-express the pseudo-likelihood function into the integra-
tion of a function with augmented variable based on the data
augmentation idea [Polson and Scott, 2011]. For BM?SMVL,
we replace the pseudo-likelihood (+) with:

|z(n)

oyt "I)

/O - exp{

)\(”)

\/ 27r)\<")

[/\ o —yMnlz ™)



Then we can get

c T(n)

N Ne eXp{ (n) [>‘<n +C( —YnTc Z

o(Y,\Z,n :H
\/27r>\£n)

Similarly, we introduce the augmented variable to the pseudo-
likelihood function ¢(-) for OBM?SMVL

I

o(y®TD AEHD D
Ne exp{ Ty T 4+ C(1 - gl 2Py
c=1 \/ 27r)\§t+1)

3.2 Variational Approximate Inference

Next, we apply the mean-field variational method to approx-
imating the posterior distributions.

Variational Inference in BM2SMVL

Firstly, we define a family of factorized but free-form varia-
tional distributions:

V(Q,0,A) = V()V(W)V()V()V(Z)V ()V(MV (v).
The main idea of variational Bayesian inference
is that we need to minimize the KL divergence
KL(V(Q,0,X)]|¢(Q2,0,X)) between the approximat-
ing distribution and the target posterior. Next, we initialize
the distributions of V (2,0, A). Then we iteratively update
each parameter of our model by fix other parameters as the

current estimates. Now, we give the joint distribution of data
and parameters:

P(2,0, X, X,Y) = po(p)p(W|a)po(a)po(#)po(Z)p(n|v)

pO(l/)p(X|/‘L7W7¢7 ) (Yv)“zvn)

It can be shown that when keeping all other factors fixed the
optimal distribution V*(\) satisfies

V* ()\) X exp{]E_A[logp(Q, 97 )‘a X7 Y)}}7

where E_, denotes the expectation with respect to
V(£2,0,A) over all variables except for A. Then we can get
the updating formula for E_ y:

N

V) = HHgIg A(">|f,17x("))
c=1n=1
X = e —yMnla™)?),

where (-) represents the expectation, GZG(+) is the general-
ized inverse Gaussian distribution. Similarly, we can get the
updating formulas for all other factors. Since they are tedious
and easy to derive, here we only provide the equations for Z,
other updating formulas are omitted because of the limited
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space of the paper,

N
H N(Z(n)m(n) E(n))

Vi(zZ) =

i {022 WA 4+ 1,
+Z W TWi) !

W =SS (60 (WP — ()

i=1

Ne¢
+D> A+ () )y ()
=1
= CH{AI) ) (Meyma1yTie)
where 7). denotes the first m dimensions of 7., i.e., . =
[flca nc,(m+1)]'
Variational Inference in OBM?SMVL
Now, we use variational inference to approximate g;1 (€2, ©)
in OBM2SMVL model. Firstly, we give the joint distribution
of data and parameters:
(2,0, X XDy D) = po (1) p(Wla)po(a)po(9)

0 (2)p(nv) po(W)p(x*V |, W, 6, 2)p(y D, A [z, ).
It can be shown that when keeping all other factors fixed,
the optimal distribution V*(A(+1)) satisfies

VAU o exp{E_| (141 llog p(€2, ©, AEFD 5 (H),

y T,

where [E_,+1) denotes the expectation with respect to

V(Q,0, A1) over all variables except for A“+1). Then
we can get the updating formula for E_ 5 ¢t+1):

N
T 1
v* )\(t-‘rl) GIG )\gt-‘rl) -1, £t+1)
A = TTOTo0 1 1)
thJrl) C2<( (t+1)nTz(t+1)) >

Similarly, we can get the updating formulas for all other fac-
tors. Since they are tedious and easy to derive, here we only
provide the equations for z(**1), other updating formulas are
omitted because of the limited space of the paper,

Vv (Z(t+1)) N(Z(t+1) "u/;tJrl), E;t+1))
N¢
ngt {CY (i) " WA + 1,
c=1
Ny
+D (B (W) Wi
=1
Ny
p = W o = )

N.

+> AC+ OO )pd T )

i=1

= ) T e a1y Tie)
where 7). denotes the first m dimensions of 7., i.e., n. =
[ﬁCa nc,(m-l-l)]'



3.3 Computational Complexity

For each iteration of parameter updating in our batch learn-
ing BM2SMVL, we need O(N N,dm?) computation, where
d is the average dimension of all N,, views. The most com-
putation is spent on the calculation of E;"), N
where the matrix multiplication (W;” W) consumes d;m?
computation. And each iteration of parameter updating in our
online learning OBM?SMVL consumes O(N,dm?) when a

new sample is coming.

n = 17..‘7

4 Experiments

We evaluate the proposed batch learning model BM2SMVL
and online learning model OBM2SMVL on various classifi-
cation tasks including image data and text data.

4.1 Real Data Sets

There are four data sets, i.e., Tervid, Washington, Cornell
and News4Gyv, used in our experiments. Trecvid contains
1,078 manually labeled video shots that belong to five cat-
egories [Chen et al., 2012]. And each shot is represented
by a 1,894-dim binary vector of text features and a 165-dim
vector of HSV color histogram. WebKB data set has two
views, including the content features of the web pages and
the link features exploited from the link structures. This data
set consists of 877 web pages from computer science depart-
ments in four universities, i.e., Cornell, Washington, Wiscon-
sin and Texas. And each university has five document classes,
i.e., course, faculty, student, project and staff. We select the
web pages from Cornell and Washington as our experimen-
tal data!. These two data sets have five classes with two
views. 20Newsgroups data set is widely used for classifica-
tion. This data set has approximately 20,000 newsgroup doc-
uments, which are divided into 20 categories. We follow the
way in [Long ef al., 2008] to construct multi-view learning
problems. We use the tf-idf weighting scheme to represent
the document, and the document frequency with the value of
5 is adopted to cut down the number of word features. The
details of these data sets are shown in Table 1.

Table 1: Statistics of the multiclass data sets.

Datasets Trecvid ‘Washington Cornell News4Gv
size 1078 230 195 1500
class 5 5 5 3
V1-Dim 1894 1703 1703 6783
V2-Dim 165 230 195 6307
V3-Dim - - - 7717
V4-Dim 9336

4.2 Competitors
We compare our model with five competitors:

e VMRML [Quang et al., 2013]: it is a vector-valued man-
ifold regularization multi-view learning. The regulariza-
tion parameters are set as the default value in their paper,
and we tune the parameter o for ‘rbf’ carefully in each
data set;

"http://www-2.cs.cmu.edu/ webkb/
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MVMED [Sun and Chao, 2013]: it presents a multi-
view maximum entropy discrimination model. We use
the model with one-VS-rest strategy for multiclass prob-
lem. According to the paper, we choose the best param-
eter from 2{~% by executing 5-fold cross-validation for
each data set;

MMH [Chen ef al., 2012]: it is a large-margin predic-
tive latent subspace learning for multi-view data. Based
on the parameters given in its code?, we tune the four
paramters carefully to choose the best parameters for
each data set;

SVM-FULL.: it concatenates all views to form a new sin-
gle view, and applies SVM for classification. We choose
the linear kernel and execute 5-fold cross-validation on
training sets to decide the cost parameter ¢ from 10[=3:3!;

OPMV [Zhu et al., 2015]: it is an online multi-view
learning. According to the paper, the learning rate pa-
rameter are chose from 2[~3:8], the regularization param-
eter are chose from 1el =169 and the penalty parameters
is pre-defined as 1. The parameters are set according to
the above rules.

Table 2: Batch learning comparison on multiclass data sets. Listed
results are test accuracies (%) averaged over 20 independent runs.
Bold face indicates highest accuracy.

Trecvid Washington Cornell News4Gv
MMH 61.22£0.0 | 80.98 £2.94 | 74.01 £0.19 -
MVMED 63.80 £ 0.0 | 73.86 £2.78 | 72.27 £2.97 | 94.26 +0.83
VMRML 6327 £0.0 | 79.44 £2.61 | 76.96 £ 4.03 | 93.34 4 0.98
SVM-FULL | 62.34 £ 0.0 | 8291 +£3.33 | 76.14 £ 2.40 | 99.21 &+ 0.30
BM?SMVL | 65.86 + 0.0 | 83.48 4 3.03 | 78.87 +3.63 | 97.99 + 0.57

Table 3: Online learning comparison on multiclass data sets. Listed
results are test accuracies (%) averaged over 20 independent runs.
Bold face indicates highest accuracy.

Trecvid Washington Cornell News4Gv
OPMV 6141 £0.0 | 73.44 £2.06 | 66.40 £ 3.83 -
OBM?SMVL | 63.27 + 0.0 | 77.96 + 3.87 | 74.18 + 4.63 | 96.03 & 0.66

4.3 Parameter Setting

In our batch learning, the regularization parameter C' is cho-
sen from the integer set {1, 2, 3} and the subspace dimension
m from the integer set {20, 30,50} for each data set by per-
forming 5-fold cross validation on training data. While in
our online learning, the regularization parameter C' is chosen
from the integer set {1,5,15} and the subspace dimension
m from the integer set {20, 30, 50}. For the rest parameters,
both our batch and online learning are set as the same, i.e.,
o = by =1e3,ay =1e-2,a, =1le-1,bp =b, = =
le-5.

4.4 Experimental Results

Since a normal prior with zero mean is imposed on the obser-
vation data, we normalize the observation data to have zero

*http://bigml.cs.tsinghua.edu.cn/ ningchen/MMH.htm



mean and unit variance. In batch learning experiments, we
use the same training/testing split of the Trecvid data set as
in [Chen et al., 2012]. So there is only one result in this
data set. For other data sets the results of all models are
averaged over 20 independent runs and. All the results are
shown in Table 2. The ratio sampled for training data is 0.5 in
the three data set Trecvid, Washington and Cornell, and 0.05
in News4Gv. Since MMH can not address high dimensional
data, e.g., News4Gv, so its result is missing for News4Gv in
Table 2.

In online learning experiments, we use the same train-
ing/testing split of the above batch learning experiments. We
sample 0.1 of the training data as the batch training, and the
rest come one by one. Since OPMYV can only deal with two-
view data, so its result is missing for News4Gv in Table 3.
From Table 2 and Table 3, we have the following insightful
observations:

- Our BM?SMVL achieves the best performance on the
Trecvid, Washington and Cornell data sets and performs
just a little worse than the SVM-FULL in the News4Gv
data. We attribute it to that our method can automati-
cally infer the penalty parameter of max-margin model
based on the data augmentation idea, while MVMED
and MMH are both under the maximum entropy dis-
crimination framework and cannot infer the penalty pa-
rameter. SVM-FULL makes full use of all the informa-
tion from the observations by concatenating all views to
form a new single view. This maybe the reason why it
performs better than our BM2SMVL in the News4Gv.
But some information from the observations is not help-
ful for the classification in other data sets. In this case,
SVM-FULL cannot achieve a good performance.

Our method infers a posterior under the Bayesian frame-
work instead of a point estimate as in VMRML. With
Baysian model averaging over the posterior, we can
make more robust predictions than VMRML.

We also find that OBM2SMVL performs better than
OPMYV on all data sets and just a little worse than
BMZ2SMVL. Unlike OPMV, which seeks a point esti-
mate by optimizing some deterministic objective func-
tion, our online model infers a posterior under the
Bayesian framework. The point estimate can be affected
seriously by inappropriate regularization, outliers and
noises, especially when the training data arrive sequen-
tially.

4.5 Sensitivity Analysis

We study the sensitivity of BM2SMVL and OBM2SMVL
with respect to the subspace dimension m, and the regular-
ization parameter C.

When we study the influence of m, C' (batch) is set as 2
for BM2SMVL and C (online) is set as 15 for OBM2SMVL.
The averaged results are shown in Figure 1 (a) and Figure
2 (a). We find that the test accuracy increases when m be-
comes larger. And when m is large enough, the test accuracy
remains stable.

When we study the influence of C, m is set as 30 for both
batch and online learning. From the results in Figure 1 (b)
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Figure 1: (a) Results on different data sets with different parameters
m in BM2SMVL; (b) Results on different data sets with different
regularization parameters C' in BM2SMVL.
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Figure 2: (a) Results on different data sets with different sub-
space dimensions m (online) in OBM?2SMVL; (b) Results on dif-
ferent data sets with different regularization parameters C' (online)
in OBM?SMVL.

and Figure 2 (b) , we can find that different data sets may
prefer different values of C. In batch learning, C' (batch) bal-
ances the classification model and subspace learning model,
so our model cannot get the best performance when C' (batch)
is too large or too small. C' (online) reflects the importance
of new arrival data in our online model. When C (online) is
too small, the new arrival data plays a tiny role in the online
model and offers little help to improve the performance of
our online model. For some data sets like Cornell, when C
(online) is too large, the performance of OBM2SMVL would
become bad because the online model doesn’t take full advan-
tage of the historical knowledge. For some other data sets like
Trecvid and Washington, they are less sensitive to C' (online)
when C' (online) is large enough.

5 Conclusion

We propose an online Bayesian method to learn predictive
subspace for multi-view data. Specifically, the proposed
method is based on the data augmentation idea for max-
margin learning, which allows us to automatically infer the
weight and penalty parameter and find the most appropri-
ate predictive subspace simultaneously under the Bayesian
framework. Experiments on various classification tasks show
that both our batch model BM?SMVL and online model
OBM?SMVL can achieve superior performance, compared
with a number of state-of-the-art competitors.
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