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Abstract
Trace norm based rank regularization techniques
have been successfully applied to learn a low-rank
recovery for high-dimensional noise data. In many
applications, it is desirable to add new samples to
previously recovered data which is known as out-
of-sample data recovery problem. However, tra-
ditional trace norm based regularization methods
can not naturally cope with new samples and thus
fail to deal with out-of-sample data recovery. In
this paper, we propose a new robust out-of-sample
data recovery (ROSR) model for trace norm based
regularization methods. An effective iterative algo-
rithm, with the proof of convergence, is presented
to find the optimal solution of ROSR problem. As
an application, we apply our ROSR to image clas-
sification task. Experimental results on six image
datasets demonstrate the effectiveness and benefits
of the proposed ROSR method.

1 Introduction
Image recovery and reconstruction is an important research
topic in computer vision and machine learning area. There
exist many studies on image data recovery. One kind of popu-
lar methods is to use matrix factorization techniques [Lee and
Seung, 1999; Duda et al., 2001; Aharon et al., 2006] which
aim to learn an explicit low-rank recovery/representation for
original high-dimensional data. In low-rank space, the noise
can be suppressed and the class distribution becomes more
apparent which significantly improves the machine learn-
ing results. In order to deal with gross errors or outliers,
recent works use more robust matrix norms such as `1-
norm [Ke and Kanade, 2005; Kasiviswanathan et al., 2012;
Peng et al., 2010; Zhao and Cham, 2011; Zhang et al., 2011;
Feng et al., 2013; Yu et al., 2012], `21-norm [Ding et al.,
2006; Kwak, 2008; Kong et al., 2011] to develop robust ma-
trix factorization formulations which have been shown to be
able to deal with gross errors or outliers effectively.

In additional to matrix factorization methods, trace norm
based rank regularization approaches [Cai et al., 2010; Ma
et al., 2009; Liu et al., 2010; Liu and Yan, 2011] have also
been applied to reduce the rank of the data and thus can per-
form data recovery robustly. Among them, one of popular

methods is Robust Principal Component Analysis (RPCA)
[Wright et al., 2009a; Peng et al., 2010; Xu et al., 2012;
Ma et al., 2009] which has been successfully applied in many
problems such as data reconstruction, image denoising and
background modeling, etc. Liu et al., [Liu et al., 2010]
proposed a robust subspace segmentation and data recovery
method based on Low Rank Representation (LRR). Liu and
Yan [Liu and Yan, 2011] extend LRR to Latent Low Rank
Representation (LatLRR) which uses both observed and un-
observed hidden data and thus provides a more robust repre-
sentation. Zhang et al., [Zhang et al., 2012] provided a matrix
completion method via truncated nuclear norm regularization
which can better approximate the matrix rank function. Re-
cently, some other methods have also been proposed [Nie et
al., 2014; Kim et al., 2015]. The above rank regularization
methods can correctly recover underlying low-rank structure
in the data, even in the presence of noise. One main advantage
of these trace-norm based approaches is that the trace-norm is
the convex envelop of matrix rank and thus the optimization
is usually convex. A unique optimal solution exists.

However, one important issue for these trace norm recov-
ery methods is how to do robust recovery for a new incoming
‘query/test’ sample, which we call out-of-sample data recov-
ery. Since trace norm based methods are generally computed
in a batch manner, i.e., they process the whole data set X0

simultaneously and thus can not naturally cope with the new
incoming data. When a new query data x is added, one pos-
sible way is to re-compute the whole available data {x,X0}
simultaneously using traditional trace norm methods and then
obtain the optimal recovery for the new data x. Obviously,
this is computationally cost and also does not provide a pre-
diction for the new data.

In this paper, we propose a new robust out-of-sample data
recovery (ROSR) for trace norm based recovery methods. An
effective iterative algorithm with the proof of convergence is
presented to find the global optimal solution of the proposed
ROSR problem. As an application, we apply our ROSR to
face recognition and handwritten character recognition tasks.
Experimental results on several datasets demonstrate the ef-
fectiveness and benefits of the proposed ROSR method.

2 Brief Review of Low Rank Recovery
Let the input data matrix X = (x1, ..., xn

) 2 Rp⇥n con-
tains the collection of n data vectors in p dimension space.
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In image processing, each column x

i

is the linearized array
of pixels gray levels. In many applications, the input data X

usually contains noises, i.e., X = Z +E, where Z is the true
signal data, and E is the sparse distortion. The aim of low-
rank recovery is to find the optimal recovery Z by minimizing

min
Z

kX � Zk
`

+ �rank(Z), (1)

where � > 0 is a parameter and k · k
`

denotes the certain
norms, such as Frobenius norm, `2,1 and `1-norm. The ex-
plicit rank constraint rank(Z) is difficult to enforce in nu-
merical computation. Many works suggest to use trace norm
kZk

tr

to approximate the rank constraint rank(Z). Thus, the
above low-rank recovery becomes,

min
Z

kX � Zk
`

+ �kZk
tr

, (2)

where kZk
tr

= Tr(ZZ

T )1/2. When k·k
`

denotes k·k1 norm,
this model refers to robust PCA [Wright et al., 2009a; Candès
et al., 2011] which has been shown robustly in dealing with
corruption/sparse noise. When k · k

`

denotes k · k2,1 norm,
this model becomes to outlier pursuit model [Xu et al., 2012]
which is better to pursuit the outliers in data recovery.

The above rank regularization methods can correctly re-
cover underlying low-rank structure in the data, even in the
presence of noise or outliers. Since trace norm is convex, the
above optimization (Eq.(2)) is convex and a unique optimal
solution exists.

3 Robust Out-of-Sample Recovery
Suppose we have obtained the optimal low-rank recovery
Z

0 2 Rp⇥n from original observed data X

0 2 Rp⇥n using
the above RPCA model. Now, we consider a new query/test
image data x 2 Rp⇥1 in original observed space, and wish
to obtain its recovery/representation z in the low-rank space.
Our aim in this paper is to seek a way to obtain z for x while
fixing the already learned variable Z

0. This can be formu-
lated by solving the following model 1,

min
z

k[X0
, x]� [Z0

, z]k1 + �rank([Z0
, z]). (3)

Since both X

0 and Z

0 are fixed, this problem can be reduced
as,

min
z

kx� zk1 + �rank([Z0
, z]). (4)

Using trace norm k · k
tr

replacement, this problem becomes

min
z

kx� zk1 + �k[Z0
, z]k

tr

. (5)

Let z⇤ be the optimal solution of model Eq.(5), then z

⇤ can
be regarded as a kind of recovery/reconstruction for the new
query data x. In this paper, we call it Robust Out-of-Sample
Recovery (ROSR). There is no new parameter in ROSR: � is
set to the value when Z

0 are obtained.
Illustration. To illustrate the data recovery/reconstruction

ability of ROSR model, we run ROSR on the occluded images
selected from AT&T face dataset (more details are given in
the Experiments section). Here, we select 8 images of each

1Here we focus on `1. `2,1 is similarly obtained.

person for training and the rest 2 images for testing. Figure 1
(left) shows some examples of the occluded images X

0 and
corresponding low-rank reconstruction Z

0 of RPCA. Figure
1 (right) shows the occluded test image x and corresponding
recovery z

⇤ of ROSR. Each panel shows a test image with
3 different corruptions. Here we can note that large errors
(occlusions) are suppressed in ROSR recovery. This clearly
demonstrates the robust of ROSR method for out-of-sample
data recovery.

4 Optimization
In this section, we derive an effective update algorithm to
solve the proposed ROSR problem and provide the theoret-
ical analysis on the convergence of the algorithm.

4.1 Computational algorithm
Given any initial z

(0), the algorithm updates the solution
z

(t)
, t = 1, 2... until convergence as summarized in Algo-

rithm 1. Since the objective function of ROSR problem
(Eq.(5)) is convex, thus staring from any initialization, the
algorithm converges to the global optimal solution.

Algorithm 1 Robust Out-of-Sample Recovery
1: Input: Training data X

0
, Z

0 2 Rp⇥n, query/test data
x 2 Rp, parameters �, maximum number of iteration
T

max

, and convergence tolerance ✏ > 0;
2: Initialize z

(0) = 0, t = 0,
3: while t < T

max

or kz(t+1)�z

(t)k2

kz(t)k2
> ✏ do

4: Compute w

(t) and matrix B

(t) as

w

(t) = |x� z

(t)| (6)

B

(t) =
�
[Z0

, z

(t)][Z0
, z

(t)]T
�1/2 (7)

5: Update z

(t+1) as

z

(t+1) = B

(t)(B(t) + �D

(t)
B

(t))�1
x (8)

where D

(t) = diag(w(t)
1 , w

(t)
2 , · · ·w(t)

p

).
6: end while
7: Output: The converged recovery z

⇤ = z

(t+1).

4.2 Convergence analysis
Let L(z) denote the objective function of ROSR problem
Eq.(5). Since L(z) is a convex function of z, thus we only
need to prove that the objective function value L(z) is non-
increasing in each iteration of Algorithm 1. This is summa-
rized in Theorem 1.
Theorem 1 The objective function value L(z) of problem
Eq.(5) is non-increasing,

L(z(t+1))  L(z(t)), (9)

along with each iteration of the update rule Eq.(8) in Algo-
rithm 1.
To prove the Theorem 1, we need to prove the following three
Lemmas firstly.
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Figure 1: Image recovery of ROSR on occluded AT&T face data. LEFT: examples of the occluded images X0 and correspond-
ing RPCA recovery Z

0. RIGHT: test image x and corresponding ROSR recovery z

⇤.

Lemma 2 For any matrices Y, Z with the same size, let A =
(Y Y

T )1/2, B = (ZZ

T )1/2. Then, the following inequality
holds,

Tr(A)  Tr(B)� 1

2
Tr(ZT

B

�1
Z)+

1

2
Tr(Y T

B

�1
Y ) (10)

The detail proof of this property can refer to the work [Luo et
al., 2011].
Lemma 3 Define an auxiliary function

G(z) =
X

i

(x� z)2i
2|x� z

(t)|i
+

�

2
Tr

�
[Z0

, z]TB(t)�1
[Z0

, z]
�

(11)

where B

(t) =
�
[Z0

, z

(t)][Z0
, z

(t)]T
� 1

2 . Along with the
{z(t), t = 0, 1, · · · } sequence of the update rule Eq.(8) in
Algorithm 1, the following inequality holds,

G(z(t+1))  G(z(t)).

Proof Since the two terms in auxiliary function G(z) are
semi-definite positive (SDP) problems, we can obtain the
global optimal solution of G(z) by taking the derivatives and
let them equal to zero.

Take the derivative of G(z) with respect to z, and we get
@G(z)

@z

i

= � (x� z)
i

w

(t)
i

+ �(B(t)�1
z)

i

(12)

where w

(t)
i

= |x� z

(t)|
i

.

By setting
@G(z)

@z

i

= 0, we have,

z

i

w

(t)
i

+ �(B(t)�1
z)

i

=
x

i

w

(t)
i

. (13)

Let D(t) 2 Rp⇥p be the diagonal matrix with D

(t)
ii

= w

(t)
i

,
then, Eq.(13) can be reformulated as follows,

D

(t)�1
z + �B

(t)�1
z = D

(t)�1
x. (14)

Thus, we have

z =
�
D

(t)�1
+ �B

(t)�1��1
D

(t)�1
x

= B

(t)
�
B

(t) + �D

(t)
��1

x (15)
This completes the proof.
Lemma 4 The {z(t), t = 0, 1, 2, · · · } sequence obtained by
update rule Eq.(8) in Algorithm 1 has the following property,

L(z(t+1))� L(z(t))  G(z(t+1))�G(z(t)). (16)
Proof First, we rewrite problem Eq.(5) as,

min
z

L(z) = kx� zk1 + �Tr
�
[Z0

, z][Z0
, z]T

�1/2 (17)

Let � =
�
L(z(t+1)) � L(z(t))

�
�

�
G(z(t+1)) � G(z(t))

�
.

Then, substitute Eq.(17) and Eq.(11) in it, we obtain
� =

�
kx� z

(t+1)k1 � kx� z

(t)k1
�

�
hX

i

(x� z

(t+1))2
i

2|x� z

(t)|
i

�
X

i

(x� z

(t))2
i

2|x� z

(t)|
i

i

+ �Tr
�
[Z0

, z

(t+1)][Z0
, z

(t+1)]T
� 1

2

� �Tr
�
[Z0

, z

(t+1)][Z0
, z

(t)]T
� 1

2

� �

2
Tr

⇣
[Z0

, z

(t+1)]TB(t)�1
[Z0

, z

(t+1)]
⌘

+
�

2
Tr

⇣
[Z0

, z

(t)]TB(t)�1
[Z0

, z

(t)]
⌘
. (18)
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Eq.(18) can be rewritten as

� = �
X

i

1

2|x� z

(t)|
i

�
|x� z

(t+1)|
i

� |x� z

(t)|
i

�2

+ �Tr
�
[Z0

, z

(t+1)][Z0
, z

(t+1)]T
� 1

2

� �Tr
�
[Z0

, z

(t+1)][Z0
, z

(t)]T
� 1

2

� �

2
Tr

⇣
[Z0

, z

(t+1)]TB(t)�1
[Z0

, z

(t+1)]
⌘

+
�

2
Tr

⇣
[Z0

, z

(t)]TB(t)�1
[Z0

, z

(t)]
⌘
. (19)

According to Lemma 2, we have

Tr
�
[Z0

, z

(t+1)][Z0
, z

(t+1)]T
� 1

2

 Tr
�
[Z0

, z

(t)][Z0
, z

(t)]T
� 1

2

+
1

2
Tr

�
[Z0

, z

(t+1)]TB(t)�1
[Z0

, z

(t+1)]
� 1

2

� 1

2
Tr

�
[Z0

, z

(t)]TB(t)�1
[Z0

, z

(t)]
� 1

2 (20)

where B

(t) =
�
[Z0

, z

(t)][Z0
, z

(t)]T
�1/2

. Substitute Eq.(20)
into Eq.(19), we can have �  0. This completes the proof
of Lemma 4.
From Lemma 3 and Lemma 4, we have,

L(z(t+1))� L(z(t))  G(z(t+1))�G(z(t))  0, (21)

which is to say

L(z(t+1))  L(z(t)). (22)

This completes the proof of Theorem 1.
Figure 2 shows the variation of objective function value

L(z(t)) across each iteration starting from random initializa-
tion. We can note that, as the iteration increases, the objective
function L(z(t)) decreases monotonously, demonstrating the
convergence of the algorithm. As the iteration increases, the
algorithm recoveries the true image more and more clearly.
Also, the algorithm converges fast, generally in 20-30 itera-
tions.

Figure 2: Variation of objective function value L(z(t)) across
each iteration

5 Experiments
5.1 Image recognition using ROSR
As an application for the proposed ROSR model, we have ap-
plied it to achieve face recognition and handwritten character
recognition tasks. In short, the recognition process has the
following two main steps.

In training phase, we obtain the low-rank recovery Z

0 from
input data X0 using RPCA. In testing phase, for each test im-
age x, we first obtain its ROSR recovery z

⇤ and then identify
it by K Nearest Neighbor (KNN) classifier or Sparse Repre-
sentation Classification (SRC) [Wright et al., 2009b] meth-
ods. In KNN classification, the class identity of z⇤ is deter-
mined by its K nearest neighbors in Z

0 based on Euclidean
distances. In SRC [Wright et al., 2009b] classification, we
first compute the optimal coefficient ↵̂ as

↵̂ = argmin
↵

k↵k1 s.t. kz⇤ � Z

0
↵k2  ".

Then, we obtain the class identity of z⇤ as
Identity(z⇤) = argmin

i

kz⇤ � Z

0
i

↵̂

i

k2.
where Z

0
i

denotes the dataset of the i-th class, and ↵̂

i

is the
coding coefficient vector associated with the i-th class.

5.2 Datasets description
Six image datasets are used in the experiments, including
three face datasets (AT&T face databases, Extended Yale
Database B [Lee et al., 2005] and CMU-PIE [He et al.,
2005a]) and three handwritten character datasets (Binary Al-
phabet Dataset 2, MNIST handwritten digits Database, USPS
Handwritten Digits Dataset3). The details are introduced be-
low and Table 1 summarizes them.
AT&T Faces Dataset contains 40 distinct persons with each
person/class contains 10 different images. In our experiment,
each face image was resized into 23⇥ 28 and reshaped into a
vector of 644 dimension.
Extended Yale Database B consists of 38 different classes
with each class contains about 64 frontal face images. In our
experiment, each face image was resized into 28⇥ 32 and re-
shaped into a vector of 896 dimension.
CMU PIE face Database contains 68 different classes with
41368 face images as a whole. In our experiment, we ran-
domly select 30 classes with each class containing 50 face
images. Each face image was resized into 32 ⇥ 32 and re-
shaped into a 1024 dimension vector.
MNIST Hand-written Digit Dataset consists of 8-bit gray-
scale images of digits from “0” to “9”, about 6000 examples
of each class (digit). Each image is centered on a 28 ⇥ 28
grid. Here, we randomly select 100 images from each digit,
and convert them to vectors of 784 dimension.
USPS Dataset contains 9298 handwritten digit images from
“0” to “9”. Each image is centered on a 16 ⇥ 16 grid. In
our experiment, we select 1000 images (100 images for every
digit) and convert them to vectors of 256 dimension.
Binary Alphabet Dataset contains 26 hand-written alpha-
bets from A⇠Z with each alphabet consists 39 samples. Each
sample is a 20 ⇥ 16 binary image. We reshape each image
into one vector of 320 dimension.

2http://olivier.chapelle.cc/ssl-book/benchmarks.html
3http://www.cs.nyu.edu/ roweis/data.html
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Table 1: Dataset descriptions.
Dataset # Size # Dimension # Class
AT&T 400 644 40
Yale-B 2414 896 32
CMU PIE 1500 1024 30
MNIST 1000 784 10
USPS 1000 256 10
Bin-Alpha 1014 320 26

5.3 Results
To evaluate the robustness of our method, we conduct classi-
fication experiments on the corrupted images. Here, we ran-
domly add corruptions on each image of the dataset, as shown
in Figure 1. The percentage of corruption is about 10% of im-
age size. All experiments are performed with ten-fold cross
validation strategy, i.e., all data sets are randomly splitted into
ten equal subsets, iteratively pick one subset for testing and
the remaining nine subsets for training, then the performances
are averaged over the ten loops.

Figure 3: Comparison of classification results using SRC
classification

For comparison, we compared our model with original raw
data and other data recovery methods including standard Prin-
cipal Component Analysis (PCA) [Duda et al., 2001], Local-
ity Preserving Projection (LPP) [He et al., 2005a], Neigh-
borhood Preserving Embedding (NPE) [He et al., 2005b]
and L1-norm based PCA (L1PCA)[Ke and Kanade, 2005;
Yu et al., 2012]. These compared methods can be used for
out-of-sample data recovery or representation. For LPP and
NPE, we first learn the optimal projection P

0. Then, for a
new query data x, we use P

0
x as its representation. For

L1PCA, we first learn the optimal U0 from input data X

0

by solving,

{U0
, V

0} = argmin
U,V

kX0 � UV k1. (23)

Then, for a new query data x, we obtain its recovery as,

v

⇤ = argmin
v

kx� U

0
vk1. (24)

At last, we use U

0
v

⇤ as the recovery for test image x, i.e.,

x ' U

0
v

⇤
. (25)

This is similar to PCA. We set the regularization parameter �
in ROSR to 0.8�0, 1.0�0 and 1.2�0, respectively, where �0 =

p
p and p is the dimension of data. Note that � = �0 is used

in RPCA model in the experiment. For PCA, LPP, NPE and
L1PCA, we set the dimension d to 50 and 100, respectively.

Table 2 shows the comparison results of different recov-
ery methods using KNN classification. We can observe that
(1) L1PCA generally outperforms standard PCA, indicating
the robustness of L1PCA recovery method. (2) ROSR per-
forms better than L1PCA and gives the best classification re-
sults, which clearly demonstrates that ROSR can recover the
noise images effectively and thus leads to better classifica-
tion results. Figure 3 shows the comparison results of dif-
ferent recovery methods using SRC classification [Wright et
al., 2009b]. Here, we perform SRC on the recovery images
of different methods. We compare our ROSR method with
original raw data, PCA and L1PCA method, because these
methods can return a recovery for out-of-sample image, as
shown in Eq.(25). We can note that our ROSR method obvi-
ously outperforms other methods, which further demonstrates
the robustness of ROSR method on recovering the occluded
images and thus leads to better recognition results.

6 Conclusions
This paper proposes a novel Robust Out-of-Sample Recov-
ery (ROSR) method which conducts robust recovery for out-
of-sample data naturally based on trace norm regularization.
An effective algorithm, with theoretical analysis on conver-
gence, has been developed to solve ROSR problem. As an
application, we apply our ROSR to image classification task.
Experimental results demonstrate that ROSR is effective in
recovering noise image data and thus obviously improves the
classification results.
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