
Dual-Memory Deep Learning Architectures for
Lifelong Learning of Everyday Human Behaviors

Sang-Woo Lee1, Chung-Yeon Lee1, Dong Hyun Kwak2

Jiwon Kim3, Jeonghee Kim3, and Byoung-Tak Zhang1,2

1School of Computer Science and Engineering, Seoul National University
2Interdisciplinary Program in Neuroscience, Seoul National University

3NAVER LABS

Abstract
Learning from human behaviors in the real world
is important for building human-aware intelligent
systems such as personalized digital assistants and
autonomous humanoid robots. Everyday activi-
ties of human life can now be measured through
wearable sensors. However, innovations are re-
quired to learn these sensory data in an online in-
cremental manner over an extended period of time.
Here we propose a dual memory architecture that
processes slow-changing global patterns as well as
keeps track of fast-changing local behaviors over a
lifetime. The lifelong learnability is achieved by
developing new techniques, such as weight transfer
and an online learning algorithm with incremental
features. The proposed model outperformed other
comparable methods on two real-life data-sets: the
image-stream dataset and the real-world lifelogs
collected through the Google Glass for 46 days.

1 Introduction
Lifelong learning refers to the learning of multiple consecu-
tive tasks with never-ending exploration and continuous dis-
covery of knowledge from data streams. It is crucial for
the creation of intelligent and flexible general-purpose ma-
chines such as personalized digital assistants and autonomous
humanoid robots [Thrun and O’Sullivan, 1996; Ruvolo and
Eaton, 2013; Ha et al., 2015]. We are interested in the
learning of abstract concepts from continuously sensing non-
stationary data from the real world, such as first-person view
video streams from wearable cameras [Huynh et al., 2008;
Zhang, 2013] (Figure 1).

To handle such non-stationary data streams, it is important
to learn deep representations in an online manner. We focus
on the learning of deep models on new data at minimal costs,
where the learning system is allowed to memorize a certain
amount of data, (e.g., 100,000 instances per online learning
step for a data stream that consists of millions of instances).
We refer to this task as online deep learning, and the dataset
memorized in each step, the online dataset. In this setting, the
system needs to learn the new data in addition to the old data
in a stream which is often non-stationary.

Figure 1: Life-logging paradigm using wearable sensors

However, this task is challenging because learning new
data through neural networks often results in a loss of previ-
ously acquired information, which is known as catastrophic
forgetting [Goodfellow et al., 2013]. To avoid this phe-
nomenon, several studies have adopted an incremental en-
semble learning approach, whereby a weak learner is made
to use the online dataset, and multiple weak learners are com-
bined to obtain better predictive performance [Polikar et al.,
2001]. Unfortunately, in our experiment, simple voting with a
weak learner learnt from a relatively small online dataset did
not work well; it seems the relatively smaller online dataset is
insufficient for learning highly expressive representations of
deep neural networks.

To address this issue, we propose a dual memory architec-
ture (DMA). This architecture trains two memory structures:
one is a series of deep neural networks, and the other consists
of a shallow kernel network that uses a hidden representation
of the deep neural networks as input. The two memory struc-
tures are designed to use different strategies. The ensemble
of deep neural networks learns new information in order to
adapt its representation to new data, whereas the shallow ker-
nel network aims to manage non-stationary distribution and
unseen classes more rapidly.

Moreover, some techniques for online deep learning are
proposed in this paper. First, the transfer learning technique
via weight transfer is applied to maximize the representation
power of each neural module in online deep learning [Yosin-
ski et al., 2014]. Second, we develop multiplicative Gaussian
hypernetworks (mGHNs) and their online learning method.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

1669

An mGHN concurrently adapts both structure and parameters
to the data stream by an evolutionary method and a closed-
form-based sequential update, which minimizes information
loss of past data.

2 Dual Memory Architectures
2.1 Dual Memory Architectures
The dual memory architecture (DMA) is a framework de-
signed to continuously learn from data streams. The frame-
work of the DMA is illustrated in Figure 2. The DMA con-
sists of deep memory and fast memory. The structure of deep
memory consists of several deep networks. Each of these net-
works is constructed when a specific amount of data from an
unseen probability distribution is accumulated, and thus cre-
ates a deep representation of the data in a specific time. Ex-
amples of deep memory models are deep neural network clas-
sifier, convolutional neural networks (CNNs), deep belief net-
works (DBNs), and recurrent neural networks (RNNs). The
fast memory consists of a shallow network. The input of the
shallow network is hidden nodes at upper layers of deep net-
works. Fast memory aims to be updated immediately from
a new instance. Examples of shallow networks include lin-
ear regressor, denoising autoencoder [Zhou et al., 2012], and
support vector machine (SVM) [Liu et al., 2008], which can
be learned in an online manner. The shallow network is in
charge of making inference of the DMA; deep memory only
yields deep representation. The equation used for inference
can be described as (1):

y = �(wT�(h{1}
(x), h{2}

(x), · · · , h{k}
(x))) (1)

where x is the input (e.g., a vector of image pixels), y is the
target, � and w are a kernel and a corresponding weight, h
is values of the hidden layer of a deep network used for the
input of the shallow network, � is an activation function of the
shallow network, and k is an index for the last deep network
ordered by time.

Fast memory updates parameters of its shallow network
immediately from new instances. If a new deep network is
formed in the deep memory, the structure of the shallow net-
work is changed to include the new representation. Fast mem-
ory is referred to as fast for two properties with respect to
learning. First, a shallow network learns faster than a deep
network in general. Second, a shallow network is better able
to adapt new data through online learning than a deep net-
work. If the objective function of a shallow network is con-
vex, a simple stochastic online learning method, such as on-
line stochastic gradient descent (SGD), can be used to guar-
antee a lower bound to the objective function [Zinkevich,
2003]. Therefore, an efficient online update is possible. Un-
fortunately, learning shallow networks in the DMA is more
complex. During online learning, deep memory continuously
forms new representations of a new deep network; thus, new
input features appear in a shallow network. This task is a
kind of online learning with an incremental feature set. In
this case, it is not possible to obtain statistics of old data at
new features. i.e., if a node in the shallow network is a func-
tion of h{k}, statistics of the node cannot be obtained from the

Figure 2: A schematic diagram of the dual memory archi-
tecture (DMA). With continuously arrived instances of data
streams, fast memory updates its shallow network immedi-
ately. If certain amount of data is accumulated, deep memory
makes a new deep network with this new online dataset. Si-
multaneously, the shallow network changes its structure cor-
responding to deep memory.

1st ⇠ k-1th online dataset. In this paper, we explore online
learning by shallow networks using an incremental feature set
in the DMA.

In learning deep memory, each deep neural network is
trained with a corresponding online dataset by its objective
function. Unlike the prevalent approach, we use the trans-
fer learning technique proposed by [Yosinski et al., 2014]
to utilize the knowledge from a older deep network to form
a new deep network. This transfer technique initializes the
weights of a newly trained deep network Wk by the weights
of the most recently trained deep network Wk�1. Although
this original transfer method assumes two networks have the
same structure, there are some extensions that allow different
widths and a number of layers between some networks [Chen
et al., 2015]. Once the training of the deep network is com-
plete by its own online dataset, the weights of the network
do not change even though new data arrives. This is aimed
to minimize changes of input in the shallow network in fast
memory.

2.2 Comparative Models
Relatively few studies to date have been conducted on train-
ing deep networks online from data streams. We categorize
these studies into three approaches. The first approach is on-
line fine-tuning, which is simple online learning of an entire
neural network based on SGD. In this setting, a deep network
is continuously fine-tuned with new data as the data is ac-
cumulated. However, it is well-known that learning neural
networks requires many epochs of gradient descent over the
entire dataset because the objective function space of neural
networks is complex. Recently, in [Nam and Han, 2015], on-
line fine-tuning of a CNN with simple online SGD was used

1670

Table 1: Properties of DMA and comparative models

Many deep Online Dual memory
networks learning structure

Online fine-tuning X
Last-layer fine-tuning X

Naı̈ve incremental bagging X X
DMA (our proposal) X X X

Incremental bagging w/ transfer X X
DMA w/ last-layer retraining X X

Batch

in the inference phase of visual tracking, which made state-
of-the-art performance in the Visual Object Tracking Chal-
lenge 2015. However, it does not guarantee the retention of
old data. The equation of this algorithm can be described as
follows:

y ⇠ softmax(f(h{1}
(x))) (2)

where f is a non-linear function of a deep neural network.
This equation is the same in the case of batch learning, where
Batch denotes the common algorithm that learns all the train-
ing data at once, with a single neural network.

The second approach is last-layer fine-tuning. Accord-
ing to recent works on transfer learning, the hidden activa-
tion of deep networks can be utilized as a satisfactory gen-
eral representation for learning other related tasks. Train-
ing only the last-layer of a deep network often yields state-
of-the-art performance on new tasks, especially when the
dataset of a new task is small [Zeiler and Fergus, 2014;
Donahue et al., 2014]. This phenomenon makes online learn-
ing of only the last-layer of deep networks promising, be-
cause online learning of shallow networks is much easier than
that of deep networks in general. Recently, online SVM with
hidden representations of pre-trained deep CNNs using an-
other large image dataset, ImageNet, performed well in vi-
sual tracking tasks [Hong et al., 2015]. Mathematically, the
last-layer fine-tuning is expressed as follows:

y = �(wT�(h{1}
(x))). (3)

The third approach is incremental bagging. A considerable
amount of research has sought to combine online learning and
ensemble learning [Polikar et al., 2001; Oza, 2005]. One of
the simplest methods involves forming a neural network with
some amount of online dataset and bagging in inference. Bag-
ging is an inference technique that uses the average of the out-
put probability of each network as the final output probability
of the entire model. If deep memory is allowed to use more
memory in our system, a competitive approach involves using
multiple neural networks, especially when the data stream is
non-stationary. In previous researches, in contrast to our ap-
proach, transfer learning techniques were not used. We refer
to this method as naı̈ve incremental bagging. The equation of
incremental bagging can be described as follows:

y ⇠ 1

d

dX

i

softmax(fd(h
{d}

(x)). (4)

The proposed DMA is a combination of the three ideas
mentioned above. In DMA, a new deep network is formed

Figure 3: A schematic diagram of the multiplicative-Gaussian
hypernetworks

when a dataset is accumulated, as in the incremental bagging.
However, the initial weights of new deep networks are drawn
from the weights of older deep networks, as in the online
learning of neural networks. Moreover, a shallow network
in fast memory is concurrently trained with deep memory,
which is similar to the last-layer fine-tuning approach.

To clarify the concept of DMA, we additionally propose
two learning methods. One is incremental bagging with
transfer. Unlike naı̈ve incremental bagging, this method
transfers the weights of older deep networks to the new deep
network, as in DMA. The other is DMA with last-layer re-
training in which a shallow network is retrained in a batch
manner. Although this algorithm is not part of online learn-
ing, it is practical because batch learning of shallow networks
is much faster than that of deep networks in general. The
properties of DMA and comparative methods are listed in Ta-
ble 1.

3 Online Learning of Multiplicative Gaussian
Hypernetworks

3.1 Multiplicative-Gaussian Hypernetworks
In this section, we introduce a multiplicative Gaussian hyper-
network (mGHN) as an example of fast memory (Figure 3).
mGHNs are shallow kernel networks that use a multiplicative
function as an explicit kernel in (5):

� = [�(1), · · · ,�(p), · · · ,�(P)
]

T ,

�(p)
(h) = (h(p,1) ⇥ · · ·⇥ h(p,Hp)),

(5)

where P is a hyperparameter of the number of kernel func-
tions, and ⇥ denotes scalar multiplication. h is the input fea-
ture of mGHNs, and also represents the activation of deep
neural networks. The set of variables of the pth kernel
{h(p,1), ..., h(p,Hp)} is randomly chosen from h, where Hp

is the order or the number of variables used in the pth ker-
nel. The multiplicative form is used for two reasons, although
an arbitrary form can be used. First, it is an easy, random-
ized method to put sparsity and non-linearity into the model,
which is a point inspired by [Zhang et al., 2012]. Second,
the kernel could be controlled to be a function of few neural
networks.

mGHNs assume the joint probability of target class y and
� is Gaussian as in (6):

1671

p

✓
y

�(h)

◆
= N

✓
µy

µ�

�
,

⌃y ⌃y�

⌃

T
y� ⌃��

◆
, (6)

where µy , µ�, ⌃yy , ⌃y�, and ⌃�� are the sufficient statistics
of the Gaussian corresponding to y and �. Target class y is
represented by one-hot encoding. The discriminative distri-
bution is derived by the generative distribution of y and �,
and predicted y is real-valued score vector of the class in the
inference.

E[p(y|h)] = µy + ⌃y� · ⌃�1
�� · (�(h)� µ�) (7)

Note that the parameters of mGHNs can be updated imme-
diately from a new instance by online update of the mean and
covariance if the number of features does not increase [Finch,
2009].

3.2 Structure Learning
If the kth deep neural network is formed in deep memory,
the mGHN in fast memory receives a newly learned feature
h{k}, which consists of the hidden values of the new deep
neural network. As the existing kernel vector is not a func-
tion of h{k}, a new kernel vector �k should be formed. The
structure of mGHNs is learned via an evolutional approach,
as illustrated in Algorithm 1.

Algorithm 1 Structure Learning of mGHNs
repeat

if New learned feature h{k} comes then
Concatenate old and new feature (i.e., h h

S
h{k}.)

Discard a set of kernel �discard in � (i.e., ˆ� � �
�discard.)
Make a set of new kernel �k(h) and concatenate into
� (i.e., � ˆ�

S
�k.)

end if
until forever

The core operations in the algorithm consist of discard-
ing kernel and adding kernel. In our experiments, the set of
�discard was picked by selecting the kernels with the low-
est corresponding weights. From Equation (7), � is multi-
plied by ⌃y�⌃

�1
�� to obtain E[p(y|h)], such that weight w(p)

corresponding to �(p) is the pth column of ⌃y�⌃
�1
�� (i.e.,

w(p)
= (⌃y�⌃

�1
��)(p,:).) The length of w(p) is the number

of class categories, as the node of each kernel has a con-
nection to each class node. We sort �(p) in descending or-
der of maxj |w(p)

j |, where the values at the bottom of the
maxj |w(p)

j | list correspond to the �discard set. The size of
�discard and �k are determined by ↵|�| and �|�| respectively,
where |�| is the size of the existing kernel set, and ↵ and �
are predefined hyperparameters.

3.3 Online Learning on Incrementing Features
As the objective function of mGHNs follows the exponential
of the quadratic form, second-order optimization can be ap-
plied for efficient online learning. For the online learning of

mGHNs with incremental features, we derive a closed-form
sequential update rule to maximize likelihood based on stud-
ies of regression with missing patterns [Little, 1992].

Suppose kernel vectors �1 and �2 are constructed when
the first (d = 1) and the second (d = 2) online datasets
arrive. The sufficient statistics of �1 can be obtained for both
the first and second datasets, whereas information of only the
second dataset can be used for �2. Suppose µ̂i·d and ˆ

⌃ij·d
are empirical estimators of the sufficient statistics of the ith

kernel vector �i and jth kernel vector �j corresponding to the
distribution of the dth dataset. d = 12 denotes both the first
and the second datasets. If these sufficient statistics satisfy
the following equation (8):

�|d=1 ⇠ N(µ̂1·1, ˆ⌃11·1),


�1

�2

�
|d=2 ⇠ N

✓
µ̂1·2
µ̂2·2

�
,

ˆ

⌃11·2 ˆ

⌃12·2
ˆ

⌃21·2 ˆ

⌃22·2

◆
, (8)

�1|d=1,2 ⇠ N(µ̂1·12, ˆ⌃11·12),

the maximum likelihood solution represents � as (9).


�1

�2

�
|d=1,2 ⇠ N

✓
µ̂1·12
µ̃2

�
,

ˆ

⌃11·12 ˜

⌃12
˜

⌃

T
12

˜

⌃22

◆
, (9)

µ̃2 = µ̂2·2 + ˆ

⌃

T
12·2 · ˆ⌃�1

11·2 · (µ̂1·12 � µ̂1·2),

˜

⌃12 =

ˆ

⌃11·12 · ˆ⌃�1
11·2 · ˆ⌃12·2,

˜

⌃22 =

ˆ

⌃22·2 � ˆ

⌃

T
12·2 · ˆ⌃�1

11·2 · (ˆ⌃12·2 � ˜

⌃12)

(9) can also be updated immediately from a new instance by
online update of the mean and covariance. Moreover, (9) can
be extended to sequential updates, when there is more than
one increment of the kernel set (i.e., �3, · · · ,�k).

Note that the proposed online learning algorithm estimates
generative distribution of �, p(�1, · · · ,�k). When training
data having �k is relatively small, information of �k can be
complemented by p(�k|�1:k�1), which helps create a more
efficient prediction of y. The alternative of this generative ap-
proach is a discriminative approach. For example, in [Liu et
al., 2008], LS-SVM is directly optimized to get the maximum
likelihood solution over p(y|�1:k). However, equivalent so-
lutions from the discriminative method can also be produced
by the method of filling in the missing values with 0 (e.g.,
assume �2|d=1 as 0). This is not what we desire intuitively.

4 Experiments
4.1 Non-stationary Image Data Stream
We investigate the strengths and weaknesses of the proposed
DMA in an extreme non-stationary environment using a well-
known benchmark dataset. The proposed algorithm was
tested on the CIFAR-10 image dataset consisting of 50,000
training images and 10,000 test images from 10 different ob-
ject classes. The performance of these algorithms were eval-
uated using a 10-split experiment where the model is learned
in a sequential manner from 10 online datasets. In this ex-
periment, each online dataset consists of images of only 3 ⇠
5 classes. Figure 4 shows the distribution of the data stream.

1672

Figure 4: Distribution of non-stationary data stream of
CIFAR-10 in the experiment

Figure 5: The test accuracy of various learning algorithms on
non-stationary data stream of CIFAR-10

We use the Network in Network model [Lin et al., 2014], a
kind of deep CNN, implemented using the MatConvNet tool-
box [Vedaldi and Lenc, 2015]. In all the online deep learning
algorithms, the learning rate is set to 0.25 and then is reduced
by a constant factor of 5 at some predefined steps. The rate of
weight decay is 5⇥ 10

�4 and the rate of momentum is 0.9.
Figure 5 shows the experimental results of 10-split exper-

iments on non-stationary data. DMA outperforms all other
online deep learning algorithms, the result of which supports
our proposal. Some algorithms including online fine-tuning
and last-layer fine-tuning show somewhat disappointing re-
sults.

4.2 Lifelog Dataset
The proposed DMA was demonstrated on a Google Glass
lifelog dataset, which was collected over 46 days from three
participants using Google Glasses. The 660,000 seconds of
the egocentric video stream data reflects the subjects’ behav-
iors including activities in indoor environments such as home,
office and restaurant, and outdoor activities such as walking
on the road, taking the bus or waiting for arrival of the sub-
way. The subjects were asked to notate activities what they
are doing and places where they are on by using a life-logging

Table 2: Statistics of the lifelog dataset of each subject

Instances (sec/day) Number of class
Training Test Location Sub-location Activity

A 105201 (13) 17055 (5) 18 31 39
B 242845 (10) 91316 (4) 18 28 30
C 144162 (10) 61029 (4) 10 24 65

Table 3: Top-5 classes in each label of the lifelog dataset.

Location Sub-location Activity
office (196839) office-room (182884) working (204131)

university (147045) classroom (101844) commuting (102034)
outside (130754) home-room (86588) studying (90330)

home (97180) subway (35204) eating (60725)
restaurant (22190) bus (34120) watching (35387)

application installed on their mobile phone in real-time. The
notated data was then used as labels for the classification task
in our experiments. For evaluation, the dataset of each sub-
ject is separated into training set and test set in order of time.
An frame image of each second are used and classified as one
instance. The statistics of the dataset are summarized in Table
2. The distribution of major five classes in each type of labels
are presented in Table 3.

Two kinds of neural networks are used to extract the rep-
resentation in this experiment. One is AlexNet, a prototype
network trained by ImageNet [Krizhevsky et al., 2012]. The
other is referred to as LifeNet, which is a network trained
with the lifelog dataset. The structure of LifeNet is similar to
AlexNet, but the number of nodes of LifeNet is half of that of
AlexNet. The MatConvNet toolbox is used for both AlexNet
and LifeNet. We chose a 1000-dimensional softmax output
vector of AlexNet for representation of online deep learning
algorithms, as we assume the probability of an object’s ap-
pearance in each scene is highly related to the daily activity
represented by each scene.

The performances on the lifelog dataset were evaluated in a
10-split experiment. Each online dataset corresponds to each
day for subjects B and C. However, for subject A, the 13 days
of training data was changed into 10 online dataset by merg-
ing 3 of the days into its next days. Each online dataset is
referred to as a day. LifeNets made from 3 groups of online
lifelog datasets, with sets of consecutive 3, 4 and 3 days for
each group. In the entire learning of LifeNet, the learning rate
is set to 0.0025, the rate of weight decay is 5⇥ 10

�4, and the
rate of momentum is 0.9. In this experiment, LifeNet is used
for online fine-tuning and incremental bagging, AlexNet for
last-layer fine-tuning and both the LifeNet and AlexNet are
used for DMA1.

Figure 6 shows the experimental results from the lifelog
dataset. The experiments consist of three subjects whose
tasks are classified into three categories. A total of nine exper-
iments are performed and their averaged test accuracies from
a range of learning algorithms are plotted. In some experi-
ments, the performance of the algorithms at times decreases
with the incoming new stream of data, which is natural while
learning a non-stationary data stream. This would occur in

1In DMA, LifeNet corresponds to the ‘Deep Net 1’ and AlexNet
corresponds to the ‘Deep Net 2’ and ‘Deep Net k’ in Figure 2.

1673

Figure 6: Averaged test accuracy of various learning algo-
rithms on the lifelog dataset. The location, sub-location, and
activity are classified separately for each of the three subjects.

situations where the test data is more similar to the training
data encountered earlier than later during the learning pro-
cess. Although, such fluctuations can occur, on average, how-
ever, the accuracies of the algorithms increase steadily with
the incoming stream of data. In comparison among online
deep learning algorithms, last-layer fine-tuning that uses one
AlexNet outperforms other online deep learning algorithms
that use many LifeNets. However, these learning algorithms
perform worse than DMA that uses numerous LifeNets and
one AlexNet. Table 4 shows accuracies by each class, and by
each subject.

5 Discussion
Performances of online deep learning algorithms are more
analyzed and discussed in the chapter for justifying our pro-
posed method. The model with only one CNN does not adapt
to extreme non-stationary data streams in the experiment on
CIFAR-10. In the last-layer fine-tuning, a CNN trained by the
first online dataset was used. So, the model has a deep rep-
resentation only for discriminating three classes of image ob-
jects. Hence, the performance does not increase. In the case
of online fine-tuning, the model loses the information about
previously seen online datasets. This reduces performance of
test accuracy as time progresses.

In the experiment on the lifelog dataset, however, last-layer
fine-tuning that uses one AlexNet outperforms other online
deep learning algorithms that use many LifeNets. This im-
plies that usage of pre-trained deep networks by a large cor-
pus dataset is effective on the lifelog dataset. From the per-
spective of personalization, a representation obtained by ex-
isting users or other large dataset can be used together with a
representation obtained by a new user. However, DMA that
uses both AlexNet and LifeNet works better than last-layer
fine-tuning, which implies again that using multiple networks
is necessary in online deep learning task.

In all the experiments, incremental bagging increases its

Table 4: Classification accuracies on the lifelog dataset
among different classes (top) and different subjects (bottom)

Algorithm Location Sub-location Activity
DMA 78.11 72.36 52.92
Online fine-tuning 68.27 64.13 50.00
Last-layer fine-tuning 74.58 69.30 52.22
Naı̈ve incremental bagging 74.48 67.18 47.92
Incremental bagging w/ transfer 74.95 68.53 49.66
DMA w/ last-layer retraining 78.66 73.23 52.99

Algorithm A B C
DMA 67.02 58.80 77.57
Online fine-tuning 53.01 56.54 72.85
Last-layer fine-tuning 63.31 55.83 76.97
Naı̈ve incremental bagging 62.24 53.57 73.77
Incremental bagging w/ transfer 61.21 56.71 75.23
DMA w/ last-layer retraining 68.07 58.80 78.01

performance continuously with non-stationary data streams.
Incremental bagging that uses many networks outperforms
online fine-tuning that uses only one deep network. However,
the model does not reach the performance of batch learner,
as part of the entire data is not sufficient for learning dis-
criminative representations for the whole class. In the exper-
iment, weight transfer alleviates this problem; the technique
decreases error for both DMA and incremental bagging, re-
spectively.

The proposed DMA outperforms incremental bagging con-
sistently. In other words, learning a shallow network and deep
networks concurrently is advantageous compared to simply
averaging softmax output probability of each CNN. By the
way, learning fast memory in the DMA is not trivial. In DMA
w/ [Liu et al., 2008] of Figure 5, mGHNs are trained by a dis-
criminative maximum likelihood solution suggested by [Liu
et al., 2008]. Their performances are getting worse due to the
continuous arrival of extreme non-stationary data. A genera-
tive approach, in the online learning of mGHNs, is one of te
key points of successful online learning in the paper.

It is worth noting that the performance gap between our
algorithms and other algorithms can significantly change for
different datasets. If data streams are stationary and in abun-
dance, then incremental bagging can perform better than
DMA. The relationship between the performance of online
deep learning algorithms and the properties of data streams
will be analyzed and described in future work.

6 Conclusion

In this paper, a dual memory architecture is presented for real-
time lifelong learning of user behavior in daily life with a
wearable device. The proposed architecture represents mu-
tually grounded visio-auditory concepts by building shallow
kernel networks on numerous deep neural networks. Online
deep learning has useful properties from the perspective of
lifelong learning because deep neural networks show high
performance in transfer and multitask learning [Heigold et
al., 2013; Yosinski et al., 2014], which will be further ex-
plored in our future works.

1674

Acknowledgments
This work was supported by the Naver Corp. and partly by
the Korea Government (IITP-R0126-16-1072-SW.StarLab,
KEIT-10060086-HRI.MESSI, KEIT-10044009-RISF).

References
[Chen et al., 2015] Tianqi Chen, Ian Goodfellow, and

Jonathon Shlens. Net2net: Accelerating learning via
knowledge transfer. arXiv preprint arXiv:1511.05641,
2015.

[Donahue et al., 2014] Jeff Donahue, Yangqing Jia, Oriol
Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and
Trevor Darrell. Decaf: A deep convolutional activation
feature for generic visual recognition. In Proeedings of
the 31th International Conference on Machine Learning,
pages 647–655, 2014.

[Finch, 2009] Tony Finch. Incremental calculation of
weighted mean and variance. University of Cambridge,
2009.

[Goodfellow et al., 2013] Ian J Goodfellow, Mehdi Mirza,
Da Xiao, Aaron Courville, and Yoshua Bengio. An em-
pirical investigation of catastrophic forgetting in gradient-
based neural networks. arXiv preprint arXiv:1312.6211,
2013.

[Ha et al., 2015] Jung-Woo Ha, Kyung-Min Kim, and
Byoung-Tak Zhang. Automated construction of visual-
linguistic knowledge via concept learning from cartoon
videos. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence, pages 522–528, 2015.

[Heigold et al., 2013] Georg Heigold, Vincent Vanhoucke,
Alan Senior, Patrick Nguyen, Marc’Aurelio Ranzato,
Matthieu Devin, and Jeffrey Dean. Multilingual acoustic
models using distributed deep neural networks. In IEEE
International Conference on Acoustics, Speech and Signal
Processing, pages 8619–8623, 2013.

[Hong et al., 2015] Seunghoon Hong, Tackgeun You, Suha
Kwak, and Bohyung Han. Online tracking by learning
discriminative saliency map with convolutional neural net-
work. In Proeedings of the 32th International Conference
on Machine Learning, pages 597–606, 2015.

[Huynh et al., 2008] Tâm Huynh, Mario Fritz, and Bernt
Schiele. Discovery of activity patterns using topic mod-
els. In Proceedings of the 10th International Conference
on Ubiquitous Computing, pages 10–19, 2008.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural In-
formation Processing Systems, pages 1097–1105, 2012.

[Lin et al., 2014] Min Lin, Qiang Chen, and Shuicheng Yan.
Network in network. In International Conference on
Learning Representations, 2014.

[Little, 1992] Roderick JA Little. Regression with missing
x’s: a review. Journal of the American Statistical Associa-
tion, 87(420):1227–1237, 1992.

[Liu et al., 2008] Xinwang Liu, Guomin Zhang, Yubin Zhan,
and En Zhu. An incremental feature learning algorithm
based on least square support vector machine. In Proceed-
ings of the 2nd annual international workshop on Fron-
tiers in Algorithmics, pages 330–338, 2008.

[Nam and Han, 2015] Hyeonseob Nam and Bohyung Han.
Learning multi-domain convolutional neural networks for
visual tracking. arXiv preprint arXiv:1510.07945, 2015.

[Oza, 2005] Nikunj C Oza. Online bagging and boosting. In
Systems, Man and Cybernetics, IEEE International Con-
ference On, pages 2340–2345, 2005.

[Polikar et al., 2001] Robi Polikar, Lalita Upda, Satish S
Upda, and Vasant Honavar. Learn++: An incremental
learning algorithm for supervised neural networks. IEEE
Transactions on Systems, Man, and Cybernetics Part C:
Applications and Reviews, 31(4):497–508, 2001.

[Ruvolo and Eaton, 2013] Paul L Ruvolo and Eric Eaton.
Ella: An efficient lifelong learning algorithm. In Proeed-
ings of the 30th International Conference on Machine
Learning, pages 507–515, 2013.

[Thrun and O’Sullivan, 1996] Sebastian Thrun and Joseph
O’Sullivan. Discovering structure in multiple learning
tasks: The tc algorithm. In Proeedings of the 13th Interna-
tional Conference on Machine Learning, pages 489–497,
1996.

[Vedaldi and Lenc, 2015] Andrea Vedaldi and Karel Lenc.
Matconvnet – convolutional neural networks for matlab.
In Proceedings of the ACM International Conference on
Multimedia, pages 689–692, 2015.

[Yosinski et al., 2014] Jason Yosinski, Jeff Clune, Yoshua
Bengio, and Hod Lipson. How transferable are features
in deep neural networks? In Advances in Neural Informa-
tion Processing Systems, pages 3320–3328, 2014.

[Zeiler and Fergus, 2014] Matthew D Zeiler and Rob Fergus.
Visualizing and understanding convolutional networks. In
Proceedings of European Conference on Computer Vision,
pages 818–833, 2014.

[Zhang et al., 2012] Byoung-Tak Zhang, Jung-Woo Ha, and
Myunggu Kang. Sparse population code models of word
learning in concept drift. In Proceedings of the 34th An-
nual Conference of Cogitive Science Society, pages 1221–
1226, 2012.

[Zhang, 2013] Byoung-Tak Zhang. Information-theoretic
objective functions for lifelong learning. In AAAI Spring
Symposium on Lifelong Machine Learning, 2013.

[Zhou et al., 2012] Guanyu Zhou, Kihyuk Sohn, and
Honglak Lee. Online incremental feature learning with
denoising autoencoders. In International Conference on
Artificial Intelligence and Statistics, pages 1453–1461,
2012.

[Zinkevich, 2003] Martin Zinkevich. Online convex pro-
gramming and generalized infinitesimal gradient ascent. In
Proeedings of the 20th International Conference on Ma-
chine Learning, pages 928–936, 2003.

1675

