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Abstract

This paper addresses the task of change detec-
tion from noisy multivariate time-series data. One
major feature of our approach is to leverage di-
rectional statistics as the noise-robust signature of
time-series data. To capture major patterns, we in-
troduce a regularized maximum likelihood equa-
tion for the von Mises-Fisher distribution, which si-
multaneously learns directional statistics and sam-
ple weights to filter out unwanted samples contam-
inated by the noise. We show that the optimization
problem is reduced to the trust region subproblem
in a certain limit, where global optimality is guaran-
teed. To evaluate the amount of changes, we intro-
duce a novel distance measure on the Stiefel mani-
fold. The method is validated with real-world data
from an ore mining system.

1 Introduction
The problem we wish to solve is change detection of mul-
tivariate time-series data. Figure 1 shows a typical setting,
where our task is to compute the degree of change, or the
change score, of the data within the test window taken at time
t in comparison to the training window.

The task of change detection has a long history in statistics.
The standard strategy is to use a parametric model for prob-
ability density and compute the likelihood ratio to quantify
the degree of change between fitted distributions [Chen and
Gupta, 2012]. For a concise review from a statistical machine
learning perspective, see [Yamada et al., 2013].

When applying a change detection method to real-world
problems, the major requirements are interpretability and ro-
bustness to nuisance noise variables. To validate detected
changes with domain knowledge, it is almost always required
to explicitly present statistics (or feature) for the parametric
model, such as the mean for Gaussian. Although it is possi-
ble to design an algorithm that skips the explicit step of fea-
ture extraction and jumps directly into score calculation [Liu
et al., 2013], such an approach is not highly appreciated in
practice due to the lack of interpretability. In the multivariate
setting, the robustness to noise variables is the other critical
requirements since changes may not always occur in all of the
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Figure 1: Change detection problem.

variables simultaneously. In fact, under the existence of nui-
sance noise variables, the performance of direct density-ratio
estimation approaches is known to significantly degrade [Ya-
mada et al., 2013].

Considering these two requirements, we focus on change
detection approaches having explicit two steps of feature ex-
traction and score calculation. There are two important deci-
sion points here: (1) Parametric model for probability density
function, and (2) scoring model for the change score.

In this paper, we propose a novel framework for change de-
tection for multivariate sensor data. Our contribution is three-
fold:

• We develop a novel feature extraction method based
on regularized maximum likelihood of the von Mises-
Fisher (vMF) distribution.

• We show that the feature extraction method is reduced
to an optimization problem called the trust-region sub-
problem [Tao and An, 1998; Hager, 2001].

• We propose a novel scoring method based on a
parametrized Kullback-Leibler (KL) divergence.

Implications of these contributions are as follows. First,
our feature extraction method is the first proposal to effi-
ciently remove the multiplicative noise that is ubiquitous
in many physical systems. Thanks to an `

1

regularization
scheme, it is also capable of automatically removing samples
contaminated by the unwanted noise. Second, the trust-region
subproblem guarantees the global optimality in a certain
limit, which is especially important for noisy data. Third, the
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parametrized Kullback-Leibler divergence for scoring pro-
vides us with a trustworthy way to quantify the discrepancy
between different subspaces with different dimensionalities.

2 Extracting feature matrix from noisy data
The proposed method consists of two steps. The first step
computes an orthonormal matrix as the signature of the fluc-
tuation patterns of multivariate data. The second step com-
putes the difference between two data sets in the past and
present through the computed orthonormal matrices. This
section explains the first step.

2.1 The von Mises-Fisher distribution
Assume we are monitoring a system with M sensors, and we
are given N measurements {x(1), . . . ,x(N) 2 RM}, which
may correspond to either the training or the test window in
Fig. 1. Our principal probabilistic model is the von Mises-
Fisher (vMF) distribution [Mardia et al., 1980]:

M(z | u,) ⌘ cM () exp
�

u>
z

�

(1)

cM () ⌘ M/2�1

(2⇡)M/2IM/2�1

()
, (2)

where IM/2�1

(·) denotes the modified Bessel function of the
first kind with the order M

2

� 1. The random variable z is
assumed to be normalized in the sense z

>
z = 1, where >

represents transpose. The vMF distribution has two param-
eters: the mean direction u and the concentration parameter
. As these names suggest, the vMF distribution describes
random variability of the direction around the mean vector.

The intuition behind the use of vMF distribution is as fol-
lows. When describing the measurements using the vMF dis-
tribution, we look only at the direction, disregarding fluctu-
ations along the direction. This automatically gives the ro-
bustness to multiplicative noise, which is quite common in
practice in systems with redundancy. As an example, we will
look at an ore transfer system, where two belt conveyors are
operated by the same electronic system. In this system, major
fluctuations in one system due to e.g. dynamic load changes
are shared by the other system. In systems having strongly
correlated variables, the vMF distribution can be a more nat-
ural tool for system monitoring than the Gaussian.

2.2 Weighted joint maximum likelihood
To simplify the notation, we introduce the data matrix

X ⌘ [x

(1), . . . ,x(N)

] = [b(1)z(1), . . . , b(N)

z

(N)

], (3)

where kz(n)k
2

= 1 and b(n) ⌘ kx(n)k
2

for n = 1, . . . , N
and k·kp being the p-norm. The parameters of the vMF distri-
bution may be inferred by maximizing a likelihood function:

L(u,w|X) ⌘
N
X

n=1

w(n)b(n) lnM(z

(n)|u,), (4)

where we introduce sample weights w ⌘ (w(1), . . . , w(N)

)

>.
We wish to capture major patterns represented as the direc-
tional data by optimally choosing the weights so that less
trustworthy samples are down-weighted.
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Figure 2: �/ as a function of  (M = 10).

The weighted likelihood L(u,w|X) has only a single pat-
tern u, and naively maximizing L(u,w|X) produces only the
single direction. To capture multiple patterns of the change,
we jointly fit m different distributions while keeping the over-
lap minimal by imposing the orthogonality between different
patterns:

max

U,W

(

m
X

i=1

L(ui,,wi|X)�R(W)

)

s.t. U>U = Im, (5)

where Im is the m-dimensional identity matrix, U ⌘
[u

1

, . . . ,um], and W ⌘ [w

1

, . . . ,wm]. The term R(W)

is a regularizer to remove the trivial solution on the sample
weights. Here we consider the elastic net regularization [Zou
and Hastie, 2005]:

R(W) = �

m
X

i=1

✓

1

2

kwik2
2

+ ⌫kwik1
◆

, (6)

where � and ⌫ are given constants, typically determined by
cross-validation.

The first term of the objective function is given by
m
X

i=1

L(ui,,wi|X) = Tr
�

XWU>�
+ �1>W>

b, (7)

where we defined � ⌘ ln cM (), b ⌘ [b(1), . . . , b(N)

]

>, and
1 is a column vector of all ones. Throughout the paper we will
treat  as a given constant. Fortunately, �/ is quite insensi-
tive to , as shown in Fig. 2. One useful heuristic is simply
to set  = M . Otherwise, we can use known approximation
algorithms given in [Sra, 2012].

2.3 Iterative sequential algorithm
The optimization problem (5) can be sequentially solved for
each of (ui,wi). Imagine that the sample weight w is initial-
ized to a vector. Given w, Eq. (5) is reduced to

max

u

�

u>Xw
 

s.t. u

>
u = 1 (8)

for the first u. The solution is readily obtained as

u =

Xw

kXwk
2

. (9)

Given this solution, the problem (5) for w is now written as

argmax

w

⇢

w

>
q � �

2

w

>
w � �⌫kwk

1

�

= argmin

w

⇢

1

2

kw � q

�
k2
2

+ ⌫kwk
1

�

, (10)
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where q is defined by
q ⌘ �b+ X>

u. (11)
This problem is a special case of LASSO regression, and has
a closed-form solution [Wen et al., 2010] as

w = sign(q)�max

⇢

|q|
�
� ⌫1,0

�

, (12)

where � denotes the componentwise product, 0 is the zero
vector, and |q| is an N -dimensional vector whose n-th entry
is |qn|. With this new w, we can solve Eq. (8) again. We re-
peat solving Eqs. (8) and (10) alternatingly until convergence.

Once we get the first solution (u

1

,w
1

), we move on to the
next solution. We again start with initialized w and solve the
following problem instead of Eq. (8):

max

u

�

u>Xw
 

s.t. u

>
u = 1, u>

1

u = 0 . (13)

By introducing Lagrange multipliers ↵,�
1

for the two con-
straints, respectively, we have the condition of optimality as

0 =

@

@u

h

u>Xw � ↵

2

u

>
u� �

1

u

>
u

1

i

= Xw � ↵u� �
1

u

1

. (14)
Using the constraints, the candidates for the solution are

u (Xw � u

1

u

>
1

Xw) (15)

u ± u

kuk
2

(16)

There are two stationary points, and by plugging them into the
objective function in Eq. (13), we can get the optimal solution
u

⇤. This solution is inserted into Eq. (10) to get a new w.
These steps are repeated until convergence.

It is straightforward to generalize the above procedure for
j = 2, . . . ,m. We summarize the procedure in Algorithm 1,
which we call the REgularized Directional feature extraction
(RED) algorithm:

Algorithm 1 RED algorithm.
Input: Initialized w. Regularization parameters �, ⌫.
Concentration parameter . The number of major direc-
tional patterns m.
Output: U = [u

1

, . . . ,um] and W = [w

1

, . . . ,wm].
for j = 1, 2, . . . ,m do

while no convergence do

uj  [IM � Uj�1

U>
j�1

]Xwj (17)

uj  sign(u

>
j Xwj)

uj

kujk2
(18)

qj  �b+ X>
uj (19)

wj  sign(qj)�max

⇢

|qj |
�
� ⌫1,0

�

(20)

end while
end for
Return U and W.

In Eq. (17), we define Uj�1

⌘ [u

1

, . . . ,uj�1

]. IM is the
M -dimensional identity matrix. The complexity of RED al-
gorithm for each while loop iteration is O(NM).

3 Theoretical analysis
3.1 Convergence of RED algorithm
We have the following convergence theorem:
Theorem 1. Define g(w,u) ⌘ u>Xw + �w>

b � R(w).
The sequence {g(wj ,uj)}j=0,1,... generated by the while-
loop of Algorithm 1 has a finite limit.

Proof. First, we prove that the sequence {g(wj ,uj)} is
bounded above. We have

g(w,u)  u>Xw + �w>
b� �

2

kwk2
2

(21)

= ��
�

�

�

�

w � X>
u+ �b

�

�

�

�

�

2

2

+

kX>
u+ �bk2

2

2�

 1

�

�

kX>
uk2

2

+ k�bk2
2

 

 1

�

�

�
max

(XX>
) + k�bk2

2

 

, (22)

where �
max

is the nonnegative maximum eigenvalue of XX>.
The inequality (21) is due to � and ⌫ being positive, the last
inequality (22) is derived from kuk

2

= 1.
We have

g(wj ,uj)  g(wj ,uj+1

)  g(wj+1

,uj+1

),

where the first inequality comes from Step 1, the last one is
due to Step 3. The boundedness and monotonically increas-
ing of the sequence {g(wj ,uj)} complete the proof.

3.2 Global optimality in ⌫ ! 0

Here we look at the following theorem:
Theorem 2. When ⌫ tends to 0, the nonconvex problem (5) is
reduced to an optimization problem in the form of

min

u

�

u

>Qu+ c

>
u

 

s.t. u

>
u = 1, (23)

which has a global solution obtained in polynomial time.

Proof. The non-convex optimization problem (23) is known
as the trust region subproblem. For polynomial algorithms to
the global solution, see [Sorensen, 1997; Tao and An, 1998;
Hager, 2001; Toint et al., 2009]. Here we show how the algo-
rithm is reduced to the trust region subproblem.

When ⌫ = 0, the objective function (5) leads to the opti-
mality condition w.r.t. w as

0 =

@

@w

⇢

w

>
q � �

2

w

>
w

�

,

which immediately gives an analytic solution as w = q/�.
By inserting this solution into the objective function in
Eq. (5), we have an optimization problem only for u:

max

u

�

u>XX>
u+ 2�u>Xb

 

s.t. u

>
u = 1,

which is obviously equivalent to Eq. (23) with Q ⌘ XX> 2
RM⇥M and c ⌘ 2�Xb 2 RM .

Let u
1

be the solution of this problem. Once u

1

is ob-
tained, we again solve another trust-region subproblem of the
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form (23) but in the RM�1 space by adding an orthogonality
condition u

>
1

u = 0. In particular, without loss of generality,
we assume the last component of u

1

is nonzero, i.e., u
1,M 6=

0. Define y = (u
1

, . . . , uM�1

) and a = (u
1,1, . . . , u1,M�1

).
The problem (23) with the additional linear equality con-
straint is equivalent to

minu

✓
u1, . . . , uM�1,�

PM�1
i=1 aiui

u1,M

◆
Q

0

BBBB@

u1

...
uM�1

�
PM�1

i=1 aiui

u1,M

1

CCCCA

+
PM�1

i=1 wiui � wM

PM�1
i=1 aiui

u1,M

s.t. u>(I+ aa>)u = 1.

Consider the Cholesky decomposition for rank-one update

I+ aa

>
= LL>

and the change of variable y = L>(u
1

, . . . , uM�1

)

>. The
decomposition can be done efficiently, for example [Gill et
al., 1974]. The problem (24) is rewritten as

min

y2RM�1

�

y

>
¯Qy +

¯

c

>
y

 

s.t. y

>
y = 1,

which has exactly the same format with (23).
When more than two orthonormal vectors ui are needed, a

set of linear equations is additionally considered

u

>
ui = 0, i = 1, . . . , j � 1.

A variable elimination method can be used in order to work
on a reduced space. Note that an eigenvalue decomposition
for a matrix of dimension M�j is needed to transform it into
a (M � j)-dimensional trust region subproblem. In this way,
we have a set of orthonormal vectors {u

1

, . . . ,um}, where
m is an input parameter representing the number of major
directional patterns.

Although the global optimality is no longer guaranteed
when ⌫ > 0, we can take advantage of the global solution
at ⌫ = 0 to initialize w in Algorithm 1. In practice, if there
is a concern about the quality of the solution, we can grad-
ually increase the value of ⌫, and use the obtained {wj}’s
for the next trial for a larger ⌫. Although mathematically the
RED algorithm is an iterative algorithm that may be trapped
by sub-optimality, we can loosely say that it is an “almost
guaranteed” algorithm in practice.

4 Parameterized KL divergence for scoring
Solving the optimization problem for the training and the
test windows, we obtain two sets of orthonormal vectors
{u

1

, . . . ,um} and {v
1

, . . . ,vr} where m and r are the num-
ber of vectors given as input parameters. Computing the
change score amounts to evaluating the dissimilarity between
the two vector spaces specified by orthonormal matrices

U ⌘ [u

1

, . . . ,um], U(t) ⌘ [v

1

, . . . ,vr]. (25)

Now our problem is to compute the dissimilarity on a Stiefel
manifold, which is the space spanned by orthogonal matrices.

As illustrated in Fig. 1, in practice, the window size D
should be chosen as small as possible to minimize the time
lag in change detection, while the number of samples N in
the training data should be large enough to make sure to cap-
ture major patterns. Depending on the nature of data, it makes
sense to assume m 6= r.

To handle this general situation, we consider linear com-
binations of ui’s and vi’s and define the change score as a
parameterized version of KL divergence:

a(t) = min

f ,g

Z

dx M(x|Uf ,) ln M(x|Uf ,)
M(x|U(t)

g,)
(26)

under the constraint of f>
f = 1, g

>
g = 1. This can be

also viewed as an averaged version of the log likelihood ratio,
which is the standard measure of change detection [Chen and
Gupta, 2012].

By inserting the definition of the vMF distribution in
Eq. (1), we have

a(t) = min

f ,g

n

hxi>
⇣

Uf � U(t)
g

⌘o

, (27)

where h·i is the expectation w.r.t. M(x|Uf ,). Since hxi /
Uf follows from the basic property of the vMF distribu-
tion [Mardia et al., 1980], we have

a(t) = 1�max

f ,g

n

f

>U>U(t)
g

o

s.t. f

>
f = 1, g>

g = 1, (28)

where we dropped an unimportant prefactor.
Solving the optimization problem (28) is easy. Introduc-

ing Lagrange multipliers ⇡
1

,⇡
2

for the two constraints, it is
straightforward to obtain optimality conditions as

U>U(t)
g = ⇡

1

f , U(t)>Uf = ⇡
2

g.

This means that f and g are found via singular-value decom-
position of U>U(t), which is a small matrix of size m ⇥ r.
The maximum of the objective function is simply given by
the maximum singular value, �(t)

1

; thereby we reach the final
formula for the change score:

a(t) = 1� �
(t)
1

. (29)

The maximum singular vector is efficiently computed by
the power method [Golub and Loan, 1996]. In most practical
situations, it requires only iterations as many as min{m, r}.
The complexity to compute the KL-based change score is
(min{m, r})3. Since m and r can be just several in most
applications, it is negligible in practice.

5 Related work
As described so far, the proposed method extensively uses
the vMF distribution. For change or anomaly detection, little
work has focused on the vMF distribution . [Idé and Kashima,
2004] seems to be one of the earliest pieces of work that ex-
plicitly leverages the vMF distribution for anomaly detection,
but it does not discuss the particular task of change detection
and sample regularization.
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In statistics, a lot of efforts have focused on asymptotic
analysis of the likelihood ratio [Chen and Gupta, 2012]. Re-
cently, [Kuncheva, 2013] compares various change detection
approaches and concludes that a model combining Gaussian
mixture and Hotelling’s T 2 statistic works best. However, it
is widely known that stably learning Gaussian mixture is hard
for physical sensor data we are interested in, which is quite
noisy and includes many outliers. Also, in general, accurately
estimating densities itself is challenging when dimensionality
is high (M & 10).

To address the challenge of density estimation, [Kawahara
and Sugiyama, 2009; Liu et al., 2013] proposed an interesting
technique of direct density-ratio estimation, which integrates
the two steps of parametric model estimation and scoring into
a single step of density-ratio estimation. Thanks to the in-
tegration of the two steps, their approach is generally better
than those estimates two densities individually. However, due
to the very same reason, they lack practical interpretability,
which is of critical importance in practice. Also, it has been
pointed out that the performance significantly degrades when
some of the variables are just non-informative nuisance fea-
tures [Yamada et al., 2013].

Recently, to extract the most informative features from
multivariate time-series data, [Blythe et al., 2012] proposed
an interesting approach called stationary subspace analysis
(SSA). Although SSA proposed for the task of time-series
segmentation, which is different from the on-line change-
detection we are dealing with, we experimentally compare
it with the proposed method in the next section.

6 Experimental results
6.1 Methods compared
We compare the proposed method denoted by RED+KL,
which uses Algorithm 1 for computing U and U(t) in Eqs. (25)
and (29) for the change score, with the following alternative
methods:
• RED+tr: Use Algorithm 1 for U but replace Eq. (29) with
the trace norm where r = m:

a(t) = 1� 1

m
Tr(U>U(t)

). (30)

• SSA: Use SSA for U. First identify the most stationary
subspace by solving

min

V>V=IM�m

E
X

i=1

{� ln |V>⌃iV|+ kV>
µik2}, (31)

where E is the number of epochs defined by a non-
overlapping time window of size D, and {µi,⌃i} are the
sample mean and covariance matrix computed in the i-th
epoch. | · | represents the determinant in this case. Once V
is found, U is obtained as the complement space of V. The
change score is computed by

a(t) = � ln |U>⌃(t)U|+ kU>
µ

(t)k2 +Tr(U>⌃(t)U),

where µ

(t) and ⌃(t) are the mean and the covariance matrix
over D(t), which is defined as the set of the samples in the
sliding window at time t. Before computing these, the data
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Figure 3: Synthetic three-dimensional time-series data.
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(Synthetic data).

is whitened with the same pooled mean and covariance of the
training data.
• PCA: Use the principal component analysis for U. Employ
the mean reconstruction error for scoring [Papadimitriou and
Yu, 2006] :

a(t) =
1

D

X

n2D(t)

k(Im � UU>
)x

(n)k2. (32)

• T2: Use the mean Hotelling’s T 2 statistic

a(t) =
1

D

X

n2D(t)

(x

(n) � µ)

>⌃�1

(x

(n) � µ). (33)

for scoring. Here µ and ⌃ are the mean and the covariance
matrix of the training data. T2 is compared only in change
detection since it has no explicit feature extraction step.

6.2 Synthetic data: comparison of feature
extraction methods

Figure 3 shows three-dimensional synthetic time-series data
we generated. In this data, x

1

and x
2

are quite noisy but
significantly correlated, while x

3

is uncorrelated to the others.
Thus we expect the principal direction would point to the 45�
line between x

1

and x
2

.
We compared the proposed algorithm (denoted simply by

RED) with two alternatives SSA and PCA. All methods take
the data matrix X as the input, and return an orthonormal ma-
trix U as the output. Figure 4 shows the coefficients of the
first component u

1

. For RED, we used (�, ⌫) = (1, 4), while
for SSA we used D = 25.

We see that RED successfully captures the expected 45�
direction as the principal direction. PCA has a similar trend,
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Figure 5: Ore transfer data under the normal operation.

but due to the major outlier in x
2

at 94 (see Fig. 3), it has more
weight in x

2

. Close inspection shows that RED automatically
removes this outlier by putting zero weight, demonstrating
the automated noise-filtering capability.

The basic assumption of SSA is that the stationary com-
ponents are most likely noise, and the non-stationary com-
ponents are more informative for change detection. In this
particular example, the major pattern is the correlation struc-
ture between x

1

and x
2

, and the other variable x
3

is the noise.
However, due to the heavy noise especially in the first half of
x
3

, SSA fails to disregard the noise variable.

6.3 Real-world data: comparison of on-line
change detection performance

We applied the proposed method to a real-world on-line
change detection task. Figure 5 shows time-series data from
an ore transfer system being monitored by ten sensors mea-
suring physical quantities such as speed, current, load, tem-
perature, and displacement. The data itself was generated by
a testbed system to simulate the normal operating condition
and thus used as the training data. As introduced in Sec. 2.1,
the system consists of two almost equivalent subsystems, and
some of the variables are significantly correlated, and incur
the multiplicative noise. As seen, the data is extremely noisy
and sometimes exhibits impulse-like noise due to the physical
operating condition of the outdoor ore transfer system.

For this training data, we applied the RED algorithm to find
U and W. Figure 6 shows W = [w

1

,w
2

], where we used
(�, ⌫) = (2, 9) that maximized the F score for the test data
(see the next paragraph). We see that many samples are driven
to zero. In fact, 43 and 39 percents of the samples have ex-
act zero in w

1

and w

2

, respectively, out of which about 16
percent are zero in both. Close inspections show that almost
all of “out-of-context” outliers are cut off, while informative
outliers that are consistent to the major correlation structure
survive. This is exactly what we expected.

We evaluated the performance of on-line change detection
using another data set, where changes due to system malfunc-
tions are recorded. Most of the failure symptoms are associ-
ated with unreasonable changes in the correlation structure
between the variables. We simply use the negative-sample
and positive-sample accuracies as the performance metric.
Here, the negative samples are defined by those not belong-
ing to change-points, while the positive samples are those be-
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Figure 7: Comparison of the ROC curve.

longing to change-points. We used the harmonic average (F
score) of them to determine the (�, ⌫) values. We use the
window of D = 60 over about 1200 samples. Figure 7 com-
pares the ROC curve. Clearly, RED-KL with (m, r) = (2, 3)
outperforms the alternatives. It is interesting to see RED-tr
gives the worst, which demonstrates the importance the pro-
posed subspace comparison technique of Eq. (29). For this
data set, SSA fails to capture change points. The main reason
is that SSA is not necessarily robust to spiky outliers as seen
in Fig. 5. Since the correlational structure is critical to detect
change points in this data, it makes sense that the PCA and
T2 do a good job.

7 Conclusion
We have proposed a new on-line change detection algorithm
for multivariate time-series data. Our algorithm extracts ma-
jor directional patterns while automatically disregarding less
informative samples. We proved the convergence of the algo-
rithm, and showed that the quality of the solution is supported
by the global optimality of the trust-region subproblem. We
also proposed a new method of scoring the change based on
a parameterized KL divergence. We validated the algorithm
using real-world data.
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