Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

Learning Multi-Step Predictive State Representations

Lucas Langer Borja Balle Doina Precup
McGill University Lancaster University McGill University
Canada United Kingdom Canada
Abstract learning efficiency [Hsu et al., 2009; Bailly et al., 2010]. Un-

Recent years have seen the development of effi-
cient and provably correct spectral algorithms for
learning models of partially observable environ-
ments arising in many applications. But despite the
high hopes raised by this new class of algorithms,
their practical impact is still below expectations.
One reason for this is the difficulty in adapting
spectral methods to exploit structural constraints
about different target environments which can be
known beforehand. A natural structure intrinsic to
many dynamical systems is a multi-resolution be-
haviour where interesting phenomena occur at dif-
ferent time scales during the evolution of the sys-
tem. In this paper we introduce the multi-step pre-
dictive state representation (M-PSR) and an associ-
ated learning algorithm that finds and leverages fre-
quent patterns of observations at multiple scales in
dynamical systems with discrete observations. We
perform experiments on robot exploration tasks in
a wide variety of environments and conclude that
the use of M-PSRs improves over the classical PSR
for varying amounts of data, environment sizes, and
number of observations symbols.

1

Learning models of partially observable dynamical systems
is a problem that arises in many practical applications, in-
cluding robotics, medical monitoring, market analysis, etc.
Predictive state representations (PSRs) [Littman et al., 2001;
Singh et al., 2004; Rosencrantz et al., 2004], provide a the-
oretically justified approach in which at any time-step the
current state is modeled as a set of predictions about the fu-
ture evolution of the system, conditioned on past outcomes.
The most popular of these models are linear PSRs, in which
predictions for any future trajectories can be obtained as a
linear combination of a finite set of “core” predictions. A
variety of spectral algorithms for learning linear PSRs have
been proposed in recent works, e.g. [Boots et al., 2011;
Hamilton et al., 2013].

Spectral algorithms are appealing because of their strong
theoretical properties, such as statistical consistency and

Introduction

1662

fortunately, their practical uptake is still limited, in part, due
to the fact that these general-purpose algorithms are not de-
signed to leverage the structural regularities frequently found
in applications. This is a challenging question that needs to
be tackled in order to facilitate more efficient spectral learn-
ing algorithms for specific applications. Recent work along
these lines has focused on sparse states spaces [Hamilton et
al., 2013] and special structures encountered in epigenomics
[Zhang er al., 2015]. In this paper, we focus on a specific type
of structure which arises frequently in dynamical systems:
behaviour which takes place at different time scales. This
type of structure is often leveraged to provide efficient algo-
rithms in signal processing. Similar gains can be obtained
by using multiple time scales in planning and reinforcement
learning, e.g. [Sutton er al., 1999].

Our approach is based on a new class of PSRs which
we call the multi-step PSR (M-PSR). Like the classical lin-
ear PSR, M-PSRs represent the dynamics of a partially ob-
servable system with discrete observations. However, un-
like PSRs, M-PSRs are able to capture structure occurring
at multiple time scales by representing transitions between
states over multi-step observations. Our main result is a spec-
tral learning algorithm for M-PSRs combined with a data-
driven strategy for multi-step observation selection. Through
an extensive empirical evaluation, we show that in environ-
ments where characteristic multi-step observations occur fre-
quently, M-PSRs improve the quality of learning with respect
to classical PSRs. This improvement is uniform over a range
of environment sizes, number of observation symbols, and
amounts of training data.

2 The Multi-Step PSR

A linear predictive state representation (PSR) for an au-
tonomous dynamical system with discrete observations is a
tuple A = (X, &te, O, {As }oex) where: X is a finite set of
possible observations, o, o, € R™ are vectors of initial and
final weights, and A, € R"*™ are the transition operators as-
sociated with each possible observation. The dimension n is
the number of states of 4. Formally, a PSR is a weighted fi-
nite automata (WFA) [Droste and Vogler, 2009] computing a
function given by the probability distribution of sequences of
observations in a partially observable dynamical system with
a finite number of states. The function f4 : ¥* — R com-

puted by A on input z = z; - - - z; is given by:
fA(xl te It) = a;rAxl Aactaoo = a;rAgcaoo .

The value of f4(x) is interpreted as the probability that the
system produces the sequence of observations x = x1 - - - x4
starting from the initial state specified by a.. Depending on
the semantics of the model, this can be a probability that the
system generates x and stops, or the probability that the sys-
tem generates x and continues. Given a partial history u of
the evolution of the system the state of a PSR can be updated
from a, to o, = a.A,,. This update allows for conditional
queries about future observations. For example, the proba-
bility of observing a string v given that we have already ob-
served wis fa.,(v) = @Ay /va(u), where vy (u) is a
normalizing constant.

To define a multi-step PSR, we augment a PSR with two
extra objects: a set of multi-step observations ¥’ C ¥ T con-
taining non-empty strings formed by basic observations, and
a coding function k : ¥* — X' that takes a string of ba-
sic observations and produces an equivalent string composed
of multi-step observations. The choice of ¥’ and « can be
customized for each application, and will typically capture
frequent patterns of observations arising in a particular envi-
ronment. For the sake of simplicity and to avoid degenerate
situations, we assume these objects satisfy the following re-
quirements:

1. The set ¥’ must contain all symbols in X; i.e. X C ¥

2. The function « satisfies d(k(z)) = = for all z € ¥*,
where 0 : ¥/* — ¥* is the decoding morphism between
free monoids given by 0(z) = z € ¥* forall z € ¥'.
Note this implies that k(e) =€, k(o) = o forall o € %,
and k is injective.

Using this notation, we define a multi-step PSR (M-PSR)
as a tuple A’ (3, %K, 0te, Otoo, { Ay }oexr) containing
a PSR with observations in Y’, together with the basic ob-
servations X and the corresponding coding function . In
addition to the standard PSR function f4 : ¥'* — R, an
M-PSR also defines the function f;, : ¥* — R given by
4 (x) = far(k(z)). In many cases we will abuse notation
and write f 4 for f/;, when there is no risk of confusion.

2.1 Examples of M-PSRs

We now describe several examples of M-PSR, putting special
emphasis on models that will be used in our experiments.

Base M-PSR

A PSR with a single observation ¥ = {c} can be used to
measure the time — i.e. number of discrete time-steps — until
a certain event happens [Bacon erf al., 2015]. In this case, a
natural approach to build an M-PSR for timing models is to
build a set of multi-step observations containing sequences
of o’s whose lengths are powers of a fixed base. That is,
given an integer b > 2, the set of multi-step observations is
Y = {o,0b,0%",..., 6"} for some positive K. A natural
choice of coding map in this case is the one that represents
any length ¢ > 0 as a number in base b, with the difference
that the largest power b that is allowed is b%. This corre-
sponds to writing (in a unique way) t = tob® +t1b' + 3% +

1663

s+ trb®, where 0 < t, < b—1for0 < k < K, and
tx > 0. With this decomposition, the coding map is given
by k(ot) = (o0)tx (g™ T)tr-1 .. (b)11 (o). Note that
we choose to write powers of longer multi-step observations
first, followed by powers of shorter multi-step observations.
For further reference, we will call this model the Base M-PSR.

Base M-PSRs can also be extended to the case with mul-
tiple basic observations, |X| > 1. For example, if there

are two observations ¥ = {oy,02}, we can take ¥’
2 2 K K .
{o1,09,08,08,00 0 ,...,0% 04" }. The encoding map &

first splits the string into sequences of consecutive repeated
symbols and then uses the same encoding as before. For ex-

ample: x(0703) = (02)%(01)(03)(02) when using b = 2 and
Tree M-PSR

A more flexible generalization of the Base M-PSR for the
multiple observation case is what we call the Tree M-PSR.
In a Tree M-PSR, we set ¥’ = {z € ¥* : || < L},
where L is a parameter. The decoding map k first splits
astring © as © = Uz - Uyuyp, where |u;| = L for
1 <i<nand|uy| = |z — (m - L) < L, and then sets
k(x) = (u1)(ug) - - - (um)(uy). Note that this encoding pro-
motes the use of multi-step symbols corresponding to longer
strings more often than those corresponding to shorter strings.

Note that we have |¥/| = O(|2|"), so in practice L must re-
main small if we want the M-PSR to be representable using a
small number of parameters.

Data-Driven M-PSR

The constructions above have some parameters that can be
tuned depending on the particular application, but in general
they are not directly dependent on the sequences of observa-
tions more frequently produced by the target environment. In-
tuition suggests that the performance of M-PSRs will depend
heavily on how well ¥’ reflects frequent observation patterns;
this is corroborated by the experiments in Section 4. Thus, we
develop an algorithm for adaptively choosing ¥’ from data.
For this to work, we need to provide a generic coding func-
tion « that can be applied to any M-PSR. This encoding needs
to deliver good predictive performance and computationally
cheap queries. We call the output of this learning process
a Data-Driven M-PSR. The details of this approach are de-
scribed in the next section.

3 Learning Algorithm for M-PSR

This section describes a learning algorithm for M-PSR ex-
tending standard spectral techniques [Boots et al., 2011] and
combining them with an algorithm for building an extended
set of symbols ¥’ containing frequent patterns of observa-
tions.

3.1 Spectral Learning Algorithm

We start by extending the spectral learning algorithm to M-
PSR under the assumption that x and 3’ are known. In this
case, the learning procedure only needs to recover the oper-
ators A, for all o € Y’, and the initial and final weights
Q, 0. We first recall some basic notation about Hankel

matrices [Carlyle and Paz, 1971; Fliess, 1974], and then pro-
ceed to describe the learning algorithm. To simplify the de-
scription of the learning algorithm we assume that the func-
tion f : ¥* — R associated with the target M-PSR can be
evaluated for every string. In practice these are unknown, but
can be effectively estimated from data because they corre-
spond to probabilities of observations.

Given f : ¥* — R, we will use its Hankel matrix rep-
resentation Hy € R¥ *>" which is an infinite matrix with
rows and columns indexed by strings in ¥* and whose en-
tries satisfy Hy(u,v) = f(uv). To efficiently work with this
matrix we only consider finite sub-blocks indexed by a finite
set of prefixes P C X* and suffixes S C X*. Both P and S
are input parameters given to the algorithm; see [Balle et al.,
2012] for a discussion of general strategies to choose these in
practice. The pair B = (P, S) is called a basis, and it deter-
mines a sub-block Hg € R7*S of H with entries given by
Hg(u,v) = Hy(u,v) forallu € P and v € S. For a fixed
basis, we also consider the vectors hg € RS with entries
given by hs(v) = Hy(e,v) for every v € S, and hp € R”
with hp (u) = Hy(u, €).

Note that the definitions above only depend on X. In order
to recover operators A, for all o € ¥’ we need to consider
multi-step shifts of the finite Hankel matrix Hy. In particular,
given o € ¥’ we define the sub-block H, € R”*S whose
entries are given by H, (u,v) = f(uov). This can be in-
terpreted either using the lift f(x(u) o k(v)) or the decoding
f(ud(o)v), but the actual value H,, will be the same.

Using the notation above we can give a simple description
of the learning algorithm. Suppose the basis B and the desired
number of states n are given. The algorithm starts by collect-
ing a set of sampled trajectories and uses them to estimate the
matrices Hgz, H, € R”*S and vectors hp € R”, hg € RS.
Then, it takes the truncated SVD UnDnVZ of Hy, where
D,, € R™*" contains the first n singular values of Hg, and
U, € RP*" and V,, € RS*" contain the first left and right
singular vectors respectively. Finally, it computes the transi-
tion operators of the M-PSRas A, = DU/ H V,L for all
o € ¥/, and the initial and final weights as -F =h} sV, and
Qoo = D;1U hp. This algorithm yields an M PSR with n
states. It was proved in [Boots ef al., 2011] that this algorithm
is statistically consistent for PSRs (under a mild condition on
B). A straightforward argument shows that these same guar-
antees extend to M-PSR.

3.2 A Generic Coding Function

Given Y and Y/, a generic coding function r : £* — o
be obtained by minimizing the coding length |k (z)| of every
string = € 3*. More formally, consider the coding

w(z) K(y)(2)]

argmin
ZEX, x=yz, |y|<|z|

Note that for the single observation case, this is equivalent to
the optimal coin change problem, which is a textbook exam-
ple of dynamic programming. This has the advantage of min-
imizing the number of operators A, that will need to be mul-
tiplied to compute the value of the M-PSR on a string x. At
the same time, operators expressing long transition sequences
can capture the contributions of all intermediate states even if

1664

the chosen model size is too small to represent every state
traversed by a single-observation model. We will see in Sec-
tion 4 that this is one of the reasons why M-PSRs show better
performance than PSR for smaller models.

Algorithm 1 gives pseudocode for computing this function.
It inductively computes the optimal string encoding for the
prefix 21 - - - 2; for all 1 < ¢ < |z|. This can be obtained by
minimizing over all ¢ € ¥’ which terminate at the index 4 of
x. We use the following notation:

best Enc: A map from indices ¢ of the query string z to the
optimal encoding of z[: 4].

minEnc: A map from indices ¢ of the query string = to
|best Encodingli]|

opsEnd: A map from indices i of x to the set of strings in
Yi{se X zli—|s|: 1] = s}

Algorithm 1 Encoding Algorithm

INPUT: «
OUTPUT: k()

1: procedure DPENCODE
2: best Encl0] = z[0]
3 minEncl0] =0
4: foriin [1,|z|] do
5: opsEnd[i] < {s € ¥ : x[i — |s] : i] = s}
6: end for
7 foriin [1,|z|] do
8 bestOp + null
9: m <0
10: for s € opsEnd|[i] do
11: t < minEncli — |s|]] + 1
12: if bestOp = null or t < m then
13: m<t
14: bestOp + s
15: end if
16: end for
17: minEncli + 1] < m
18: bestEncli + 1] <« bestEnc[i — |bestOpl|] +
bestOp
19: end for
20: return best Enc|z|]
21: end procedure

3.3 State Update

When using classical PSR in online environments one typi-
cally updates the state vector every time a new observation is
available. This eliminates the need for repeatedly transform-
ing the initial state over the whole history of observations h
when making predictions. In the case of M-PSRs, the dy-
namic programming algorithm for minimizing the length of
string encodings provides a naturally convenient way to per-
form efficient state updates. To do so, we cache past state
vectors along with their encoding length. When a new obser-
vation o is read, we determine the encoding for the extended
observation string ho with the same recurrence relation as
in the previous section. Because this minimization is over
{s € ¥ : Jp € ¥*ps = ho}, one needs to cache at most
maxs¢yy |s| state vectors and encoding lengths.

3.4 Greedy Selection of Multi-Step Observations

Algorithm 2 Base Selection Algorithm

INPUT: Train, Suby,
OUTPUT: Y’

1: procedure BASE SELECTION
2: X
3 bestEnc < null
4: for all obs € Train do
5: best Enclobs] < |obs]
6: end for
7 140
8: while i < numOps do
9: bestOp <+ null
10: m <0
11: for all s € Sub,; do
12: c+ 0
13: for all obs € Train do
14: ¢ + ¢+ DPEnc(obs,X U s) —
best Enclobs|
15: end for
16: if ¢ < m then
17: bestOp + s
18: m<—c¢
19: end if
20: end for
21: Y« ¥ UbestOp
22: for all obs € T'rain do
23: bestEnclobs] < DPFEnc(obs,¥")
24: end for
25: i1+ 1
26: end while
27: return Y’

28: end procedure

Selecting multi-step transition sequences to build ¥’ can
be achieved with an adaptive greedy algorithm, depicted in
Algorithm 2. A Y’ that correctly captures the frequent ob-
servations produced by a target environment should promote
short encodings when coupled with the coding function x de-
scribed above. In practice, we want ¥’ to contain substrings
appearing in the training data which are long, frequent, and
diverse. From an intuitive standpoint, one can view structure
in observation sequences as relating to the level of entropy in
the distribution over multi-step observations produced by the
system, and interpret this selection method as a data compres-
sion scheme.

In general terms, the algorithm works as follows. In a pre-
processing step, we find all possible substrings in X.* that ap-
pear in the training dataset. For computational reasons this
can be constrained only to the M most frequent substrings,
where M is a parameter chosen by the user. Frequency of
occurence is measured by number of training trajectories that
contain a given substring. The construction of X/ is then ini-
tialised by X and proceeds iteratively by adding a new multi-
step symbol at each phase. A phase starts by evaluating all
substrings in terms of how much reduction in the number
of transition operators used to encode the whole training set

1665

Figure 1: The Double Loop environment (left) and the Pac-
man Labyrinth (right)

would be achieved if the symbol was added to X'. The algo-
rithm then adds to >’ the multi-step symbol corresponding to
the best substring, i.e. the one that would reduce the most the
whole coding cost (with respect to). More formally, at the
tth iteration the algorithm finds:

argmin Z \Fézgu{u}(xﬂ)

u€suby rEtrain

where train is the training set, sub,, is the set of substrings
under consideration of length at most M, 2; is the set of
multi-step observations at the beginning of phase 7 and we use
Ky to denote the encoding function with respect to a given
set of multi-step observations for clarity. The algorithm ter-
minates after >’ reaches a predetermined size.

4 Experiments

In this section, we assess the performance of PSRs and M-
PSRs in various environments, with different model sizes,
and learned from both large and small datasets. For all the
plots, the x-axis is model size of the PSR/M-PSRs and the
y-axis is an error measurement of the learned PSR/M-PSRs.

In all the experiments, an agent is positioned in a partially
observable environment and navigates stochastically based on
state to state transition probabilities. An observation symbol
is produced on every transition. When the agent exits, we
record the concatenation of the symbols produced, which rep-
resents the observation sequence. We perform experiments in
two environments: a Double Loop maze and a Pacman-style
environment, depicted in Figure 1.

For the Base M-PSR (i.e., the timing models), we construct
the empirical Hankel matrix by taking P, S = {o%,Vi < N},
where N is an application-dependent parameter. For Double
Loop environments, we set N = 150, while for the Pacman
domain, N = 600. For these choices of N, we verify that as

Double Loop Timing 64-16 Double Loop Timing 64-16

Double Loop Timing 64-16 20 Double Loop Timing 47-27

$ 3 PSR
44 Base M-PSR
& 4 Data-Driven M-PSR 10

* +4 PSR

$ 4 Base M-PSR
4 ¢ Data-Driven M-PSR
Trajectories=100
Repetitions=10
NumOp=10
P=0.0

Trajectories=10000
Repetitions=10
NumOp=10

P=0.0

Error
les Lo llis
. . -
*
‘

//////

¢4 PSR

$ % Base M-PSR

&+ Data-Driven M-PSR

Trajectories=10000 15 Trajectories=100

Repetitions=10 .\‘ \ Repetitions=10
\ NumOp=10 Y NumOp=10
yot P ! .

[v P=0.2 e P=0.0
o N b N

$3 PSR
* & 4 Base M-PSR «t
L0p & % Data-Driven M-PSR

-
o
5

10 20 30 20
Model Size

5 10 15 20 25 30 10 20 30
Model Size

Figure 2: Results for the Double Loop of size 64-16: (1) 100 samples, p = 0 (2) 10000 samples, p = 0 (3) 10000 samples,
p = 0.2; and the Double Loop of size 47-27: (4) 100 samples, p = 0.

the amount of data increases, the learned PSR with the true
model size converges to the true model. For the Base M-PSR,
we set b = 2, K = 8, so that the longest string in ¥’ is 02°°.

For the tasks with multiple observations, a slightly more
complex approach is required to choose P and S. For the
prefixes P, we select the k most frequent prefixes from our
observation set. For the suffixes S, we take all suffixes that
occur in P. We also require prefix completeness. That is, if
p’ is a prefix of p € P, then p’ € P. This heuristic for con-
structing empirical Hankel matrices was also used in [Balle et
al., 2012]. For the Base M-PSR, we take K = 8 and B = 2
for both symbols ¥ = {g, b}, where g stands for green and b
for blue. For the Tree M-PSR, we set L = 7 for a total of 128
operators, a far larger limit than for the other M-PSRs.

To measure the performance of our learning algorithms
we compute the difference between the values computed by
f, the true probability distribution over observations, and
f , the function associated with the learned M-PSR/PSR. In
our environments, f can be computed exactly, as we have
access to the underlying HMMs. Since there are infinitely
many strings, we only compute the difference over a fixed set
T C ¥* which depends on the problem. Thus, reported errors
are given by

If = fllr =

> (@) = f@)? .

zeT

For the Base M-PSR (timing) case, we take T = {O’i 1 <
C'} with C = 600. Importantly, C' has to be large enough
to ensure the error measure provides a measure of accuracy
over the most frequent strings, say Zio f(a%) > 0.99. For
the multiple observation case, we take all possible strings that
can be produced from the prefixes and suffixes in our dataset:

T ={ps:p € P,s € S}. Inall our experiments we use the
same P and S to learn PSR and the different types of M-PSR.

4.1 Double Loop Timing

We start by considering the Double Loop environment, and
the task of learning timing models. The length of a loop is
the number of states in the loop. A trajectory begins with the
agent at the intersection of the two loops. Here, the agent has
a 50% probability of entering either loop. At intermediate
states, the agent moves to the next state in the loop with prob-
ability 1 — p or remains in its current state with probability
p. Exit states are located halfway into each loop. The agent
leaves the environment at exit states with 50% probability.

Figure 2 (1-3) provides results for the case in which one
loop consists of 64 states and the other of 16 states. Panel
(1) presents the results when learning from 100 observation
sequences, while the results in panel (2) are obtained using
10000 observations. In both cases, the M-PSRs outperform
the simple PSR for small model sizes. Panel (3) shows the
effect of varying the self-transition probability to p = 0.2, in
order to simulate noise in the environment. We find that the
environment with noisy loops is more compressible, that is,
one can achieve better performance for low model sizes, but
the performance becomes worse as the model size attains the
environment’s true size. M-PSRs still significantly outper-
form the standard PSR for reduced model sizes. Panel (2) in
Figure 4 illustrates the effect of K on the performance of the
Base M-PSRs. We note that larger values of K have better
performance, up to K = 7.

In Figure 4 (2), we illustrate how varying the number of
multi-step transition operators affects performance for the
64-16 double loop. As expected, a higher number of op-
erators improves performance, but the effect tapers off at
about 20 operators. Here, the most important operators are:
{o,0%,0%* 032 0™} which are closely tied to the environ-
ment’s periodic structure.

In Figure 2 (4), we plot the results of a 47-27 labyrinth.
Here, because of the lengths of the loops, observations will
not be as compactly expressed from the Base M-PSR. Again,
M-PSRs outperform the standard PSR for reduced model
sizes.

4.2 Pacman Labyrinth Timing

We now turn our attention to the environment on the right of
Figure 1. The weights in the transitions represent the “length”
of the corridors they represent, and at each state the agent has
equal probability of following any corridor starting in that
state. To test the effect of the geometry of the environment
we add a parameter sF’ (stretch factor) which is used to mul-
tiply the length of the corridors (by adding extra intermediate
states). In the left panels of Figure 3 we vary the number of
observations used for learning. M-PSRs outperform the tradi-
tional PSR regardless of the amount of data. In the right two
panels, we vary the stretch factor parameter, while keeping
the size of the dataset fixed. We find that a higher value of sF’
provides increased improvement of the M-PSR relative to the
standard PSR.

1666

07 Pacman Timing 07 Pacman Timing o Pacman Timing]2 Pacman Timing
¥4 PSR &4 PSR ¥ 3 PSR # 4 PSR
06 # - Base M-PSR 06 & ¢ Base M-PSR 4 -4 Base M-PSR 4 -4 Base M-PSR
& ¢ Data-Driven M-PSR # ¢ Data-Driven M-PSR 04 & - Data-Driven M-PSR 10 & - Data-Driven M-PSR
Trajectories=500 Trajectories=10000 Trajectories=10000 Trajectories=10000
05 R Repetitions=10 05 % Repetitions=10 ¢ Repetitions=10 08 Repetitions=10
NN NumOp=10 N NumOp=10 ll NumOp=10 . NumOp=10

04 N \ sF=10 0.4 Y sF=10 03 v SsF=1 sF=5
5 SRAN] POREE 5 e 5
& NN g N 5 A]

03 3 JA 03 AR F " =

DN N \R N * 02 v
N) L
02 N v 02 Ngrterde \
NN = SN U e\ i
3+ f’i#,:#::%—:«% SRS 01 ™
01 t 01 L I N S [
L R - AN P S, ~e-
~4= -4 = BUEE SR EE LD EE il St L] -
H FITa b Se--IIiIiipaaon,o.]
0. 0.0 0.0 0.
15 20 25 30 35 40 45 50 5 20 30 40 50 60 70 5 10 15 20 25 30 10 15 20 25 30 35 £l

Model Size Model Size

Model Size Model Size

Figure 3: Results for the Pacman environment with (in order from left to right) low amount of data, high amount of data and

stretch factor equal to 1 and 5 (right panels)

Double Loop Timing 64-16 Double Loop Timing 64-16

Colored Double Loops Colored Double Loops

Base-PSR n=2 14 + ¢ Data-Driven M-PSR 1 ¢4 PSR Data-Driven M-PSR 2
& 4 Base-PSR n=8 + -4 Data-Driven M-PSR 5 T 4 % Base M-PSR 35 + Data-Driven M-PSR 3
0 & 4 Base-PSR n=32 12 # 4 Data-Driven M-PSR 10 RN # % Data-Driven M-PSR 4 Data-Driven M-PSR 4
¢ 4 Base-PSR n=128 # ¢ Data-Driven M-PSR 15 15 4 \:~ ¢ ¢ Tree M-PSR 30 4 -4 Data-Driven M-PSR 5
08 Trajectories=10000 10 & 4 Data-Driven M-PSR 20 | Trajectories=1000 4 4 Data-Driven M-PSR 10
ok Repetitions=10 # 4 Data-Driven M-PSR 25 ! < - Repetitions=10 25 #4 Data-Driven M-PSR 15
4 Trajectories=10000 NumOp=10 Trajectories=1000
06 . i £ 08 Repetitions=10 E 10 1 [} § 20 Repetitions=4
4 . * . & & o E}
L 06 . N
04 L T 44 I : 15 b i
el **/ % N H
PR 04 \ .
A Z 05 ~ 10
\ e
W . [STEa . O SO S
" . 0.2 N . 05
[\ - q %
e e SN k]
00 - 00 =] o 00
10 20 30 0 50 0 G 0 £ 30 a0 50 E 7 5 0 15 20 25 0 3B 40 & 0 15 20 25 30 3 40 &

Model Size Model Size

Model Size Model Size

Figure 4: (1) Effect of exponent in Base M-PSR (Double Loop 64-16) (2) Effect of the number of operators (Double Loop
64-16) (3) Effect of model size (Colored Double Loop 27-17) (4) Effect of the number of operators (Colored Double Loop

27-17)

4.3 Multiple Observations: Coloured Loops

To test the case of multiple observations, we construct a Dou-
ble Loop environment where the first loop has length [} = 27
and observations are green. The second loop is blue, with
length lo = 17. We fix the length of each trajectory at
3(ly + l2) We build empirical estimates for the Hankel ma-
trix as follows:

_train N 2 ¥*|
J@) = [train N X212l

This means that the PSRs will compute the probability of x
occurring as a prefix.

As for the timing case, we find that M-PSRs perform far
better, especially the Data-Driven M-PS. Results are dis-
played in panel (3) of Figure 4. In the panel (4) we vary the
number of multi-step transition operators learned. The im-
portant operators learned are {g, b, g7, b7}, which is again
very encouraging, as it reflects the structure of this particular
environment.

5 Discussion

We presented an approach to leveraging multiple temporal
scales in the behaviour of dynamical systems, in order to
learn predictive state representations. The proposed model,
M-PSR, can be learned by adapting existing spectral ap-
proaches. To the best of our knowledge, the only other work
that attempts to include temporal abstraction in PSRs is due
to [Wolfe and Singh, 2006], who use temporally extended ac-
tions, or options [Sutton et al., 1999], and build PSRs on top

of these. However, this model has a very different flavour
from our approach, as we bundle together observations into
multiple steps. In particular, our approach is applicable even
when there are no actions, such as in the case of HMMs,
whereas this previous work requires structure in the action
space. In all the experiments we conducted, M-PSRs offer
significantly better predictive performance for reduced model
sizes than PSRs. In addition, Data-Driven PSRs offer im-
provements over generic M-PSRs by learning the transition
operators specific to the environment, which is very impor-
tant when prior information about appropriate time scales for
modelling is not known. Our evaluation focused on illustrat-
ing the advantage of the proposed model especially when the
amount of data available is small, and in noisy environments.
These experiments suggest that M-PSR with small number of
states provide much better approximations to a given envi-
ronment than PSR with the same number of states. We think
this is a very promising property, and we plan to study it in
detail in future work. We used simulated domains in our ex-
periments in order to compare with a ground truth. However,
we anticipate that the proposed models would be useful in real
tasks, for example in financial market prediction. In this case,
one could discretize market levels into bins, and use M-PSRs
to learn predictive models over multiple time steps, in order
to capture both long-term trends and fast fluctuations. We
also plan to experiment with this approach in the domain of
processing physiological signal recordings, which similarly
exhibit short and long-term trends. On the theoretical side, it
would be interesting to analyze the existence of an “optimal”

1667

set of symbols for the data-driven M-PSR, and to develop fur-
ther algorithms for finding it.

References

[Bacon er al., 2015] P.-L. Bacon, B. Balle, and D. Precup.
Learning and planning with timing information in Markov
Decision Processes. In UAI 2015.

[Bailly et al., 2010] R. Bailly, A. Habrard, and F. Denis. A
spectral approach for probabilistic grammatical inference
on trees. In ALT, 2010.

[Balle et al., 2012] B. Balle, A. Quattoni, and X. Carreras.
Local loss optimization in operator models: A new insight
into spectral learning. International Conference on Ma-
chine Learning (ICML), 2012.

[Boots et al., 2011] B. Boots, S. Siddigi, and G. Gordon.
Closing the learning planning loop with predictive state
representations. International Journal of Robotic Re-
search, 2011.

[Carlyle and Paz, 1971] J. W. Carlyle and A. Paz. Realiza-
tions by stochastic finite automata. Journal of Computer
Systems Science, 1971.

[Droste and Vogler, 2009] W. Droste, M. Kuich and
H. Vogler. Handbook of weighted automata. Springer,
2009.

[Fliess, 1974] M. Fliess. Matrices de Hankel. Journal de
Mathématiques Pures et Appliquées, 1974.

[Hamilton et al., 2013] William L. Hamilton, Mahdi M.
Fard, and Joelle Pineau. Modelling sparse dynamical sys-
tems with compressed predictive state representations. In
ICML, 2013.

[Hsu et al., 2009] D. Hsu, S.M. Kakade, and T. Zhang. A
spectral algorithm for learning Hidden Markov Models. In
COLT, 2009.

[Littman ef al., 2001] M. L. Littman, R. S. Sutton, and
S. Singh. Predictive representations of state. Neural In-
formation Processing Systems Conference (NIPS), 2001.

[Rosencrantz et al., 2004] M. Rosencrantz, G. Gordon, and
S. Thrun. Learning low dimensional predictive represen-
tations. In /ICML, 2004.

[Singh et al., 2004] S. Singh, M. R. James, and M. R.
Rudary. Predictive state representations: A new theory
for modeling dynamical systems. In UAI 2004.

[Sutton et al., 1999] R. S Sutton, D. Precup, and S. Singh.
Between MDPs and semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning. Artificial In-
telligence, 1999.

[Wolfe and Singh, 2006] B. Wolfe and S. Singh. Predictive
state representations with options. International Confer-
ence on Machine Learning (ICML), 2006.

[Zhang et al., 2015] Chicheng Zhang, Jimin Song, Kamalika
Chaudhuri, and Kevin Chen. Spectral learning of large
structured hmms for comparative epigenomics. Neural In-
formation Processing Systems (NIPS), 2015.

1668

