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Abstract
The essence of domain adaptation is to explore
common latent factors shared by the involved
domains. These factors can be specific features or
geometric structures. Most of previous methods
exploit either the shared features or the shared
geometric structures separately. However, the two
strategies are complementary with each other and
jointly exploring them is more optimal. This paper
proposes a novel approach, named joint Feature

Selection and Structure Preservation (FSSP), for
unsupervised domain adaptation. FSSP smoothly
integrates structure preservation and feature selec-
tion into a unified optimization problem. Intensive
experiments on text categorization, image classifi-
cation and video event recognition demonstrate that
our method performs better, even with up to 30%
improvement in average, compared with the state-
of-the-art methods.

1 Introduction
As poet Sándor Petőfi once wrote, “life is dear, love is dearer,”
a scientist in the filed of machine learning might say, “data is
dear, labeled data is dearer.” How to acquire more labeled
data from existing ones has been a crucial research topic re-
cently. Domain adaptation [Pan and Yang, 2010] proves to
be effective for leveraging labeled data in the well-labeled
source domain to transfer classification discriminability to the
unlabeled target domain.

Domain adaptation deals with the problem where data from
two domains have common class label but divergent data
distributions. Since traditional machine learning algorithms
would fail to handle the situation, domain adaptation, one
category of transfer learning [Pan and Yang, 2010], has been
widely studied in many real world applications, e.g., image
classification [Long et al., 2014b], text categorization [Ding
et al., 2015] and video event recognition [Duan et al., 2012b].

The basic assumption of domain adaptation is that some
common latent factors are shared by the involved domains.
Therefore, the mechanism of domain adaptation is to explore
these common latent factors, and utilize them to mitigate both
the marginal and conditional distributions across domains,
which can be done by one of the two strategies, i.e., instance

re-weighting and feature extraction. Most approaches in the
first group [Chu et al., 2013] try to train a sophisticated
classifier on the source domain, e.g., multiple kernel SVM,
which can be used in the target domain. Whereas approaches
in the second group aim to preserve important data prop-
erties, e.g., statistical property and geometric structure. In
most cases, feature extraction is more effective than train-
ing a complex classifier, and deep learning [Donahue et al.,
2013] is a great example. In this paper, therefore, we fo-
cus on the feature extraction. However, previous methods
in this group usually preserve the statistical property and
geometric structure independently, e.g., [Ding et al., 2015;
Pan et al., 2011] explore the statistical property by maxi-
mizing the empirical likelihood, while [Gong et al., 2012;
Long et al., 2014a] optimize predefined objective function by
exploring the geometric structure. In fact, these two proper-
ties are complementary with each other and jointly exploring
them could benefit from both sides. The statistical properties
and geometric structure are two observations of the data from
different viewpoints. Each viewpoint has its theoretical base-
ment and exists unilateralism. Different viewpoints are not
mutually exclusive and combining them normally could tran-
scend the specific limitations of each perspective [Zhu and
Lafferty, 2005].

In this paper, we explore the benefit of integrating the op-
timization of statistical property and geometric structure into
a unified framework. On one hand, we seek a common sub-
space shared by the involved domains where common latent
features can be uncovered and the data distribution gap across
two domains can be mitigated. On the other hand, we deploy
a graph structure to characterize the sample relationship. The
motivation of this paper is illustrated in Fig. 1. Furthermore,
if we simply select features from the source domain and the
target domain by a general projection matrix, the selected re-
sults may be different for each dimension of the subspace
learned from different domains [Gu et al., 2011]. The up-
per part of Fig. 1 shows an illustrative toy example. It can be
seen that the selected features (colored ones) from different
domains are different too. Therefore, it is hard to distinguish
which features (corresponding rows) in both domains are re-
ally redundant. However, after row-sparsity regularization,
the selection tends to be clear. Finally, the main contributions
of this paper are summarized as follows:
1) A unified framework of feature selection and geometric
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Figure 1: Illustration of our approach. The upper part shows
our idea from the view of feature selection, and the bot-
tom half shows it from the perspective of geometric structure
preservation. In this paper, we are going to optimize both of
them in a unified framework.

structure preservation is proposed for unsupervised do-
main adaptation, and it achieves state-of-the-art perfor-
mance on several standard benchmarks even with up to
30% improvement in average compared with baselines.

2) In the aspect of feature selection, we deploy `2,1-norm
on the projection matrix, which leads to achieving row-
sparsity and, as a result, selecting relevant features across
the involved domains.

3) In the aspect of geometric structure preservation, not only
the structure of samples is preserved by a nearest neighbor
graph, but also the structure of features in the embedded
space is preserved by a representation matrix.

The rest of this paper is organized as follows. Section 2
presents some brief discussion with related works. Section 3
introduces the proposed method in detail. Experiments are
reported in Section 4, and Section 5 is the conclusion.

2 Related Works and Discussions
This paper focuses on domain adaptation [Pan and Yang,
2010] where the source domain and the target domain share
the same task but have different data distributions.

According to the recent work [Long et al., 2014b], most
of the unsupervised domain adaptation approaches work by
learning a new feature representation to reduce the data dis-
tribution differences among domains. The new feature repre-
sentation can be learned by: 1) exploring domain-invariant
common factors [Ding and Fu, 2014; Ding et al., 2015],
2) minimizing proper distance measures [Gong et al., 2012;
Long et al., 2014a], and 3) re-weighting relevant features with
sparsity-promoting regularization [Gu et al., 2011; Long et

al., 2014b]. Actually, these three groups can be concisely
summed up in two bases: feature selection, which consists
of 1) and 3), and geometric structure preservation. This
paper aims to take full advantage of both feature selection
and geometric structure preservation, incorporate them into a
unified framework and jointly optimize them.

To our knowledge, this work is among the very lead-
ing works for domain adaptation to joint feature selection
and geometric structure preservation. Notably, experiments

Table 1: Notations and corresponding descriptions, in which
m, n and d denote the number of samples, dimensionality of
original space and subspace, respectively.

Notation Description Notation Description
Xs 2 Rn⇤ms ,ys source data/labels X 2 Rn⇤m

Xs and Xt

Xt 2 Rn⇤mt ,yt target data/labels L 2 Rm⇤m graph Laplacian
Z 2 Rms⇤m reconstruction P 2 Rn⇤d projection matrix
E 2 Rd⇤m sparse error Y 2 Rd⇤m eigenvector matrix
G 2 Rn⇤n sub-gradient �, �, � penalty parameters

demonstrate that our work can get better recognition accuracy
than baselines with a significant advantage.

3 The Proposed Approach
3.1 Notations
In this paper, we use bold low-case symbols to represent vec-
tors, bold upper-case symbols to represent matrices, specifi-
cally, I represents the identity matrix. A sample is denoted
as a vector, e.g., x, and the i-th sample in a set is represented
by the symbol xi. For a matrix M, its `2,1-norm is defined
as: kMk2,1 =

P
j

pP
i (Mij)

2. We also use the Frobe-

nius norm kMkF =

qP
i �i(M)

2, where �i(M) is the i-th
singular value of the matrix M. The trace of matrix M is rep-
resented by tr(M). For clarity, we also show the frequently
used notations in Table 1.

3.2 Problem Definition
Definition 1 A domain D is defined by a feature space X
and its probability distribution P (X), where X 2 X . For

a specific domain, a classification task T consists of class

information Y and a classifier f(x), that is T = {Y, f(x)}.
We use subscripts s and t to indicate the source domain

and the target domain, respectively. This paper focuses on
the following problem:

Problem 1 Given a labeled source domain Ds and an

unlabeled target domain Dt, where Ds 6= Dt, Ys = Yt,

P (Xs) 6= P (Xt) and P (ys|Xs) 6= P (yt|Xt), find a sub-

space spanned by P in which the common latent features

shared by involved domains are uncovered, the data manifold

structure is preserved, and the domain shift is minimized.

3.3 Problem Formulation
The basic assumption behind domain adaptation is that the
involved domains share some common latent factors, these
factors can be specific features or geometric structures, and in
most cases, are both of them. If we assume that there exists
a common latent subspace shared by both domains where the
shared features can be uncovered, then we can find the sub-
space spanned by an appropriate basis P where each sample
from the target domain can be drawn from one subspace seg-
mentation in the source domain. Thus, the goal of Problem 1
can be formulated as optimizing the following objective:

min

P,Z
kP>

Xt �P

>
XsZk2F, (1)

where P is the projection matrix, Z is the reconstruction co-
efficient matrix corresponding to Xs, and Xs serves as a dic-
tionary [Qiu et al., 2012]. Since Xs can represent Xt by
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appropriate P and Z, and it is no doubt that Xs can repre-
sent itself too. Therefore, we combine Xs and Xt together as
complete X to dig out more shared information. From [Yin
et al., 2015], there are two explanations for Z based on the
model. Firstly, the ij-th element of Z reflects the similarity
between the sample pair xi and xj . Secondly, the i-th col-
umn of Z severs as a better representation of xi such that the
desired pattern, say subspace structure, is more prominent.
From this perspective, Z preserves the embedding manifold
structure of samples. Furthermore, in order to learn a robust
and efficient subspace, we introduce the Frobenius norm of Z
according to [Lu et al., 2012a].

As we have discussed in the introduction, the selected fea-
tures by a general P may be different for each dimension
of the learned subspace, especially in the case of domain
adaptation where Xs and Xt have divergent data distribu-
tions. This motivates us to deploy `2,1-norm on P

[Lu et

al., 2012b], which leads to selecting common features shared
by the domains. As a result, we can further formulate our
objective function as follows:

min

P,Z,E
kPk2,1 + �

2 kZk
2
F + �kEk1

s.t. P

>
X = P

>
XsZ+E,

(2)

where E is used to detect the sample specific errors. � > 0

and � > 0 are penalty parameters. Please note that E can
be very helpful when samples are corrupted, and it is also
very useful to handle outliers because it is very difficult to
guarantee that every sample in the target domain can be ap-
propriately reconstructed by the source domain.

Finally, as we have discussed above, the common latent
factors shared by domains are not only specific features, but
also geometric structure. With the goal to jointly select fea-
tures and preserve geometric structure, we introduce a graph
based regularization term into our objective. Thus, the final
objective function can be formulated as follows:

min

P,Z,E
kPk2,1 + �

2 tr(P
>
XLX

>
P) +

�
2 kZk

2
F + �kEk1

s.t. P

>
X = P

>
XsZ+E,P>

XDX

>
P = I,

(3)
where � > 0 is a penalty parameter. L=D�W is the graph
Laplacian [Chung, 1997] and D =

P
j

W

ij

is a diagonal ma-
trix. I is the identity matrix with proper size. The constraint
P

>
XDX

>
P = I is introduced to avoid trivial solutions. W

is a symmetric adjacency matrix with Wij characterizes the
appropriate connection among the samples [Li et al., 2016],
it can be computed by various criteria [Yan et al., 2007]. In
this paper, we use W to characterize the sample relationship
and apply the heat kernel method to get W as follows:

Wij =

(
exp(� ||xi�xj ||2

2�2 ) , if xi 2 kNN(xj)

0 , otherwise
, (4)

where kNN(xj) is the k-nearest neighbors of xj .

3.4 Problem Optimization
Since the constraint in Eq. (3) is not convex, we convert
Eq. (3) to the following equivalent equation to make it eas-
ier to optimize.

min

P,Z,E
kPk2,1 + �

2 kP
>
X�Yk2F +

�
2 kZk

2
F + �kEk1

s.t. P

>
X = P

>
XsZ+E,

(5)
where Y is a matrix whose rows are eigenvectors of the
eigen-problem WY=⇤DY, and ⇤ is a diagonal matrix of
which diagonal elements are eigenvalues. The equivalence
proof of Eq. (3) and Eq. (5) can be found in [Cai et al., 2007;
Gu et al., 2011].

Now, Eq. (5) can be optimized by the augmented La-
grangian multiplier (ALM) [Lin et al., 2010]. First, we trans-
form Eq. (5) into the augmented Lagrangian function:

min

P,Z,E
kPk2,1 + �

2 kP
>
X�Yk2F +

�
2 kZk

2
F + �kEk1+

tr(U

>
(P

>
X�P

>
XsZ�E))+

µ
2 kP

>
X�P

>
XsZ�Ek2F,

(6)
where µ > 0 is a penalty parameter and U is a Lagrange mul-
tiplier. Since we cannot directly optimize all the variables in
Eq. (6) at the same time, we introduce the alternating direc-
tion method of multipliers (ADMM) [Hestenes, 1969]. By
deploying ADMM, we can alternately update each variable
one by one in an iterative manner. Thus, Eq. (6) can be solved
by the following steps:

1) To solve Z, by taking the derivative of Eq. (6) w.r.t Z,
and setting the derivative to zero, we get:

Z = (X

>
s PP

>
Xs +

�
µI)

�1
X

>
s P(P

>
X�E+U/µ).

(7)
2) For E, by ignoring the irrelevant terms w.r.t. E, we can

optimize E by:

E = argmin

E

�
µkEk1 + kE�(P

>
X�P

>
XsZ+U/µ)k2F.

(8)
3) To solve P, by taking the derivative of Eq. (6) w.r.t P,

and setting the derivative to zero, we get:

P = �

�1
((X�XsZ)(E

> �U

>/µ) + �
µXY

>
), (9)

where � = (X�XsZ)(X�XsZ)
>
+

�
µXX

>
+

2
µG. Please

note that kPk2,1 is not smooth, therefore, as a surrogate, we
compute its sub-gradient G, where G is diagonal and its i-th
diagonal element can be calculated by

Gii =

(
0 , if pi

= 0

1
2kpik , otherwise , (10)

where p

i denotes the i-th row of P.
Problem 1 specified that the aim of this work is to find a

subspace, spanned by the appropriate basis P, in which the
common latent features shared by the involved domains can
be uncovered, the data manifold structure can be preserved,
and the domain shift can be minimized. However, Eq. (9)
shows that the optimization of P involves some unknown
variables, e.g., Z, E and Y. To address this problem, we
apply Principal Component Analysis (PCA) [Turk and Pent-
land, 1991] to the initialization of our algorithm. For clarity,
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Algorithm 1. Joint Feature Selection and Structure Preservation

for Unsupervised Domain Adaptation

Input: Sample sets X
t

and X
s

, label information of X
s

,
balanced parameter �, � and �.

Initialize: Z = 0, E = 0, U = 0,
µ = 10�4, µ

max

= 106, ⇢ = 1.3, ✏ = 10�5.
Output: Label information of X

t

.
1. Initialize P0 by PCA.
2. Computer W, D and L.
3. Learn Y by solving the eigen-problem WY = ⇤DY.
Repeat

4. Get Z and E by Eq. (7) and Eq. (8), respectively.
5. Optimize P and G by Eq. (9) and Eq. (10), respectively.
6. Update the multiplier via

U
new

= U
old

+ µ(P>X�P>XsZ�E).
7. Update µ via µ

new

= min(⇢µ
old

, µ
max

).
8. Check the convergence condition

kP>X�P>XsZ�Ek1 < ✏.
until Convergence

9. Project both X
t

and X
s

to the learned subspace by P,
that is P>X

t

and P>X
s

.
10. Classify X

t

in the subspace by Nearest Neighbor classifier,
and X

s

is used as reference.

Algorithm 1 shows the details of our method. Limited by
space, please refer to [Nie et al., 2010] for a similar conver-
gence analysis of this algorithm.

3.5 Computational Complexity
The computational cost of Algorithm 1 is composed of sev-
eral major parts listed as follows:
- The eigen-problem solved in step 3.
- Matrix inversion and multiplication in step 4 and 5.

Here we analyze the computational complexity by the
big O notation. For simplicity and without loss of gener-
ality, we assume the matrix which we handled are with the
size of n ⇥ m, and d is the dimensionality of the learned
subspace where d ⌧ min(m,n). The eigen-decomposition
costs O(dm2

), matrix inversion and multiplication cost a
maximum of O(m3

). Thus, the total cost of Algorithm 1 is
much less than O(km3

) because lots of matrix operations are
performed in the embedded low-dimensional space, where
k indicates the number of matrix operations. When m is
very large, we could adopt divide-and-conquer to address the
large-scale data problem.

4 Experiments
In this section, we evaluate our algorithm on several standard
benchmarks which consist of text dataset, image dataset and
video dataset. We compare our algorithm with several state-
of-the-art domain adaptation approaches, e.g., GFK [Gong et

al., 2012], TJM [Long et al., 2014b], TCA [Pan et al., 2011],
TSL [Si et al., 2010], and DLRC [Ding et al., 2015]. Since
we apply PCA [Turk and Pentland, 1991] to the initializa-
tion of our algorithm and 1-Nearest Neighbor as the classi-
fier (NNC), we also compare our method with both of them.
Specifically, for PCA, we use the model trained on Xs to rec-
ognize Xt, and for NNC, we use Xs as reference to classify

Caltech-256 Amazon DSLR Webcam MRSC VOC2007

Figure 2: Some selected samples from Caltech-256, Amazon,
DSLR, Webcam, MRSC and VOC2007.

Xt in the original data space. To fully demonstrate the superi-
ority of our method, we also compare our method with several
approaches in the group of instance re-weighting strategy on
the evaluations of video event recognition. All of the reported
results are the classification accuracy on the target domain,
which is also widely used in literature [Gong et al., 2012;
Long et al., 2014b]:

accuracy =

|x : x 2 X

t

^ ȳ

t

= y

t

|
|x : x 2 X

t

| (11)

where ȳ

t

is the predicted label of the target domain by each
approach, and yt is the real label vector.

Each of the hyper-parameters used in our experiments is
the optimal one chosen from a large range. We chose an ac-
ceptable common set of them for consistency. For the sake
of fairness, all of the datasets used in our experiments were
downloaded from the webpages of the related works, and we
strictly followed the same experimental settings with them.

4.1 Data Description
Amazon, Caltech-256, DSLR, and Webcam (4 datasets Do-
main Adaptation, 4DA) is the most popular benchmark in the
field of domain adaptation. 4DA experimental setting was
firstly introduced in [Gong et al., 2012], which is an extension
of 3DA benchmark introduced in [Saenko et al., 2010]. 3DA
includes object categories from Amazon (A, images down-
loaded from amazon.com), DSLR (D, high-resolution images
by a digital SLR camera) and Webcam (W, low-resolution
images by a web camera). A, D and W are three differ-
ent domains, and each domain consists of 31 categories,
e.g., monitor, keyboard and laptop. 4,652 images are the
total number of 3DA. 4DA contains an additional domain,
Caltech-256 (C) [Griffin et al., 2007], which has 30,607 im-
ages and 256 categories. Some of the selected samples from
4DA are shown in Fig. 2. Our experimental configuration on
4DA is identical with [Gong et al., 2012]. Specifically, 10
common classes shared by four datasets are selected. There
are 8 to 151 samples per category per domain, and 2,533 im-
ages in total. Furthermore, 800 dimensional SURF features
are extracted as our low-level input. Then the low-level input
is normalized to unit.

Reuters-215782 is a challenging text dataset with several
different categories. The widely used 3 largest top categories
of Reuters-215782 are orgs, people, and place, each of the
top categories consists of many subcategories. As suggested
in [Ding et al., 2015], we evaluate our approach on the pre-
processed version of this dataset with the same settings of
[Gao et al., 2008].
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Table 2: Recognition results (%) of domain adaptation on 4DA dataset. Since DLRC did not use DSLR as source domain for
the reason of small sample number, we only report 9 results for DLRC.

Source Target PCA NNC TCA GFK TSL TJM DLRC Ours

Caltech-256
Amazon 37.58 23.70 38.70 41.05 45.25 46.76 49.75 75.78
Webcam 38.98 25.76 39.06 40.68 33.37 39.98 41.76 75.25
DSLR 42.04 25.48 41.44 38.81 44.15 44.59 47.85 76.43

Amazon
Caltech-256 38.22 26.00 37.36 40.28 37.51 39.45 42.75 79.16

Webcam 35.93 29.83 37.67 39.00 34.49 42.03 42.93 75.93
DSLR 29.94 25.48 33.32 36.35 27.81 45.22 41.86 74.52

Webcam
Caltech-256 26.71 10.95 29.30 30.73 28.97 30.19 33.85 81.83

Amazon 27.77 14.82 30.05 29.76 30.15 29.96 38.57 82.98
DSLR 73.25 24.20 87.29 80.83 86.57 89.17 94.31 93.63

DSLR
Caltech-256 26.18 10.60 31.81 30.28 28.49 31.43 � 82.81

Webcam 66.78 31.53 86.13 75.59 83.75 85.42 � 93.22
Amazon 29.12 11.69 32.29 32.06 29.06 32.78 � 81.21

Average 39.38 21.67 43.70 42.95 42.46 46.42 48.18 81.06

MRSC+VOC consists of two different datasets: MRSC
and VOC2007. MRSC dataset contains 4,323 images from 18
different classes, and it was originally provided by Microsoft
Research Cambridge. VOC2007 dataset contains 5,011 im-
ages labeled by 20 classes. The two datasets share 6 common
classes, i.e., “aeroplane”, “ bicycle”, “bird”, “car”, “cow”,
and “sheep”. We build our dataset by selecting all images
with the common concepts. Specifically, 1,269 images from
MSRC are selected to form the training data, and 1,530 im-
ages from VOC2007 are chosen to form the test data. We
denote this evaluation as MSRC ! VOC, and build another
evaluation VOC ! MSRC by switching the source/target
pair. Then following the same experimental settings of [Long
et al., 2014b], we resize all images to be 256 pixels, 128-
dimensional dense SIFT features are extracted as input. Some
selected samples from this dataset can also be seen in Fig. 2.

The large scale Columbia Consumer Video dataset
(CCV) [Jiang et al., 2011] contains 9,317 web videos
over 20 semantic categories, where 4,659 videos are used
for training and the remaining 4,658 videos are used for
testing. Binary labels (presence or absence) for each vi-
sual concept for each video were assigned. In our experi-
ment, we use the subset which contains visual events, i.e.,
“Basketball”, “Baseball”, “Soccer”, “IceSkating”, “Skiing”,
“Swimming”, “Biking”, “Graduation”, “Birthday”, “Weddin-
gReception”, “WeddingCeremony”, “WeddingDance”, “Mu-
sicPerformance”, “NonMusicPerformance” and “Parade”.
Furthermore, for a fair comparison, we deploy the same
experimental settings as in [Duan et al., 2012a]. Specif-
ically, we merge the first seven events as “sports”, and
also merge three “Weeding-xxx” events as “wedding” and
two “xxx-Performance” events as “performance”. Finally,
we have 5,610 videos from the six event classes in total,
i.e., “sports”, “graduation”, “birthday”, “wedding”, “perfor-
mance” and “parade”. For each video, we use the 5,000 di-
mensional SIFT features offered by [Jiang et al., 2011].

4.2 Implementation Details and Results
For consistency, we choose a common set of hyper-parameter
settings for our FSSP on different evaluations. Specifically,
we empirically set � = 0.1, � = 0.1 and � = 1. The dimen-
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Figure 3: Recognition results on MRSC+VOC2007. PCA
and NNC are traditional learning methods, while others are
transfer learning approaches.

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
(%

)

0

20

40

60

80

100

people->orgs orgs->people place->orgs orgs->place place->people people->place

PCA TCA GFK DLRC Ours

Figure 4: Recognition results on Reuters-215782. For better
visual effect, we selected the results of 5 methods to show.
DLRC represents state-of-the-art performance of baselines.

sionality of subspace is set to 30, and the number of neigh-
bors is set to 5. The nearest neighbor graph is learned in an
unsupervised manner.

For MRSC+VOC, we perform two evaluations: 1) MRSC
! VOC2007 and 2) VOC2007 ! MRSC. For each eval-
uation, the first dataset serves as the source domain and is
used for training, the second dataset serves as the target do-
main and is used for testing. The experimental results on this
dataset are shown in Fig. 3.

For Reuters-215782, we perform six evaluations, i.e., peo-
ple ! orgs, orgs ! people, place ! orgs, orgs ! place, place
! people, and people ! place. In each evaluation, the first
dataset serves as the source domain and is used for training,
the second dataset serves as the target domain and is used for
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the others are set as � = 0.1, � = 0.1 and � = 1. (b) shows the results on different datasets with varying dimensionality of
subspace. (c) are the convergence curves of different evaluations.

Table 3: Experimental results (%) of domain adaptation on
visual event recognition in videos.

Event DASVM MKMM DAM DSM Ours
sports 49.79 54.50 41.27 42.31 87.07

graduation 7.76 7.23 7.69 7.85 91.59
birthday 5.63 5.67 5.61 8.16 91.34
wedding 10.21 17.45 14.37 20.24 86.08

performance 31.90 29.89 28.70 47.96 85.19
parade 8.45 8.52 9.43 8.37 91.74

average 18.96 20.54 17.85 22.48 88.83

testing. Limited by space, we only compare our method with
PCA, TCA, GFK and DLRC on this dataset. The experimen-
tal results are shown in Fig. 4.

For 4DA, two different datasets are randomly selected as
the source domain and the target domain, respectively, thus
leading to 4 ⇥ 3 = 12 evaluations. The recognition results
are reported in Table 2.

For CCV, we compare our method with four widely cited
domain adaptation approaches in the field: DASVM [Bruz-
zone and Marconcini, 2010], MKMM [Schweikert et al.,
2009], DAM [Duan et al., 2009], and DSM [Duan et al.,
2012a]. These methods include algorithms in the group of
instance re-weighting strategy. Thus, the experiments on this
dataset can also demonstrate the superiority of our method
compared with the instance re-weighting ones. The experi-
mental results are shown in Table 3.

4.3 Discussions
From the experimental results, several observations can be
drawn as follows:

1) Transfer learning methods perform much better than tra-
ditional (non-transfer) ones, which means transfer learning,
or domain adaptation, is valuable and practical for real world
applications.

2) All of the subspace learning approaches work much
better than NNC, which means perform domain adaptation
through a dimensionality reduction procedure is not trivial
and the results are promising.

3) The baselines either try to maximize the empirical like-
lihood to explore specific features, e.g., TCA and DLRC, or
aim to preserve geometric structure by minimizing proper dis-

tance measures, e.g., GFK, and each of them is the represen-
tative method in their own field, but none of them performs
better than our FSSP in average. It exactly demonstrates the
motivation of our work, that is jointly optimizing feature se-
lection and geometric structure preservation is more optimal
than optimizing them separately.

4) TJM performs joint feature matching and instance re-
weighting, but it does not consider the data structure of sam-
ples. As a result, it performs worse than our FSSP.

5) From the results reported in Table 2, it can be seen
that our FSSP significantly advances state-of-the-art baselines
with 30% accuracy rates in average. It is quite impressive
since 4DA is one of the most popular and challenging bench-
marks in the literature.

6) It can be seen from Table 3 that our method outper-
forms the baselines notably. As [Duan et al., 2012a] pointed
out, video event recognition is challenging because irrelevant
source domains may be harmful for the classification perfor-
mances in the target domain. Most baselines perform bad
because the so-called negative transfer [Pan and Yang, 2010].
Our method performs well because we only select the rele-
vant features, and use relevant neighbors for reconstruction.
The dimensionality reduction which we performed can fur-
ther filter negative information. Finally, the results can also
demonstrate the effectiveness of feature extraction compared
with instance re-weighting.

7) Fig. 5(a) shows the parameters sensitivity of our method.
It can be seen that our algorithm is robust with different val-
ues of � and � when � is fixed, but � needs to be care-
fully chosen from [0.01, 1]. Fig. 5(b) shows that our method
performs smoothly with varying dimensionality of subspace.
However, computational costs will grow with the dimension-
ality increasing. Fig. 5(c) shows that our algorithm converges
very fast, usually within about 5-round iterations.

5 Conclusion

This paper proposes a unified framework of joint feature se-
lection and geometric structure preservation for unsupervised
domain adaptation. Experiments on both visual dataset and
text dataset demonstrate that the joint optimization is much
better than separate ones.
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