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Abstract

Providing sequence tagging that minimize Ham-
ming loss is a challenging, but important, task. Di-
rectly minimizing this loss over a training sam-
ple is generally an NP-hard problem. Instead, ex-
isting sequence tagging methods minimize a con-
vex upper bound that upper bounds the Hamming
loss. Unfortunately, this often either leads to in-
consistent predictors (e.g., max-margin methods)
or predictions that are mismatched on the Ham-
ming loss (e.g., conditional random fields). We
present adversarial sequence tagging, a consis-
tent structured prediction framework for minimiz-
ing Hamming loss by pessimistically viewing un-
certainty. Our approach pessimistically approx-
imates the training data, yielding an adversarial
game between the sequence tag predictor and the
sequence labeler. We demonstrate the benefits of
the approach on activity recognition and informa-
tion extraction/segmentation tasks.

1

Sequence tagging methods that jointly predict interdepen-
dent variables are needed in applications ranging from nat-
ural language processing [Lafferty er al., 2001; Sha and
Pereira, 2003] to activity recognition [Vail er al., 2007,
Liao et al., 2007]. Unfortunately, obtaining a parametric pre-
dictor that directly minimizes the Hamming loss (the num-
ber of incorrectly predicted variables) is an NP-hard empiri-
cal risk minimization (ERM) problem [Hoffgen et al., 1995]
in general. Conditional random fields [Lafferty et al., 2001]
and maximum margin methods (e.g., structural support vec-
tor machines [Joachims et al., 2009] and maximum margin
Markov networks [Taskar et al., 2004]) instead minimize con-
vex surrogates of the Hamming loss (i.e., the logarithmic loss
and the hinge loss). This mismatch between the surrogate
loss function and the Hamming loss leads to inconsistency
and sub-optimal predictive performance.

We present adversarial sequence tagging (AST), a super-
vised sequence tagging approach that is both consistent for
the Hamming loss and provides good predictive performance
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in practice by adversarially approximating the training data.
At its core, our approach reduces prediction to solving a zero-
sum game based on the Hamming loss between a prediction
player trying to minimize the loss and an adversarial player
trying to maximize it while being constrained to reflect prop-
erties of the training data. Parameter estimation is solved as
a convex optimization problem under this formulation even
though minimizing the Hamming loss is non-convex in ERM
formulations. Our contributions in this paper are:

1. We extend adversarial loss minimization methods for
classification [Asif et al., 2015] and multivariate perfor-
mance measures [Wang er al., 2015] to the structured
prediction setting of sequence tagging.

. We establish the Fisher consistency of our adversarial
prediction method and contrast it with the inconsistency
of maximum margin methods for sequence prediction.

. We scale our approach to long sequences of variables
with many possible values by leveraging an indepen-
dence property that allows a single oracle inference
method (in contrast, double oracle is exclusively re-
quired for multivariate losses [Wang er al., 2015]).

. We evaluate our approach on natural language pro-
cessing and activity recognition tasks, demonstrating
its competitive predictive performance compared with
maximum margin methods and CRFs.

2 Background and Related Work
2.1 Notation

In this work, we seek a sequence predictor, p(y|x) for vari-
ablesy = y1.7 = {y1,%2,-..,yr} € Y, conditioned on pro-
vided input variables, x = x1.7 = {x1,29,...,27} € X.
We consider the supervised learning setting where m se-
quence examples, {y(/), x( )}j:Lm drawn from empirical
training distribution P(x, y) (samples from true distribution
P(y,x)), are available to estimate the model. We distinguish
between the actual label variables, y, and the predicted label
variables, ¥y, using “hat” notation, and will later introduce a
set of adversarially-chosen labels y = {91, 92, ..., 91 }. We
make extensive use of expectation notation, Ep(,[f(X)] =
> wex P(x)f(z), in which random variables are capitalized.
We also denote statistics of the sequence of variables as



®(x,y) € R¥. These typically decompose additively over
the sequence: e.g., ®(x,y) = ZtT;ll DX, Yit41)-

2.2 Empirical Sequence Risk Minimization

Conditional random fields (CRFs) and structured support vec-
tor machines (SSVMs) are two prominent methods for se-
quence tagging based on minimizing the empirical risk:

arg?in]Eﬁ,(xy)pg(y‘x) {loss (Y,Pg(-b{)ﬂ + A0 (D

or arg;nin Epxy) {loss (Y7 fo (X))} + A|6]]. )
For conditional random fields [Lafferty et al., 20011, the log-
arithmic loss, — log P(y|x), and an exponential random field
model, e.g., P(y|x) o exp(d - ®(x,y)) are employed in Eq.
(1). For structured support vector machines [Tsochantaridis
et al., 2004], the structured hinge loss is a convex approxima-

tion to the Hamming loss, A(y,y) = Z?:l I(g: # 3r),
max A(y,y') +0- (2(x,y") - 2(x,y))| , @)
y'#y 4

where [f(x)]+ = max(0, f(x)), and a linear discriminant
function, fg(x) argmaxy.cy, 0 - ®(x,y), are employed in
Eq. (2). The loss function of each model is a convex upper
bound on the Hamming loss, Zthl I(g: # r).

2.3 Sequence Tagging Consistency
Predictors that minimize a loss measure when provided with

the true data distribution for training are desirable. Definition
1 formalizes this notion in terms of the Fisher consistency.

Definition 1. Predictor f (x) with full representational abil-
ity (e.g., parameterized by potential functions ¥ (X,y)) is
Fisher consistent for loss function A(f“ (x),y) if it minimizes
the expected loss, Ep(x.y) [A(f(X),Y)], when trained (e.g.,
surrogate ERM) under the true data distribution P(x,y).

Similar to multi-class SVM incosistency [Liu, 20071, The-
orem 1 shows SSVM'’s inconsistency for sequence tagging.
This inconsistency motivates our desires for a better method.

Theorem 1. Given the distribution P;1 = 0.4, Pyy = 0.3,
P33 = 0.3, and P;; = 0 Vi # j over sequences of length two,
where P;; compactly denotes P(y, = i,ys = j|x), the hinge
loss of SSVM is not Fisher consistent for the Hamming loss.

Proof. For SSVM and Hamming loss, ¢)* minimizes:

E|> P {glgxﬁ(y y)+oxy)-oxy)| |- @

yey +

The minimizer ¢)* must satisfy ¢ (x,11) > 9 (x,y’) where
y’ # 11. Otherwise, the result will not be Fisher consis-
tent. Assume (w.l.o.g.) 1(x,22) > 1(x,33). (4) becomes
Pll [maxy’;éll{A(lLy/) + @(Xv y/) - 1/J(X7 11)}]+ +0+
0+0+ Pao [maXy'7é22{A(22’ y') +(x,y") —¢(x, 22)}]+
+0 + O + 0 + ng[maxy/¢33{A(33,y/) + 1/1()(, y/)

1691

—(x,33)} 4. Since $(x,11) > $(x,y’), $(x,11) —
P(x,22) > P(x,y) — ¥(x,22), for y’ # 11, 2 is the
maximum Hamming loss for length 2 sequences. As a re-
sult, [maxy:222{A(22,y") + (x,y’) — ¥(x,22)}] =2+
P(x,11) — (x,22). Similarity, [maxy 233{A(33,y’) +
Y(x,y') —¥(%x,33)}+ =2+ 9(x,11) — (%, 33). The ex-
pected hinge loss is Pii[maxy 211 {A(11,y’) + ¥(x,y’) —
1ﬂ(X7 11)}]+ + P22(2 + w(X, 11) — w(x, 22)) + P33(2 +
$(x,11) — 9(x,33)).  When ¢(x,11) = (x,22) =
¥(x,33) > (x,ij), Vi # j, the loss is 2. For any other case
[masxy 21 {A(1Ly) + (%, y") — ¥(x, 11)}]s , we show
the loss exceeds 2:

Case 1: when maxy 211 {A(1L, y')+9(x,y")—9¥(x,11)} <
0, then 2+1)(x, 22) —1p(x,11) < 0, (%, 11)—1)(x,22) > 2.
Similarly, ¥ (x,11) — ¥(x,33) > 2. The loss is P22(2 +
¢(X7 11)—¢(X: 22))+P33(2+'(/)(Xa 11)_¢(X7 33)) > 4(P22+
Ps3). Aslong as Pog + P33 > 0.5, this is greater than 2.
Case 2: when maxy/211 {A(11,y")+9(x,y’ —9(x,11)}
0, we have maxy 211 {A(11,y") + ¥(x,y’) — ¥(x,11)}
24+ (x,22) —(x, 11). We also have ¢(x, 11) —1)(x, 33)
¥(x,11) — 1p(x,22) The loss is at least P11 (2 + ¥(x,22) —
(3, 11))4+ Poo (240 (x, 11)—1)(x, 22))+ Py (248 (x, 11) -
Y(x,33)) > 2(Pr1+Paa+Ps3)+Pr1(1(x,22) —1(x, 11)) +
P22(¢(X7 11) _’L/)(Xa 22))+P33(¢(X7 11) _w(xa 22)) When
Py + P33 > 0.5, the loss exceeds 2. We can see that in
the example, the minimized value for the loss function is
2 and is achieved when ¥ (x,11) = ¥ (x,22) = ¥(x,33).
Since argmax cannot distinguish between the different la-
bels, SSVM is not Fisher consistent. O

>
=
2

2.4 Adversarial Estimation

We expand upon prior perspectives for prediction as an ad-
versarial task [Dalvi et al., 2004; Lowd and Meek, 2005;
Biggio et al., 2010]. However, unlike those works, we do
not assume that the data comes from an adversary attempt-
ing to corrupt the test data to, e.g., defeat a spam filter. In-
stead, our approach is more closely related to the duality be-
tween worst-case minimization of information-theoretic loss
functions and maximum likelihood estimation of exponen-
tial family member probability distributions [Topsge, 1979;
Griinwald and Dawid, 2004; Liu and Ziebart, 2014] and
methods that parametrically constrain the adversary [Lanck-
riet et al., 2003].

Our method follows two recent advances in adversarial
classification: a general formulation of cost-sensitive classifi-
cation as a zero-sum prediction game [Asif ef al., 2015]; and
adversarial prediction games for multivariate performance
measures [Wang et al., 2015]. These previous methods for
univariate predictions do not incorporate correlative relation-
ships between predicted variables and cannot be effectively
employed for sequence tagging tasks. We demonstrate how
the adversarial formulation can be extended to the structured
prediction setting using constraint generation methods known
as the single and double oracle [McMahan ef al., 2003] to
avoid exponentially-sized zero-sum games from the latter
work [Wang et al., 2015] in the sequence tagging setting. The
key difference is that feature functions are multivariate in this
work, while loss functions are multivariate in that prior work.



3 Adversarial Sequence Tagging Games

Motivated by the mismatch between convex surrogates and
loss measures of interest, we develop our adversarial ap-
proach for sequence tagging.

3.1 Adversarial Formulation

Instead of choosing a predictor’s parametric form and us-
ing ERM on training data to select its parameters, we ob-
tain the predictor that performs best for the worst-case choice
of conditional label distributions that match statistics mea-
sured from available training data. As we shall see, sequence
loss functions for which empirical risk minimization is non-
convex and NP-hard can often be solved efficiently in this
formulation.

Following recently developed methods for adversarial cost-
sensitive classification [Asif er al., 2015], we pose struc-
tured prediction as an adversarial game in which an estimator
player chooses a conditional distribution, P(¥|x). An adver-
sarial player then chooses a distribution, P(¥|x), from the set
of distributions matching certain statistics, ®(x,y). The es-
timator player seeks to minimize an expected loss, while the
adversary seeks to maximize this loss:

min max Ez 500 5001x [loss(fﬂY)} )
P(glx) P3lx) T OPEIRPFIX)
such that: Ep ) (s [2(X, ¥)] = Epir ) [ (X, )]

where the feature functions, ®(x,y), typically additively
decompose over pairs of the Yi,...,Yr variables: e.g.,
T—1
(I)(X7 y) = Zt:l ¢(X7 Yt, yt+1)‘
By leveraging Lagrangian and zero-sum game duality, this
formulation reduces to a convex optimization problem:

minE 5. ., |maxmin pxClkx sPx | , 6
PR,y | Tpax N PxCx gPx (6)

where Py and Py are vector representations of the conditional
label distributions, P(y|x) and P(y[x) and C/, , is a pay-
off matrix that incorporates both the loss function and a La-
grangian potential term that enforces the optimization’s con-
straints: (C;c,yﬂ)y,y = 1088(3’7 y) +0- (¢(X7 y) - ¢(X7 y))
Table 1 is the payoff matrix of the 3-length binary-valued se-
quence game. Rows represent the predictor’s pure strategies.
Columns represent the adversary’s pure strategies. Each pay-
off combines the Hamming loss (e.g., 1 for sequences 001
and 101) and a Lagrangian potential motivating the adversary
to behave “similarly to” training data.

Zero-sum games can be solved as linear programs to find
each player’s mixed Nash equilibrium [von Neumann and
Morgenstern, 1947]. For example, the mixed Nash equilib-
rium strategy for the adversarial player is obtained from:

max v such that: v < C}, ,pVy € Y; and1"p=1. (7)

p>0,v Y
Similarly, the predictor’s mixed Nash equilibrium strategy is:

f)n;%)nﬂv such that: v > f)Twaj Vy e Y; and1Tp =1. (8)

These sets of inequality constraints ensure the game value v
is constrained by all possible pure strategies of the opponent.

Table 1: The payoff matrix C;ﬂ for a game over the length

three binary-valued chain of variables between player Y
choosing a distribution over columns and Y choosing a dis-
tribution over rows. Lagrangian potentials are compactly rep-
resented as: 1y, 5,5, = 0 - (®(¥,%) — ®(y,x)).

000 001 010 011 100 101 110 111

000 | 0+po00 | 1+1P001 | 1+t0010 | 2+011 | 149100 | 244101 | 249110 | 3+4111
001 | 1+1000 | 0+th001 | 24010 | L+%011 | 24+9100 | L +%101 | 3+4110 | 249111
010 | 1+4P000 | 24001 | 0+th010 | I +%011 | 249100 | 3+4P101 | 1+9110 | 2+9111
011 | 2+4po00 | 1+P001 | 1+t0010 | 0+Po11 | 3+¢100 | 244101 | 249110 | 1 +111
100 | 14+4000 | 2+%001 | 2+t010 | 3+%011 | 0+th100 | 1+9101 | L+40110 | 2+9111
101 249000 | L +%001 | 3+%010 | 2+%011 | L +9100 | 04+%101 | 24110 | 1+90111
110 24000 | 3+Po01 | 1+%010 | 2+%011 | 1+9100 | 2+40101 | 0+110 | 1490111
111 34000 | 2+001 | 24010 | 1+%011 | 2+%100 | 1+9101 | I+P110 | 0+90111

Extending adversarial classification [Asif et al., 2015] to
sequence tagging settings leads to inner zero-sum matrix
games characterized by C| , with |V|T value assignment
“pure strategies” for each player. As a consequence, explic-
itly constructing the corresponding game matrix is intractable
for all but the smallest of sequence tagging tasks.

3.2 Double Oracle Method for Efficient Prediction

We overcome the computational difficulties of constructing
the entire adversarial game using the double oracle algorithm
[McMahan et al., 2003] to iteratively construct an appropriate
reduced game that still provides the correct equilibrium. This
approach was previously applied to obtain game solutions for
multivariate performance measures [Wang er al., 2015]. We
extend this to structured prediction problems where consecu-
tive variables are related by measured statistics.

The double oracle game solver considers a subset of pure

strategies, S or S, for each player. It constructs the payoff
matrix and obtains the mixed Nash equilibrium for this subset
of pure strategies. It then finds the best response pure strategy,
YBR Of YBR, for the player in response to the opponent’s
equilibrium mixed strategy, P(y|x) or P(¥|x), and adds it
to the set of pure strategies. The algorithm terminates when
neither player can improve upon their strategy with additional
actions. Thus, the strategies it returns are a Nash equilibrium
pair [McMahan et al., 2003]. We refer interested readers to
Wang et. al [Wang et al., 2015] for more details. The major
difference for sequence tagging from that previous work is in
finding best responses. We find the best response ypr pure
strategy to add to the game according to the maximization of:

yi:T

T T—1
maxBpg 1) {Z IYVi#5) | + D0 6(% Vi)
=1 t=1

=max (Eﬁ<g1|x> [I(f/l # 131)] + max (9 p(x,¥1:2) ®

Y

T Ep g [I(f@ # 132)] + max (9 “P(x,¥2:3) +
Y3

+max 6 - ¢(x, yr-1.7) + Ep (g 1) [I(YT # Z)T)] )))a

yr

which is recursively defined from marginal probabilities

P(g;) as shown, and solved using the Viterbi algorithm



[Viterbi, 1967] by iteratively computing for t = {T,--- ,1}:
B = Epg,) [I0: # 30)] + maxy,, 0 6(x.Frr1) +
B(yr+1) and storing the maximizing variable assignment.

For the complementary problem of adding the best
y action to the game, we choose y according to:
argming E;y|x) [loss(y,¥)]. For the Hamming loss, each
term of the best response sequence can be independently ob-
tained from ypr = {argmax,, P(yx)YE .

3.3 Single Oracle Method for Efficient Prediction

So long as the loss function additively decomposes into pay-
off matrix terms C; for each ¢ € {1,...,T}, the estimator’s
predictions are independent (as observed when finding the
best response for the double oracle method). This is in con-
trast with adversarial prediction methods for structured losses
[Wang et al., 2015], in which the loss function prevents inde-
pendence from both adversary and predictor. The indepen-
dence found in the sequence tagging game allows the com-
bination of all estimator’s “pure strategies” in the sequence
tagging game to be efficiently considered using the following
pair of linear programs:

(1) min o such that: p; > 0 and 1Tp, = 1,V

P1,P2,..,PT,V

T
andv > 0" ¢(x,9) + Y B/ [Cil.y ¥ € 5; (10)
t=1

max

T
oo 0T ®, p+ Z v such that: 1Tp = 1
p=U,v1,v2

t=1

and v, < [Cyly,. PVt € V; (an

As the entire set of predictor pure strategies is consid-

ered by this revised set of linear programs, the double ora-

cle method can be reduced to a single oracle method. Only

the adversary’s set of pure strategies over the entire sequence
needs to be expanded in this approach (Algorithm 1).

(2)

.....

Algorithm 1 Single Oracle Game Solver

Input: Lagrangian potential, 1; initial action set S
Output: [P(y[x), P(¥|x)]
Ver < {}
repeat B
C'; < buildPayoffMatrices(S, 1)
[I:’(y|x), UNash; | — solveZeroSumGamey, (C)
[YBR, UBR] < ﬁndBestResponseStrategy(P(Sf|x), )
S+« Su YBR
until (vNashl = 'DBR)
return []5(37|x), P(y]x)]

The size of the payoff matrix, C’ from Eq. (7), in the
double oracle method is O(|S||S|), while the single oracle
method corresponds to a matrix of size O(|S|T'|)|). Compu-
tational benefits may thus be realized by this approach when
the number of estimator pure strategies in the double oracle
method is sufficiently large. In such cases, reducing the over-
all size of the payoff matrix compensates for the added com-
plexity of the linear program in the single oracle method. In
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Algorithm 2 Parameter Estimation Algorithm

Input: Training dataset D with pairs (x,y) € D, feature
function ® : X UY — R*, learning rate {v;}
Output: Model parameter estimate
t«1
while 6 not converged do
Random shuffle samples for stochastic training
for all (x,y) € D do

Compute P(¥|x) using single/double oracle

Vi Ep(y\x) [(I)(Xa 5’)] - Q(Xa S’)
0+ 0—Vo;, t—t+1
end for
end while

practice, a hybrid approach that switches between single or-
acle and double oracle methods based on the length of the
sequence can be used to yield faster predictions.

3.4 Learning via Convex Optimization

We employ stochastic gradient descent to obtain the AST
model parameters. As described in Algorithm 2, for each
iteration in the update, we use single oracle (Algorithm 1)
or double oracle to find the adversary’s Nash equilibrium so-
lution to the AST game: P(y|x). Feature expectations are
calculated according to Eq. (12):

:| (12)

-1
= Z ZP(E =y, Yirr = ylx, 0) (%, e, Jr11)-

t=1y,y’

T—-1

Z O(X, Gt Je1)

t=1

Ep (g1 [B(x,Y)] = Ep(y1x) [

This feature expectation under the adversary’s distribution is
then used to calculate the gradient, as shown in Algorithm 2.
Due to convexity, this optimization procedure converges to a
global optima given appropriate learning rate parameters ;.

3.5 Consistency

An important benefit of AST over maximum margin methods
is the consistency guarantee it provides.

Theorem 2. Given that the sequence’s probability distri-
bution factors according to the chain independence as-
sumptions: P(y|x) = Hle P(yt|yt—1,%1.7), and an ar-
bitrarily rich feature representation, V¥ (ys, yi+1,X1.1), the
AST method provides the loss-optimal sequence tagging,
argming Epyx) [loss(y,Y)].

Proof. The Lagrangian of Eq. (6) gives, equivalently:

min max min Ep(y [IE o150 P (¥ 1 {IOSS(Y,Y)
B() Blyix) Byl Y T PERPFIX)

+1/1(X,Y)—¢(X,Y)‘X” (13)



(@)

max min
P(ylx) ()

<Ep(x,y)15(yx) [¢(X7Y)—¢(X>Y)] (14)

+ min ]EP(x)P(mx)P(y\x) {loss(Y,Y)}
P(ylx)
&) . Y
= min Ep, ) pono |108s(Y,Y) (15)
A0 By pis) )| ]
9 Epg {m;n Ep(yix) {loss(y, Y)‘x} } (16)

where: (a) follows from Lagrangian duality and rearranging
the expectation terms; Eq. (14) can only avoid being un-
boundedly negative by choosing P(y|x) = P(y|x), leading
to cancellations of (b)!; and reducing the minimization of a
linear function to a non-probabilistic decision via (c). This is,
by definition, the set of risk-minimizing predictions. O

Thus, when learning from any true distribution of sequence
data, P(y,x), using a sufficiently expressive feature repre-
sentation to capture its sequential relationships, the predictor
minimizing the Hamming loss will be obtained.

4 Experiments

In this section, we demonstrate the effectiveness of our pro-
posed AST model.

4.1 Dataset Descriptions

We investigate activity recognition datasets (for both hu-
man or animal activities), and natural language processing
datasets. The properties of the training datasets and testing
datasets are summarized in Table 2.

Table 2: Evaluation datasets and characteristics.

Train/Test Train/Test

Name Classes Attributes Sequences Variables
Human Activity 12 561 3957174  7767/3162

Baboon (day 1) 7 24 12712 718 /718

Baboon (day 2) 7 24 12712 7187718
FAQSeg 4 24 26/22 36327/21618

Human Activity Recognition Dataset [Reyes-Ortiz et al.,
2015] was collected from 30 volunteers wearing smart phones
on their waists. There are 12 different activities labeled in
this dataset (walking, walking upstairs, walking downstairs,
sitting, standing, laying, stand-to-sit, sit-to-stand, sit-to-lie,
lie-to-sit, stand-to-lie, and lie-to-stand). We segment the data
into consecutive temporal sequences. There are 561 features
for each time step based on accelerometer and gyroscope
measurements collected from the smart phones.

"For additively decomposing potentials, 1 (x,y)
>, W' (X, Yt Y1), only pairwise conditional probabilities must
match: P(y:,ye41|X) = P(yi,yer1]x). However, since P(y|x)
is Markovian by assumption, the entire conditional sequence
distributions match as well.
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Baboon Activity Recognition Dataset [Strandburg-Peshkin
et al., 2015; Crofoot et al., 2015] consists of GPS and ac-
celerometer data gathered for 12 hours each day for 35 days
from 26 adult and sub-adult members of a baboon troop wear-
ing sensor collars. Four experts labeled two days of troop ac-
tivities (e.g. sleeping, hanging out, coordinated progression,
coordinated non-progression). We consider the majority vote
of their annotations to be the ground truth label. We seg-
ment each day of data into 12 one hour sequences. We use 24
features to create each prediction model. These include the
average speed of the group and other group location-based
measurements. We report two results: using the labeled first
day of data to classify the second day’s activities (Baboon
(day 1)); and using the second day’s labeled data to classify
the first day’s activities (Baboon (day 2)).

FAQ Segmentation Dataset [McCallum er al., 2000] con-
tains 48 Frequently Asked Questions (FAQs) downloaded
from the Internet. 26 are used for training and 22 for test-
ing. Each line in the document is labeled with four possible
labels: head, question, answer, and tail. 24 Boolean features
are generated for each line.

4.2 Methodology

We compare our proposed adversarial sequence tagging
model against the state-of-the-art methods for structured pre-
diction. The methods details are as follows:

A linear chain Conditional Random Field (CRF) [Sarawagi
and Cohen, 2004] with features based on the transition be-
tween labels ¢(y¢, y¢+1) and input variables/labels ¢(xy, ys).
We use LBFGS for optimizing the model. We selected the
regularization weights using a validation set (approximately
10% of the data)?.

For Structural SVM (SSVM), we use the SV M jm-
plementation of structural SVM inside the SV M'9"* pack-
age [Joachims, 1999]. SV M"™™ is implemented to learn
a model with chain structure. We include the first-order tag
sequence as features. We use a validation set of 10% of the
data for selecting the parameter ¢ which controls the trade-off
between slack and the magnitude of the weights vectors, and
default parameters for the remaining settings.

For our Adversarial Sequence Tagging (AST) approach, we
implemented our previously described learning and predic-
tion algorithms. Our features are those of the CRF package
[Sarawagi and Cohen, 2004]. For training and testing, we use
the oracle approach on each data sequence. We optimized
using stochastic gradient descent to learn the AST model pa-
rameters. We note that the initial action set for our meth-
ods does not significantly influence the results (we use se-
quences {11...1,22...2, ...} for each player). We use de-
terministic predictions using the sequence with the maximum
probability rather than making stochastic predictions. We use
Gurobi [Gurobi Optimization, 2015] as the linear program-
ming solver to compute equilibria.

2Since the number of baboon data sequences is small, we did not
use a validation set for parameter tuning in baboon experiments.



Table 3: Per-variable accuracy for the three approaches on
different datasets.

Dataset CRF SSVM  AST

97.12%
75.63%
68.66%
87.62%

97.03%
75.63%
63.65%
94.23%

97.19%
77.30%
69.22%
94.42%

Human Activity

Baboon (day 1)

Baboon (day 2)
FAQSeg

4.3 Results

We evaluate performance, shown in Table 3, using the per-
variable accuracy (the complement of the Hamming loss) as
our performance measure. Our proposed approach, AST,
consistently outperforms the CRF and SSVM on the four
datasets. However, SSVM performs sometimes better and
sometimes worse than CRF. The reason is likely due to the
convex approximation of the hinge loss and logloss, which
can create more errors in some cases. In contrast, our ap-
proach, AST, outperforms CRF and SSVM by minimizing
the loss for an adversarial approximation of the training data.
This upper bounds the generalization loss since real data is
not likely to be worst case. Other approaches minimize sur-
rogate losses, which upper bound the Hamming loss, on train-
ing data samples. These two approaches can be viewed as ap-
proximating the training data (and using the exact loss func-
tion of interest) versus approximating the loss function (and
using the exact training data). We believe the former more
closely aligns with test performance. Our consistency results
show this to be true for certain feature representations and
data distributions when compared to the hinge loss surrogate
of the Hamming loss.

The differences in loss measures that the methods attempt
to optimize offers some explanation for the performance dif-
ferences of CRF and SSVM. For example, the hinge loss ap-
proximation of the Hamming loss on test data for FAQSeg
is 2,816.04 for SSVM, 3,961.25 for CRF, and 35,291.35 for
AST. Thus, SSVM is providing much better performance on
the measure it is designed to minimize, but this does not trans-
late into better Hamming loss due to differences introduced
by the hinge approximation.

Table 4: Prediction time for the three approaches on different
datasets (in seconds) using double oracle AST.

Dataset CRF SSVM AST
Human Activity 1050 0.04 193
Baboon (day 1) 4.8 0 2.6
Baboon (day 2) 4.5 0 2.5

FAQSeg 108 0.1 15.8

Table 4 shows the amount of time required to make pre-
dictions for all of the testing sequences. The SSVM package
is well optimized so that the running time is very fast. This
provides a good baseline for comparison. Although the AST
model takes longer than the SSVM approach, the improve-
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ment in accuracy can often be worth the additional running
time. At the same time, the AST model’s computation time
is in some cases almost an order of magnitude more efficient
than CRF prediction, which is limited by the need to compute
the normalization term for a distribution over sequences.
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Figure 1: Running time for single oracle and double oracle.

Figure 1 shows the running time comparing double ora-
cle and single oracle approaches on the more time-consuming
Human Activity dataset on test instances of minimum length
20. For longer sequences, single oracle requires less time
than double oracle. This demonstrates that the single oracle
can be useful for long sequences with many labels. Unfortu-
nately, for very short sequences (e.g., those less than length
20), the double oracle method is consistently more efficient
on average. When short sequences dominate the distribution
of training data, which is the case for many problems, the
single oracle method’s average running time is slower than
double oracle method. This suggests a hybrid approach that
uses the double oracle method for short sequences and the
single oracle method for longer sequences.

5 Conclusion

We have developed AST, a sequence tagging method for in-
ductively minimizing Hamming loss that is both consistent
and performs well in practice. This stands in contrast with
existing methods: maximum margin methods (SSVMs and
M?3Ns) are not consistent and can be shown to have arbitrarily
large loss for certain data distributions; conditional random
fields, though consistent, use a surrogate loss that differs sub-
stantially from the Hamming loss. For both alternatives, we
have shown AST to provide better sequence tags. Further, we
have introduced a single oracle inference procedure for AST
that improves the computational efficiency of the approach on
tasks with long sequences and many possible labels.
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