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Abstract

Standard subspace algorithms learn Linear Dynam-
ical Systems (LDSs) from time series with the
least-square method, where the stability of the sys-
tem is not naturally guaranteed. In this paper, we
propose a novel approach for learning stable sys-
tems by enforcing stability directly on the least-
square solutions. To this end, we first explore the
spectral-radius property of the least-square transi-
tion matrix and then determine the key compo-
nent that incurs the instability of the transition ma-
trix. By multiplying the unstable component with
a weight matrix on the right side, we obtain a
weighted-least-square transition matrix that is fur-
ther optimized to minimize the reconstruction er-
ror of the state sequence while still maintaining the
stable constraint. Comparative experimental evalu-
ations demonstrate that our proposed methods out-
perform the state-of-the-art methods regarding the
reconstruction accuracy and the learning efficiency.

1 Introduction

Recently, Linear Dynamical Systems (LDSs) have been ap-
plied widely for time series modeling in various disciplines.
They model the spatial appearance of an input sequence by
linearly correlating each observation variable with an un-
derlying state, and then discover dynamical patterns by en-
coding the evolution of the hidden states with an ARMA
model [Doretto et al, 2003]. This simple but flexible
framework has promoted a variety of explorations on en-
hancing the modeling ability of LDSs. For instance, the
works in [Saisan et al., 2001; Chan and Vasconcelos, 2005;
Woolfe and Fitzgibbon, 2006; Vishwanathan et al., 2007]
proposed to define kernel or distance metrics to allow com-
parisons between LDSs; [Ravichandran et al., 2013] ex-
tended the idea of bag-of-features to bag-of-systems for video
analysis; and [Huang et al., 2016] combined sparse cod-
ing with LDS modeling to deliver robust techniques. The
LDS-based models have been successfully applied for various
video tasks including synthesis [Doretto et al., 2003; Siddiqi
et al., 2007], segmentation [Vidal and Ravichandran, 2005;
Chan and Vasconcelos, 2009], classification [Mumtaz et al.,
2015] and abnormal detection [Huang et al., 2016].
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An LDS is regarded to be stable if all eigenvalues of the
transition matrix have a magnitude of 1 at most. While stan-
dard methods [Shumway and Stoffer, 1982; Van Overschee
and De Moor, 1994; Doretto er al., 2003] have been pro-
posed to learn the system parameters of a given LDS, none
of them enforced the stability constraint to the dynamics of
the LDS. As verified in both [Siddiqi et al., 2007] and our
experiments, the transition matrix learned from the finite se-
quence may be unstable even if the system is stable. Ignoring
the stable criterion will be harmful in some specific appli-
cations; in sequences simulation, for example, it will cause
significant distortion if an unstable LDS is applied to gener-
ate the synthesized sequence. In addition, many LDS-based
models [Saisan et al., 2001; Ravichandran et al., 2013; Afsari
et al., 2012] take the stable constraint as the mathematically-
indispensable condition in the algorithmic formulation, but
they usually neglect this constraint in real applications.

Standard subspace algorithm [Doretto et al., 2003] learns
transition matrices with the least-square approach. An ideal
way to enforce stability in subspace methods is combining
the least-square objective with the stable constraint to formu-
late a new optimization problem. However, the added con-
straint makes the new problem intractable to solve, as the set
of stable matrices is proved to be non-convex [Siddigi et al.,
2007]. Several convex approximations of the stable constraint
have been proposed in [Lacy and Bernstein, 2002; 2003;
Siddiqi et al., 2007]. Particularly, LB-1 solved a semi-definite
program (SDP) via bounding the largest singular value of the
transition matrix by 1. Since such constraint may be too con-
servative for guaranteeing stability, a follow-up work by the
same authors in [Lacy and Bernstein, 2003] replaced the Lya-
punov inequalities in LB-1 with new inequalities that were
proved to be equivalent to the stable constraint. As claimed
by the authors in [Siddigi er al., 20071, the equivalent trans-
formation can help LB-2 to obtain a feasible region close
to the right one; but it can also cause certain distortion in
the objective value. Hence, in [Siddigi ef al., 2007], the au-
thors proposed a Constraint Generation (CG) method, which
solved the Quadratic Program (QP) at each step by incre-
mentally adding constraints to improve stability, and finally
stopped the iteration until a stable solution is obtained. The
CG method was shown to outperform both LB-1 and LB-2 by
the experiments in [Siddiqi er al., 2007].

In this paper, we propose to find a stable solution by di-



rectly performing adjustment on the least-square solution. As
the least-square solution is derived by minimizing the recon-
struction error regardless of the stable constraint, we are in-
terested in analyzing its spectral radius and thereafter deter-
mining the factors of incurring the instability of this solution.
Such insight studies are interesting and crucial, since they
can provide us with a direct clue for deriving stable LDSs.
Compared to the above mentioned methods, straightly fixing
the unstable term of the least-square solution is more flexible
and efficient, as will be demonstrated by our experiments. A
related work similar to our idea can be dated back to [Ma-
ciejowski, 1995] where the authors computed a stable solu-
tion by augmenting extended observability matrix with zeros.
Nevertheless, in that paper, the spectral-radius property of the
least-square solution has not been fully explored; and the re-
sulting algorithm had not taken the reconstruction objective
into consideration.

In sum, we attempt to make the following contributions in
this paper: i) We perform reduction on the original form of the
least-square solution so as to study the spectral-radius prop-
erty of the transition matrix. The developed upper-bound of
the spectral radius enables us to propose two algorithms in-
cluding Zero-Padding (ZP) and Bound-Normalization (BN)
for stabilizing the least-square solution. ii) To further enhance
the performance of ZP and BN, we develop a more flexible al-
gorithm that is dubbed as the Weighted-Least-Square (WLS)
method. Particularly, WLS right-multiplies the unstable term
of the lest-square solution with a weight matrix that is learned
by minimizing the reconstruction objective. iii) We compare
the performance of proposed models with previous methods
including LB-1, LB-2 and CG on various datasets. The WLS
methods are demonstrated to be superior to other compared
methods in terms of accuracy and efficiency.

The rest of the paper is organized as follows. Section 2 in-
troduces the preliminaries of LDS modeling. The analysis on
the spectral-radius of the least-square solution is performed
in Section 3; and the formulation of the WLS method is pro-
vided in Section 4. Then Section 5 conducts the experiments;
and finally Section 6 concludes this paper.

2 Preliminaries

2.1 Linear Dynamical Systems
LDSs [Doretto et al., 2003] encode time series with the model
{Xt+1 = Ax; + Bvy, )
yi = Cx¢ +wy +,
where X = [x1,---,%x,] € R™ 7 is the state sequence;
Y = [y1,---,y-] € R™*7 is the observed sequence;
y € R™ computes the mean of Y; A € R™*"™ denotes the
transition matrix; C € R™*™ is the measurement matrix;
B € R"*"™(n, < n) represents the noise transformation
matrix; v; ~ N(0,I,,) and wy ~ N (0, R) denote the pro-
cess and measurement noise components, respectively, with
I,,, being the n, x n, identity matrix and R € R"™*™.
Given the observed sequence, the optimal system param-
eters {A, B, C,R} can be found with the subspace method
presented in [Doretto et al., 2003]. This approach first esti-
mates the state sequence by performing PCA on the observa-
tions, and then learns the dynamics in the state space via the

Least Square (LS) method. We denote the centered observa-
tion matrix as Y’ = [y1 —¥, -+ ,y- —¥|. By performing the
Singular Value Decomposition (SVD) of Y’ as Y/ = USVT
where U € R™*"™, S € R™*™ and V € R™*7, the measure-
ment matrix and the hidden states are estimated as C = U
and X = SVT, respectively.! The transition matrix A is
learned to minimize the state reconstruction error

J2(A) = |IXy — AXol|%, 2

Where Xo = [Xl, cee 7X7—_1], X1 = [Xg, e ,XT] and || . ||F
denotes the Frobenius norm. The optimal A is given by

A =SV'D,V(V'D,V)~ s} 3)

where D; = ( IT(L 8 ) and D, = ( 1761 8 ) In
case that VID,V is not invertible (actually, we will prove
that VID,V is always invertible in Section 3), most litera-
tures compute the transition as A = X, X} instead, where
computes the pseudo-inverse. Other parameters of LDSs like
B and R can be estimated given A and C. Interested readers
can refer to [Doretto et al., 2003] for details. We hereafter
denote the LS solution obtained from Eq. (3) as A; in order
to distinguish it from those derived by other methods.

2.2 Learning Stable LDSs

Let {\;}? denote the eigenvalues of an n x n matrix M in
a decreasing order of magnitudes, and define M’s spectral
radius as p(M) = |A1|. An LDS with the transition dynamics
A is regarded to be stable if and only if all A’s eigenvalues
have a magnitude no more than 1, i.e. p(A) < 1.

To guarantee stability, the LS problem in Eq. (2) is refor-

mulated as mAin J2(A)

st. p(A) <1.

However, the feasible region constrained by p(A) < 1is non-
convex [Siddiqi er al., 2007], making Eq. (4) intractable to
solve. Several methods including LB-1 [Lacy and Bernstein,
2002], LB-2 [Lacy and Bernstein, 2003] and CG [Siddiqi et
al., 2007] solve Eq. (4) by replacing the stable constraint with
devised convex approximations. Although CG is shown to be
much efficient than both LB-1 and LB-2, it has the disadvan-
tage of being time-consuming to converge to a stable solu-
tion if the optimization update gets stuck in the local minima,
which will be further demonstrated in our experiments.

4)

3 Spectral Radius Analysis on the LS Solution

In this section, we will further reveal the spectral-radius prop-
erty of the LS solution and analyze what factors make A; un-
stable. Several valuable conclusions have been derived elabo-
rately including the reduced form of A; and the upper-bound
of its spectral radius. To the best of our knowledge, the ma-
jority of the intriguing results presented in this section have
not yet been revealed previously.

'One can perform SVD on the multiple time-steps Hankel matrix
instead of Y’ to estimate C and X, as discussed in [Siddiqi e al.,
2007]. Following most LDS literatures, e.g. [Doretto et al., 2003],
we only apply the single time-step observation matrix in this paper.
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3.1 The Reduced Form of A,

At the first glance, it seems hard to unfold the inverse part
(VID,V)~! in Eq. (3), thus making the analysis of the
spectral radius of A; inflexible. Indeed, we are able to reduce
the inverse of VT D,V with the help of two usually-ignored
properties: i) V is orthogonal, i.e VIV = I; and ii) the sum-
mation of the rows of V is equal to a zero vector. The first
property is obvious as V is the right orthogonal matrix gener-
ated by SVD on Y’. The second one holds basically because
VT = S~'UTY’ and Y’ is columnwise centered. Despite
their simplicity, these properties are the keys to derive the
conclusions in this section.

For convenience, we denote the i-th row of V as v.I. The
orthogonal and the rowwise centered properties of V can
therefore be formulated as

T T T
E v;v;, =1, and E v; = 0.
i=1 i=1

We immediately have the following conclusion:

&)

Theorem 1. The arbitrary row of V has an mner -product
strlctly less than 1. In particular, viv; < ==L < 1 for1 <
1< T.

Proof. Without loss of generality, we just prove that vIv, <
%1 < 1. Since the summation Z;_ll v;vi is symmetry,
there exits an orthogonal matrix P e R”X” and a diagonal
matrix A € R™ " satisfying Zz 1 Viv = PAP". Let
a = PTv,; and denote B = PTvz, 1 <3< 7T-1
The orthogonal constraint in Eq. (5) can be rewritten as

A + aaT =1, which implies that
A = diag([l Z ol (6)
o = [05 a07 \/ V-/TVT]Ta (7)
and
7—1
nt V v, =1, ®)

where §3; ,, is the n- th element of 3;, and diag(v) represents
a diagonal matrix whose diagonal elements are assigned by
the vector v. Additionally considering the centered property
of V in Eq. (5), we have

Z:_ll Bi,n + VTVT =0.
Equations (8- 9) enable 1 — vIv, Zi:ll
L (T Bin)? = vive, thus viv, < 2L <1,
According to the proof of Theorem (1), VID,V =

i llv vI =PAPT = Pdiag([1,--- ,1,1 — vIiv,]))PT.
Since 1 — vT v, > 0 holds strictly, then

(€]

O

2
,n

Corollary 1. VD,V is always invertible.

Corollary 2. The solution in Eq. (3) is reduced to the form as
A; =SPKT™D KA~ 'PTS~! where K = VP € R™*™,
The formulation of the LS solution in Corollary (2) is more
compact than its original form in Eq. (3) as the inverse of
VTD,V has been reduced to the inverse of a diagonal ma-
trix that can be closely computed. More importantly, we can
further derive the spectral radius of A; as
p(Ay) p(SPKTDKA~'PTS™)

p(KTD KA.

(10)
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3.2 The Upper-bound of the Spectral Radius
Applying ¢5 norm to Eq. (10), we obtain

p(A;) < [[K'DIKA™;
< K2 DK 2| A2
1
< 11
< Ty (11)

Eq. (11) shows that A; is guaranteed to be stable if the
value of v is enforced to be zero. Such result is quite surpris-
ing, as the stability of A; is irrelevant to the values of other
rows once the last row of V is set to be zero. We are also
aware that a similar result has been reported in [Maciejowski,
1995] where the authors performed zero-padding at the end
of the observability of LDSs to guarantee stability.

However, the gap between p(A;) and the upper-bound
given by Eq. (11) would be large if the value of vIv, ap-
proaches to 1. A more rigid upper-bound is given by the fol-
lowing theorem

Theorem 2. For any A;, p(A;) < min(by, by) holds, where

bl:lv andbg—l—t—uﬁ
Proof. We only need to prove p(A;) < bs. Let A =
diag([1,---,1,0]) and Ay = diag([0, ,0, 1= vTv,])

Then, Eq. (10) enables p(A;) = p (KTDK(A; + Az)).
Specifically, KTD; KA, [0,---,0,a], where a €
R"*1. By denoting K, ; as the element at the i-th row
and the j-th column of K, a;, = ﬁ S KikKi—1
computing the k-th element of a. We can further
derive CL% S (1 vTv )2 Zz QK?k Zz 2 L 1,n S
= VTV TvTv? 2oiee Ko 1n—m(l K2 ) by virtue of
the Cauchy inequality and the orthogonality of K. The proof
of Theorem (l) indicates K, ,, = o, = y/vIv,. Thus, we
have ak < T Now, we focus back on p(A;). Clearly,
p(A)) < ||KTD K(A; + Aoz < |KTD1KA |2 +
KD KAzl < 1++vaTa =1+ /3, _af <1+

\/ 7w thus concluding the proof. O

As

lim
vIv,—1
rem (2) will switch to by when vIv, is approaching to 1.

Theorem (2) demonstrates that A; can be adjusted to be
stable in two simple ways: i) setting vIv, = 0 as have been
demonstrated in Eq. (11); and ii) d1v1d1ng A; with the upper-
bound, i.e. computing A’ = mAl We denote such

two methods as Zero-Padding (ZP) and Bound-Normalizing
(BN). Both ZP and BN will certainly cause some (sometimes
large) distortion on LDS modeling since they are formulated
regardless of the state reconstruction error. Anyway, they
have provided efficient strategies for stabilizing the transition
matrix A; with hardly any extra computation overhead. More
importantly, the solutions of both ZP and BN can be com-
bined with any intermediate result of the Weighted-Least-
Square (WLS) method to generate a stable transition matrix
via the binary interpolation, which will be discussed in the
next section.

b—Z = 0 holds, the upper-bound given by Theo-



4 Weighted-Least-Square Methods

The WLS method locally stabilizes the LS solution A; by
multiplying the unstable component with a weight matrix. In
this section, we first provide the details of the model formu-
lation for the WLS method; and then develop an efficient al-
gorithm to solve the corresponding optimization problem.

4.1 Formulation

Equations (10-11) show that the instability of A; is induced
by the term A~! (more precisely, the last diagonal element
of A=1!). One can fine-tune A~! by multiplying it with a
weight matrix on the right side, the new transition matrix can
therefore be redefined as

A, = SPKTD, KA 'WPTS !, (12)

where the weight matrix W € R™*™. Since p(Ays) =
p(KTD;KA~1'W), the value of W is determined by setting
p(KTD;KA~'W) < 1 for ensuring the stability condition.

Moreover, a good LDS model is expected to fit the original
data well. Thus, we need to find an optimized W to minimize
the reconstruction error given by Eq. (2). Particularly, we
substitute the new transition matrix defined in Eq. (12) into
Eq. (2), thereby formulating the objective function as

n
FOW) =D NWIHW, — 2\ HW; + tr(X, XT), (13)
i=1
where W; and H; are the ¢-th column vectors of W and
H, respectively; \; is the i-th diagonal element of A; and
H = M™ with M = SVTD;VPA~!. Note that H
is a symmetric nonnegative-definite matrix and f(W) is a
quadratic function of W.
Combining the reconstruction objective with the stable
constraint, we attain the optimization problem in the form of

f(W)
p(LW) <1,

where L = KTD; KA~! € R**",
Prior to developing the algorithm to solve the problem in
Eq. (14), we first present several remarks as follows.

min
w (14)
s.t.

Remark 1. The resulting transition matrices of ZP and BN
are the feasible solutions of Eq. (14) regardless of the op-
timization objective, while the LS solution is the optimized
solution of Eq. (14) regardless of the stable constraint. To
show this, by setting W = diag([1,---,1,1 — vIv,]) for
ZP and W = diag([min(bhb2) S min(hth)]) for BN, we
obtain the same transition matrices of ZP and BN as those
defined in Section 3.2. Besides, the optimized weight of the
objective in Eq. (14) ignoring the constraint is found to be
the identity matrix L,,, of which the corresponding transition
matrix is equal to the LS solution.

Remark 2. Different from Eq. (4), Eq. (14) searches for the
optimized transition matrix only within the weight space sur-
rounding the LS solution. The optimized solution searched
in the weight space is of course no better than that searched
in the whole matrix space, theoretically. However, in prac-
tice, restricting the solution space to surround the LS solution
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helps improve the convergence efficiency and thus can derive
a high-quality solution, especially when the LS matrix is near
the bound of the feasible region. We will further demonstrate
this property in our experiments.

Remark 3. Eq. (14) can be reduced to a more simple form
by constraining the weight matrix W to be diagonal, which is
able to significantly reduce the computational complexity, as
the dimensionality of the solution space decreases from n? to
n. Despite a cost of enlarging the reconstruction error, such
benefit is important for LDS modeling on real-time applica-
tions. For consistency, we denote the this algorithm as the
Diagonal-Weighted-Least-Square (DWLS) method below.

4.2 Algorithm

We develop a CG-like optimization algorithm to solve Eq.
(14) based on three basic operations: convex approximation
of the stable constraint, iterative check of the spectral radius,
and binary interpolation between the temporary solution and
the stable candidate. Such procedures are inspired from the
CG method [Siddiqi et al., 2007] but have been improved for
efficiency purposes here. The details of the implementation
for WLS is provided in Algorithm 1. Note that Algorithm 1
is also applicable for DWLS.

Convex approximation of the stable constraint. The fea-
sible region under the stable constraint in Eq. (14) is non-
convex. We perform the SVD of LW as LW = U’S'V’. The

generated constraint is given by g = vec(vju'; L), where
vec(+) returns a vector taken column-wise from the input ma-
trix; u’; and v’ are the first columns of U’ and V', respec-
tively. Since gTvec(W) < 1 = p(LW) < 1, we can formu-
late a QP problem 2 by replacing the constraint p(LW) < 1
with gTvec(W) to enforce stability in Eq. (14). If the opti-
mal result of this QP is still unstable, the above process will
be repeated and the generated constraint will be added.

Iterative check of the spectral radius. The convex ap-
proximation for enforcing stability is sufficient but not nec-
essary. Thus, we compute the spectral radius of the current
solution at each step. Once the spectral radius is decreased
to be no larger than 1, we will stop the optimization process
before we finally obtain a feasible solution with respect to
the approximate constraints. Such setting helps in obtaining
a high-quality solution.

Binary interpolation between the temporary solution
and the stable candidate. In the CG method, for increas-
ing the objective value of the final output, the binary inter-
polation is employed between the last solution and the LS
solution to locate a boundary of the stable region. Apart from
this purpose, in our WLS algorithm, the binary interpolation
is also applied between the current solution and a selected
stable candidate to obtain a feasible solution if the objective
gain between two neighbouring updates is less than a certain
threshold. Such setting can prevent the optimization process
from getting stuck in a local minima. As demonstrated in
Section 3.2, the stable candidate can be determined by ZP or
BN. We chose the transition matrix of ZP, i.e. A, as the
stable candidate in our experiments.

%As a convex problem, QP can be solved efficiently with the M
function embedded in the Matlab software, i.e. quadprog( ).
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Figure 1: (a) Samples of the benchmark datasets: (al) UCLA; (a2) UCSD; (a3) Cambridge. (b) Synthesized sequences generated
by LS, CG and WLS. The symbol f denotes the frame index. (c) Plots on the steam sequence: (c1) displays the convergent
curves of DWLS and WLS; (c2-c4) plot the evolutions of the state vectors in LS, CG and WLS, respectively.

Algorithm 1 Learning the stable transition matrix by WLS
Input: S,P,V,L, A,
Initialize the weight matrix: W =1,;;
Initialize the constraints to be empty: G =[] and b = [];
Compute the initial point: A, = LW (Eq. (14));
Compute the initial objective: fy = £(W) (Eq. (13));
for i = 1tonlters do
Compute A’ = LW (Eq. (14));
if A’ is stable then
break;
end if
Perform A’ = U'S'V'T:
Compute g = vec(viul L);
Update the constraints: G = [G; g] and b = [b; 1];
Solve the QP problem: W = quadprog(f, G, b);
Return the current objective: f; = f(W) (Eq. (13));
if f; — f;_1 < fo = threshold then
Apply the binary interpolation between A’ and A’ :
A’ = interpolation(A', A’ );
break;
end if
end for
Apply the binary interpolation between A’ and Aj:
A}, ., = interpolation(A’, Aj);
Output the transition matrix: A,,;s = SPA

/
best

PTs—L

Table 1: Performance on the steam sequence. n = 40.

Methods LB-1* LB-2 CG BN ZP DWLS WLS
p(A) 0989 0.997 1 0466 0986 0.999 1
e(A) 045 1.04 022 308 298 0.11 0.19

Time (s) 2474 35.51 5.78 0.002 0.002 0.18 6.35

S Experiments

In this section, we compare the performance of proposed al-
gorithms with state-of-the-art methods including LB-1, LB-
2 and CG. Since LB-1 usually fails to converge in practice,
we implement its simulated version LB-1* instead, as en-
couraged by [Siddiqi ef al., 2007]. The experimental per-
formance is evaluated in terms of two criteria: the recon-
struction error and the training efficiency. Following [Siddiqi
et al., 20071, we apply the normalized-error metric given by
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e(A) = (J2(A) — J2(A,))/J?(A;) where J(A) is defined
in Eq. (2). We first carry out experiments on a particular se-
quence to allow detailed comparisons among different meth-
ods. The sequence we choose is the sfeam dynamic texture
that has been adopted to evaluate the CG method in [Siddigi
et al., 2007]. Then we perform further evaluations with vari-
ous sequences selected from three benchmark datasets: the
dynamic texture dataset UCLA, the dynamic scene dataset
UCSD, and the hand gesture dataset Cambridge. These
datasets are applied widely in the LDS literatures; and their
details are provided in the next section. All experiments are
carried out with Matlab 8.1.0.604 (R2013a) on Intel Core i5,
2.20-GHz CPU with 12-GB RAM.

5.1 Benchmark Datasets

The UCLA dataset [Saisan et al., 2001] contains 50 categories
of dynamic textures. Each category consists of 4 gray-scale
video sequences captured from different viewpoints. Every
video sequence includes 75 frames with the original size of
160x 110 pixels and has been clipped to a 48 x 48 window that
keeps representative motion. The traffic dataset UCSD [Chan
and Vasconcelos, 2005] consists of 254 video sequences of
highway traffic with a variety of traffic patterns in various
weather conditions. Each video is recoded with a resolution
of 320 x 240 pixels for a duration between 42 and 52 frames.
We utilize the clipped version that has been resized to the
scale of 48 x 48 in this experiment. Cambridge [Kim and
Cipolla, 2009] consists of 900 images sequences of 9 gesture
classes generated by 3 primitive hand shapes and 3 primitive
motions. Each class contains 100 image sequences performed
by 2 subjects, with 10 arbitrary camera motions and under 5
illumination conditions. Each image has a original spatial
size of 320 x 240 and has been resized to the scale of 20 x 20
as suggested by [Kim and Cipolla, 2009]. The examples of
the datasets are illustrated in Figure 1 (a).

5.2 Performance on the steam Sequence

The steam sequence contains 149 frames of images with the
scale of 120 x 170 pixels, as illustrated in Figure 1 (b). In
this experiment, the hidden dimension of the LDS model n is
set to be 40. As for WLS and DWLS, the parameter thresh-
old in Algorithm 1 is fixed to be 0.0001. Table 1 reports the
performance of all compared methods trained on the steam
sequence. It is observed that both BN and ZP perform much



Figure 2: Performance on UCLA. The left two figures plot ¢(A) and the training time with varying n.
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Figure 3: Performance on UCSD. The left two figures plot e(A) and the training time with varying n.
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Figure 4: Performance on Cambridge. The left two figures plot e(A) and the training time with varying n. The right three
figures display the numbers of iterations, i.e. nlters, for CG, DWLS and WLS, respectively.

faster than other methods, while their reconstruction perfor-
mance is the worst, which is due to the fact that the transi-
tion matrices of these two methods are computed regardless
of the reconstruction objective. WLS achieves the lower er-
ror than previous algorithms including LB-1*, LB-2 and CG,
although its execution time is a little more than CG. DWLS
obtains the lowest error as well as the fastest training time
among all compared methods except BN and ZP. It is surpris-
ing that DWLS can outperform WLS on the reconstruction
error as it is a specific case of WLS ( Remark 3). To explain
why this happens, we display the convergence paths of WLS
and DWLS in Figure 1 (c1). It shows that DWLS converges to
the stable region within only one iteration and then obtains a
high-quality solution after the binary-interpolation. Different
from DWLS, WLS spends more iterations to converge, indi-
cating that restricting the weight space to be diagonal helps
speed up the convergence rate in this case.

Besides, we synthesized the simulated sequences of the
steam dynamic texture with the systems learned by LS, CG
and WLS in Figure 1 (b). Clearly, the sequence produced
by the unstable LS model demonstrates a dramatic increase
in image contrast over time. Both WLS and CG continue to
generate qualitatively reasonable images, while those yielded
by WLS look denser and more natural than CG. To reveal the
evolution of the state vector, we display the resulting state
values of LS, CG and WLS over time in Figure 1 (c2-c4).
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5.3 Comparisons on Benchmark Datasets

In this experiment, we further evaluate the performance of the
methods including LB-2, CG, DWLS, and WLS, with various
sequences from the benchmark datasets introduced in Section
5.1. Given an LDS model, we first compute the normalized-
errors for different series in a selected dataset, and then apply
the average of the normalized-errors as the evaluation mea-
surement for this dataset. Since the hidden dimension n in-
fluences the eventual performance dramatically, we vary its
value from 1 to 30 for each compared model on all datasets.

Figures 2, 3 and 4 report the performance of the compared
methods on UCLA, UCSD and Cambridge, respectively. As
expected, WLS consistently outperforms all other methods
on all datasets in terms of the reconstruction performance.
DWLS performs closely to WLS on UCLA and UCSD, indi-
cating that a desired solution can be obtained within the re-
gion of the diagonal weight matrices. Regarding the training
time, both WLS and DWLS perform much more efficiently
than LB-2 and CG, thus verifying the efficiency of Algorithm
1. The training time of the compared methods depends on
the value of niters, i.e. the number of iterations needed to
reach a stable region. Hence, we further display nilters of
CG, DWLS and WLS in Figures 2-4. Obviously, DWLS and
WLS spend much fewer iterations than CG, even if the im-
plementation of Algorithm 1 is inspired from CG. The ex-
perimental results here can validate our conjecture in Remark
2 that restricting the solution space within the weight space
can speed up the convergence rate and improve the eventual



accuracy.

6 Conclusion

In this paper, several theoretical results have been derived to
analyze the stability of the least-square solution, including
the reduced form of the least-square transition matrix and the
upper bound of its spectral radius. Based on these analyses,
we propose the Weighted-Least-Square method and its vari-
ants to learn stable systems from time series. Experiments
on various datasets demonstrate that our methods outperform
previous algorithms including LB-1, LB-2 and CG, in terms
of the accuracy and the efficiency.
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