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Abstract
To learn with limited labeled data, active learning
tries to query more labels from an oracle, while
transfer learning tries to utilize the labeled data
from a related source domain. However, in many
real cases, there is very few labeled data in both
source and target domains, and the oracle is un-
available in the target domain. To solve this prac-
tical yet rarely studied problem, in this paper, we
jointly perform transfer learning and active learn-
ing by querying the most valuable information from
the source domain. The computation of importance
weights for domain adaptation and the instance se-
lection for active queries are integrated into one
unified framework based on distribution matching,
which is further solved with alternating optimiza-
tion. The effectiveness of the proposed method is
validated by experiments on 15 datasets for senti-
ment analysis and text categorization.

1 Introduction
In many applications, we have plenty of unlabeled data but
very limited labeled data, making the learning task rather dif-
ficult. Transfer learning and active learning are two impor-
tant approaches to overcoming this challenge. The former
tries to utilize data from a related source domain [Pan and
Yang, 2010]; while the latter tries to query labels for the most
valuable unlabeled data from an oracle [Settles, 2009]. In
transfer learning, information is transferred from source do-
main to target domain at feature level [Gong et al., 2013;
Tan et al., 2015] or instance level [Sugiyama et al., 2008;
Xiao and Guo, 2015]. In active learning, unlabeled instances
are actively queried based on informativeness or representa-
tiveness [Huang et al., 2014].

In recent years, there are some studies try to combine the
transfer learning and active learning to learn with limited la-
beled data, either in separating stages [Li et al., 2013; Saha
et al., 2011] or in one unified framework [Wang et al., 2014;
Kale et al., 2015]. A common assumption of existing meth-
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Figure 1: Problem setting: labeled data is insufficient in both
domains, and oracle is available only in the source domain,
from which a small batch of unlabeled data is iteratively se-
lected to query their labels. The objective is to train an effec-
tive model for the target domain with least queries.

ods is that there are plenty of labeled data in the source do-
main and labels can be further queried in the target domain.
However, such an assumption does not always hold. In many
real tasks, label acquisition is expensive in both source do-
main and target domain, and thus the labeled data is usually
insufficient in both domains. Furthermore, we even cannot
get any additional labeled data in the target domain because
the oracle is available only in the source domain. For exam-
ple, in the influenza prediction task, we want to make pre-
diction for a new strain of flu (target domain) by transferring
knowledge from a known flu strain (source domain). At the
beginning stage, we may not be able to precisely diagnose pa-
tients infected by the new flu, i.e., cannot acquire labels from
the target domain. Although there are experts for the known
flu strain, the diagnosing process could be time consuming
and expensive, we thus need to actively select and diagnose
a small number of patients which are most helpful for pre-
dicting the new flu. Another case is that the data from target
domain contains sensitive private information and thus can-
not be posted to annotators for labeling. Instead, we can ac-
tively query informative labels from a related yet non-private
domain. In summary, we consider the setting where labeled
data is insufficient in both source and target domains, and no
oracle is available in the target domain. The problem setting
is summarized in Figure 1. To the best of our knowledge, this
problem has not been studied before.
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In this paper, we try to address this problem by jointly
performing transfer learning and active learning with queries
from source domain. On one hand, to compute the impor-
tance weight for domain adaptation, we minimize the distance
between the distributions of the target domain and adapted
source domain. On the other hand, to select the most valuable
instances from source domain for label querying, we mini-
mize the distance between distributions of labeled and unla-
beled data. These two objectives are integrated into one uni-
fied framework, where the distribution distance is estimated
with Maximum Mean Discrepancy (MMD). To utilize the su-
pervised information for better active selection, we further in-
corporate an uncertainty term based on the model prediction.
At last, the framework is implemented and optimized with al-
ternating quadratic programming. We test our approach for
sentiment analysis on Amazon product reviews and text cate-
gorization on Reuters-21578. Results on 15 datasets validated
the effectiveness of the proposed approach.

2 Related Work
In recent years, there have been increasing interests in com-
bining transfer learning with active learning to deal with tasks
with insufficient labeled data. However, they usually assume
that there are plenty of labeled data in the source domain, and
perform active queries only in the target domain.

Many approaches perform transfer learning and active
learning separately. The approach proposed in [Shi et al.,
2008] builds a classifier in the source domain to predict la-
bels for the target domain, and queries the oracle only if the
prediction is of low confidence. In [Li et al., 2013], two
individual classifiers are trained with labeled data from the
source and target domains respectively, and then informa-
tive samples are selected from the target domain based on
the Query By Committee (QBC) strategy. The method in
[Saha et al., 2011] builds a domain separator to distinguish
between source and target domain data, and uses this separa-
tor to avoid querying labels for those target domain examples
that are similar to examples from the source domain. Similar
idea is implemented in another work [Rai et al., 2010].

There are also some studies combining the two tasks in
one framework. The method in [Wang et al., 2014] relaxes
the assumption to allow changes in both marginal and condi-
tional distributions but assumes the changes are smooth be-
tween source and target domains. The authors incorporate
active learning and transfer learning into a Gaussian Process
based approach, and sequentially select query points from the
target domain based on the predictive covariance. Kale and
Liu [2013] present a principled framework to combine the
agnostic active learning algorithm with transfer learning, and
utilize labeled data from source domain to improve the per-
formance of an active learner in the target domain. Kale et
al. [2015] propose a hierarchical framework to exploit cluster
structure shared between different domains, which is further
utilized for both imputing labels for unlabeled data and se-
lecting active queries in the target domain.

Xiao and Guo [Xiao and Guo, 2013] study the active trans-
fer learning problem under the online and multi-view setting,
where instances are assumed to have multiple feature views,

and arrive online in pairs, one from source domain and one
from target domain. The method selects one of them with a
fixed probability and decides whether to query its label based
on multi-view disagreement or uncertainty.

The JO-TAL method proposed in [Chattopadhyay et al.,
2013] is most related to our work. It also jointly performs
transfer learning and active learning, and employs MMD to
measure the distribution distance. However, it is significantly
different from the proposed approach with the following rea-
sons. Firstly, JO-TAL assumes that all source domain data are
labeled, and tries to query more labels from the target domain,
while in our approach, labeled data is insufficient in both do-
mains and we need to query most valuable labels from source
domain. Secondly, JO-TAL only minimizes the distribution
distance between labeled and unlabeled data, while in our ap-
proach, we match the distributions of source and target data
as well as labeled and unlabeled data, emphasizing the objec-
tives of both transfer learning and active learning. Moreover,
our approach explicitly incorporates the model prediction to
further enhance the active selection with uncertainty. At last,
different optimization techniques are used.

Transfer learning and active learning have been incorpo-
rated for various applications, such as cross-system recom-
mendation [Zhao et al., 2013], natural language parsing [At-
tardi et al., 2013] and sentiment analysis [Luo et al., 2012].
Theoretical analysis is also presented in [Yang et al., 2013]
with an upper bound on the sample complexity in sequential
transfer learning settings.

3 The Method
We denote by S = SL [SU the dataset in the source domain,
where SL = {(x1, y1), · · · , (xnSL

, ynSL
)} is the labeled set

consisting of nSL instances, SU = {x1, · · · ,xnSU
} is the un-

labeled set consisting of nSU instances, and nS = nSL+nSU .
Similarly, the dataset in the target domain is denoted by
T = TL [ TU , with nTL labeled instances in TL and nTU un-
labeled instances in TU , and nT = nTL + nTU . It is assumed
that nSL ⌧ nSU and nTL ⌧ nTU , i.e., labeled data is in-
sufficient in both source and target domains. We also assume
that the oracle is available only in the source domain. This
implies that the labeled data in the target domain is fixed in
the whole learning procedure, and we need to actively query
some informative labels from the source domain. This setting
seems restricted, yet is common and practical as discussed in
Section 1.

In this paper, we consider the covariate shift setting, where
the margin distribution P (x) is different in the source and
the target domains, while the conditional distribution P (y|x)
is the same. It is well known that the key issue for covari-
ate shift adaptation is to accurately estimate the importance
weight for each instance x, which is defined as �(x) = pT (x)

pS(x) .
Here pT and pS denote the density functions of target and
source domains, respectively. To avoid the density estima-
tion, we can directly optimize the importance weights by
minimizing the distance between the distributions of the tar-
get domain and adapted source domain. Here we employ
Maximum Mean Discrepancy (MMD) [Gretton et al., 2006;
Borgwardt et al., 2006] as the criterion to estimate the dis-
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tance between different distributions. Specifically, the em-
pirical estimate of MMD between the target domain and the
adapted source domain can be written as:

MMD(Ŝ, T ) = || 1
nS

X

x2S

�(x)�(x)� 1

nT

X

x2T

�(x)||H,

(1)
where Ŝ = {�(x)x | x 2 S} is the set of adapted source
domain data, and � : X ! H is a mapping from the feature
space to a Reproducing Kernel Hilbert Space (RKHS). It is
easy to observe that the MMD is actually measured with the
distance between the means of the two samples mapped into
a RKHS. The target of domain adaptation is to optimize the
importance weights � by minimizing Eq. (1).

As discussed previously, there is few labeled data in both
target and source domains, and more labels should be queried
from an oracle in the source domain. Because the label acqui-
sition could be very expensive, we need to actively select as
few unlabeled examples as possible from the source domain
for label querying. The active selection criterion should favor
instances which are most helpful on improving the classifi-
cation model in the target domain. This is essentially differ-
ent from traditional active learning, which selects instances
to improve the model in the same domain. It has been vali-
dated by previous research that margin distribution matching
is an effective approach for active selection [Chattopadhyay
et al., 2012]. The basic idea is that after the label querying,
the distributions of labeled data and unlabeled data should be
close, such that the model trained will have good generaliza-
tion ability. It is worth noticing that in our setting, the model
is trained for predicting unseen instances in the target domain,
while the queried instances along with existing labeled data
are distributed in both domains. This implies that the im-
portance weights for domain adaptation should be considered
when performing distribution matching, consequently, mak-
ing the active selection more challenging.

Formally, at each iteration of active learning, we select a
small subset Q of size nQ from SU to query their labels.
A vector ↵ = {0, 1}nSU is introduced to identify which
instances are selected, where ↵(x) = 1 indicates the in-
stance x in SU is selected for query. In other words, we have
Q = {x | x 2 SU ,↵(x) = 1}. Again, MMD is used to mea-
sure the distance between two distributions, and the following
measurement should be minimized:

MMD(ŜL [ Q̂ [ TL, TU [ ŜU ). (2)
Note that the labeled set consists of three parts: labeled data
in the target domain TL, labeled data in the source domain ŜL

and the queried data from source domain Q̂. Here the symbol
·̂ represents a data set adapted with importance weights. For
example, Q̂ = {�(x)x | x 2 Q}.

Noticing that MMD measures the distance between margin
distributions, which means the label information is neglected
during the active selection. We can thus incorporate an un-
certainty term to further improve the active selection. Specif-
ically, we first get the predictions of the current classification
model g on all instances in SU , denoted by gSU . Then the
certainty of an instance x is simply estimated with |g(x)|, in-
dicating that an instance with a prediction value closer to zero

is more uncertain. Our target is to select a small batch of in-
stances with larger uncertainty in the target domain. In other
words, ↵ should be optimized to achieve a minimal value on
↵�|gSU |.

By combining the objectives for the domain adaption,
the margin distribution matching based active selection and
the uncertainty based active selection all together, we have
the following framework for Transfer Learning with Active
queries from Source domain (TLAS):

minMMD(Ŝ, T ) +MMD(ŜL [ Q̂ [ TL, TU [ ŜU )

+ �↵�|gSU |, (3)
where � is a tradeoff parameter for balancing the contribu-
tions of distribution matching and uncertainty. This frame-
work can be rewritten in more detail as the following opti-
mization problem:

min
↵,�

�����
1

nS

X

x2S

�(x)�(x)� 1

nT

X

x2T

�(x)

�����

2

+

�����
1

nL

 
X

x2SL

�(x)�(x) +
X

x2SU

↵(x)�(x)�(x) +
X

x2TL

�(x)

!

� 1

nU

 
X

x2SU

(1� ↵(x))�(x)�(x) +
X

x2TU

�(x)

!�����

2

+�
X

x2SU

↵(x)�(x)|g(x)|

s.t. ↵(x) 2 {0, 1}, 8x 2 SU ;
X

x2SU

↵(x) = nQ;

�(x) 2 [0, 1], 8x 2 S

(4)
where nL = nSL + nQ + nTL and nU = nSU � nQ + nTU .

Note that the binary constraints on ↵ make the above prob-
lem NP-Hard. By relaxing the constraints to let ↵(x) 2 [0, 1],
the problem in Eq. (4) is biconvex, and can be solved alter-
natingly with a guarantee on the convergence [Gorski et al.,
2007]. To optimize ↵ with � fixed, we have the following
quadratic programming problem:

min
↵

1

2
↵>A↵+ a

>↵+ constant (5)

s.t. ↵ 2 [0, 1]nSU , ↵>
1 = nQ,

where

A =(
1

nL
+

1

nU
)2(�SU�

>
SU

) �KSU ,SU ,

a =� (
1

n2
U

+
2

nLnU
)(�SU�

>
SU

) �KSU ,SU1

+ (
1

n2
L

+
2

nLnU
)(�SU�

>
SL

) �KSU ,SL1

+ (
1

n2
L

+
2

nLnU
)(�SU1

>) �KSU ,TL1

� (
1

n2
U

+
2

nLnU
)(�SU1

>) �KSU ,TU1

+
�

2
�SU � |gSU |.
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Here K is the kernel matrix corresponding to the feature map-
ping �(·), and 1 is a vector with all entries being 1. We use
� to denote the element-wise product of vectors or matrixes,
and refer to by subscript SU the rows/columns in a vector or
matrix for the unlabeled instances in SU . Other subscripts
SL, TU , TL follow similar denotations.

To optimize � with ↵ fixed, Eq. (4) can be rewritten as
follows, which is also a quadratic programming problem.

min
�

1

2
�>B� + b

>� + constant (6)

s.t. � 2 [0, 1]nSL
+nSU ,

where

B =�
1

nS

2

KS,S +


B11 B12

B21 B22

�
,

b =� �

nSnT
KS,T1

+

0

BBBBBBBB@

1
n2
L
KSL,TL1� 1

nLnU
KSL,TU1

KSU ,TL1 �
⇣
( 1
n2
L
+ 1

nLnU
)↵� 1

nLnU
1

⌘

�KSU ,TU1 �
⇣
( 1
n2
U
+ 1

nLnU
)↵� 1

n2
U
1

⌘

+�
2↵ � |gSU |

1

CCCCCCCCA

and

B11 =
1

n2
L

KSL,SL ,

B12 =

✓
(
1

n2
L

+
1

nLnU
)1↵> � 1

nLnU
1

◆
�KSL,SU ,

B21 =

✓
(
1

n2
L

+
1

nLnU
)↵1> � 1

nLnU
1

◆
�KSU ,SL ,

B22 =

✓
(
1

nL
+

1

nU
)2↵↵> � (

1

n2
U

+
1

nLnU
)(1↵>

+↵1>) +
1

n2
U

1

◆
�KSU ,SU .

Note here we denote by 1 a vector or a matrix with all entries
being 1, and assume that the unlabeled instances are ordered
before the labeled data in S for simplicity of presentation.

The alternating optimization process is repeated until con-
vergence. In our experiments, it converges in two iterations
for most cases, and the algorithm is in general efficient. The
pseudo-code of the proposed TLAS approach is summarized
in Algorithm 1. Note that � can be simply initialized with all
ones or by kernel mean matching. Because ↵(x) is relaxed
from binary to a real value in [0, 1], it cannot be directly iden-
tified which instances should be selected, we thus instead sort
the instances of SU in descending order of ↵, and select the
top nQ instances to query their labels.

4 Experiments
4.1 Settings
The proposed TLAS approach is evaluated on two tasks: sen-
timent analysis and text categorization. The Sentiment Anal-

Algorithm 1 The TLAS Algorithm
1: Input:
2: S = SL [ SU : source domain data;
3: T = TL [ TU : target domain data;
4: nQ: batch size of active query; �: tradeoff parameter.
5: Calculate the kernel matrix K and initialize �;
6: For each active querying iteration:
7: Repeat until convergence
8: Update ↵ by solving Eq. (5);
9: Update � by solving Eq. (6);

10: Q top nQ instances of SU with largest ↵ values;
11: SU = SU \Q; SL = SL [Q;
12: Train the model based on TL and adapted SL with �.

ysis dataset1 contains product reviews on Amazon from four
domains: Book, DVD, Electronics and Kitchen. For each
domain, 1000 positive reviews and 1000 negative reviews
are collected. Each review text is represented by a 200 di-
mensional feature vector according to [Chattopadhyay et al.,
2013]. By taking each domain as source or target domain,
we have in all 12 domain pairs: B2D, B2E, B2K, D2B, D2E,
D2K, E2B, E2D, E2K, K2B, K2D and K2E. For the text cat-
egorization task, we use a preprocessed subset of Reuters-
215782 as in [Dai et al., 2007]. Reuters-21578 is a collection
of Reuters news articles, which are organized in a hierarchical
structure. Following the method in [Dai et al., 2007], three
top categories are selected: Orgs, People and Places. Each
category has different sub-categories, and thus we can dived
the data with different sub-categories into source and target
domains. Then three binary classification tasks between top
categories are constructed: Orgs vs People, Orgs vs Places
and People vs Places.

For each dataset, we randomly divide the source domain
data into two parts: 10% as the labeled set SL, and the rest
90% as the unlabeled set SU . Similarly, the target domain
data is randomly divided into three parts: 50% for testing,
10% as the labeled set TL, and the rest 40% as the unlabeled
set TU . We perform active queries iteratively. At each itera-
tion, nQ instances are selected from SU , and are added into
SL with label assignments. After each query, the classifica-
tion model is trained based on TL along with adapted SL. The
classification accuracy on the test data is recorded at each it-
eration. The data partition is repeated randomly for 30 times,
and the average results are reported. We employ LibSVM
[Chang and Lin, 2011] with default parameters to implement
the classification model. In our experiments, we set nQ = 10
and � = 10 as default for all datasets, and compute the kernel
matrix K using RBF kernel with default parameters.

To the best of our knowledge, there is no existing study can
be directly applied to our setting. The following methods are
compared in our experiments:

• Random: Randomly selects instances from unlabeled
source domain data SU , and performs domain adapta-
tion with kernel mean matching (KMM) [Huang et al.,
2006];

1http://www.cs.jhu.edu/ mdredze/datasets/sentiment
2http://www.cse.ust.hk/TL/dataset/Reuters.zip
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Figure 2: Performance comparison on Sentiment Analysis

• Uncertainty: Selects the most uncertain instances from
the source domain, and performs domain adaptation
with KMM;

• MPAL: Selects instances in the source domain by distri-
bution matching according to the active learning method
proposed in [Chattopadhyay et al., 2012], and performs
domain adaptation with KMM;

• TLAS-b: A baseline of our method, which fixes � with
KMM, and optimizes ↵ for active selection with Eq. (5);

• TLAS: The method proposed in this paper.

4.2 Performance comparison
We perform active queries iteratively, and record the classi-
fication performance in the target domain after updating the
model with the queried labels. The performance curves with
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Figure 3: Performance comparison on Reuters
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Figure 4: Performance comparison with different ratios of labeled data on Reuters

increasing queries are plotted in Figure 2 and Figure 3 respec-
tively for the Sentiment and Reuters datasets. In Figure 2, we
can observe that the proposed method TLAS achieves the best
performance in most cases. As expected, Random sampling
leads to the worst performance on most datasets. Uncertainty
sampling usually achieves decent performance, but is less ef-
fective than TLAS. The performance of MPAL is not very
stable. It works well on some datasets but fails on the others,
suggesting that a valuable query for the source domain may
be less helpful for the target domain. When comparing TLAS
with TLAS-b, the proposed method is always superior to its
baseline, validating that iteratively optimizing the importance
weights � is useful on improving the performance. In Figure
3, we get similar results on the Reuters dataset. The superi-
ority of TLAS is more obvious on Orgs vs Places and People
vs Places, where even the baseline TLAS-b outperforms all
the other compared methods. We also notice that the perfor-
mance could be degenerated with more queries on Orgs vs
Places and People vs Places. One possible reason is the neg-
ative transfer, which is an interesting challenge deserve to be
overcome in the future.

4.3 Study with different labeled ratios
In this subsection, we examine the performance of the com-
pared approaches with varying numbers of initially labeled
data in the target domain. The experiments are performed
with the ratio of initial labeled data (nTL/nT ) increasing from

10% to 50%. Due to space limitation, for each ratio, we re-
port the area under the performance curve on Reuters, instead
of plotting the whole performance curve. The comparison re-
sults are plotted in Figure 4. Note that the area under curve
is normalized by the area of the full rectangle, such that the
value is in the interval of 0 to 1. It can be observed that all
the compared methods achieve better performance with more
initial labeled data in the target domain. The superiority of
TLAS over other methods is consistent with different ratios
of initial labeled data. Surprisingly, even the baseline ver-
sion TLAS-b can outperform the other methods in most cases,
which suggests that our strategy of active selection is effective
even with fixed importance weights for domain adaptation.

5 Conclusion

In this paper, we propose a novel and practical setting for
active transfer learning, where labeled data is insufficient in
both source and target domains, and further labels can be ac-
tively queried only from the source domain. We jointly per-
form domain adaptation and active selection in one frame-
work, aiming to train an effective model for the target domain
with least queries from the source domain. Experiments on 15
datasets validated the effectiveness of the proposed approach.
In the future, we plan to extend the framework for transfer
learning with multiple source domains. Also, other active se-
lection strategies will be studied under the proposed setting.
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Suresh Venkatasubramanian. Domain adaptation meets active
learning. In Proceedings of the NAACL HLT Workshop on
Active Learning for Natural Language Processing, pages 27–
32, 2010.

[Saha et al., 2011] Avishek Saha, Piyush Rai, Hal Daumé III,
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