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Abstract

Graph as a common structure of machine learn-
ing, has played an important role in many learning
tasks such as graph-based semi-supervised learning
(GSSL). The quality of graph, however, seriously
affects the performance of GSSL; moreover, an in-
appropriate graph may even cause deteriorated per-
formance, that is, GSSL using unlabeled data may
be outperformed by direct supervised learning with
only labeled data. To this end, it is desired to judge
the quality of graph and develop performance-safe
GSSL methods. In this paper we propose a large
margin separation method LEAD for safe GSSL.
Our basic idea is that, if a certain graph owns a high
quality, its predictive results on unlabeled data may
have a large margin separation. We should exploit
the large margin graphs while keeping the small
margin graphs (which might be risky) to be rarely
exploited. Based on this recognition, we formulate
safe GSSL as Semi-Supervised SVM (S3VM) opti-
mization and present an efficient algorithm. Exten-
sive experimental results demonstrate that our pro-
posed method can effectively improve the safeness
of GSSL, in addition achieve highly competitive ac-
curacy with many state-of-the-art GSSL methods.

1

As a convenient way to describe data relationship, graph is
a kind of important structure in machine learning and has
played a significant role in many learning tasks [Ng er al.,
2001; Zhu, 2007] such as graph-based semi-supervised learn-
ing (GSSL) [Blum and Chawla, 2001; Zhu et al., 2003;
Zhou et al., 2004]. With the help of graph, GSSL obtains
many advantages such as closed-form solution, promising
learning performance, and thus GSSL attracts significant at-
tention since it was proposed and has been widely applied in
a large amount of applications [Liu et al., 2012].

However, it is widely known that the graph quality, rather
than the learning/optimization algorithm, seriously affects
the performance of GSSL methods [Zhu, 2007; Belkin and
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Niyogi, 2008; Wang and Zhang, 2008; Jebara et al., 2009].
Moreover, it has been found in many empirical results [Zhou
et al., 2004; Belkin and Niyogi, 2004; Wang and Zhang,
2008; Karlen et al., 2008] that an inappropriate graph may
cause GSSL to deteriorate the performance. That is, GSSL
with the use of unlabeled data not only does not improve per-
formance, but sometimes it may even be outperformed by di-
rect supervised learning with only a small amount of labeled
data. Such a deficiency hinders GSSL to play an important
role in more applications. To this end, studying the quality
of the graph and developing performance-safe GSSL method
are desired. Specifically, it is desirable to judge the quality
of graph such that GSSL could often improve performance,
while in the worst case it will not be outperformed by direct
supervised learning with only labeled data. This task, to our
best knowledge, has not been studied in literature.

In this paper, we present a large margin approach named
LEAD (LargE margin grAph quality juDgement) inspired by
the success of large margin criterion [Vapnik, 1998]. Our ba-
sic idea is simple and intuitive. That is, when a certain graph
owns a high quality, its predictive results on the unlabeled
data may have a large margin separation. Table 1 illustrates
the idea through four representative data sets. It can be seen
that when one graph owns a better accuracy on the unlabeled
data, it may also suffer a smaller hinge loss (a loss w.r.t. large
margin separation) [Vapnik, 1998]. In other words, large mar-
gin separation may help judge the quality of graph. Based on
this recognition, we should exploit the large margin graphs
while keeping the small margin graphs (which might be risky)
to be rarely exploited. This motivates our proposed LEAD
method. LEAD views the predictive results of multiple graphs
as features, and then constructs a large margin classifier based
on these features. These procedures consequently formulate
safe GSSL as Semi-Supervised SVM (S3VM) [Vapnik, 1998;
Joachims, 1999] optimization and an efficient algorithm is
presented. Extensive experimental results demonstrate that
LEAD can effectively improve the safeness of GSSL, in addi-
tion achieve highly competitive accuracy with many state-of-
the-art GSSL methods.

The paper is organized as follows. Section 2 briefly re-
views related work. Section 3 presents the proposed method.
Empirical results are reported in Section 4. Finally, Section 5
gives a conclusive remark of this paper.



Table 1: Illustration on large margin separation assumption for graph quality. Two 5-nearest neighbor (SNN) graphs with
different distances are used as examples. ‘Accuracy’ refers to the accuracy (%) on unlabeled data. ‘Hinge Loss’ refers to the
average hinge loss (a loss w.r.t. large margin separation) on unlabeled data when applying S3VM on the predictive result of the
graph. 10 labeled instances are used and average results (mean=std) over 20 random splits are reported.

Dataset Domain | 5NN Graph with Euclidean Distance | 5NN Graph with Manhattan Distance
‘ Accuracy Hinge Loss Accuracy Hinge Loss

breast-cancer life 91.6£3.1 0.52940.110 92.6£2.7 0.370+0.106

coil image 60.9+6.2 0.341+£0.109 62.4+6.9 0.276+0.109

musk-1 physical | 57.7+4.9 0.63240.139 56.4+4.5 0.67140.145

text text 52.3£3.3 0.9644-0.006 50.3£0.0 0.9944-0.009

2 Related Work

GSSL attracts significant attention since it was proposed. A
large number of works have been presented on optimizing
a label assignment of the unlabeled data, e.g. [Blum and
Chawla, 2001; Zhu et al., 2003; Joachims, 2003; Zhou et
al., 2004; Belkin et al., 2006; Jebara et al., 2009] and con-
structing the graph, e.g. [Carreira-Perpifidn and Zemel, 2005;
Jebara er al., 2009; Wang and Zhang, 2008]. For optimizing
the label assignment, just name a few, Zhu et al. [2003] pro-
posed to use the belief propagation technique and derived a
closed-form solution; Zhou et al.[2004] formulated GSSL as
a convex regularization problem with a simple iterative algo-
rithm. For the graph construction, many kinds of graphs have
been considered. For example, k-nearest neighbor graph,
e-neighborhood graph, minimal spanning tree [Carreira-
Perpifidn and Zemel, 2005], b-matching graph [Jebara et al.,
2009], locally linear reconstruction graph [Wang and Zhang,
2008], etc. It is also reported that rather than the type of the
graph, the selection of distance metric used in the graph will
also significantly affect the final GSSL performance [Zhu,
2007]. There are also approaches, e.g., [Zhu et al., 2005;
Argyriou et al., 2005] proposed to optimize the graph con-
struction as well as the label assignment simultaneously.

It is now widely accepted that, with the deepening of re-
search, the quality of the graph construction plays a key role
to the learning performance of GSSL method [Zhu, 2007;
Belkin and Niyogi, 2008; Wang and Zhang, 2008; Jebara
et al., 2009]. What is more serious, as stated in many em-
pirical studies [Zhou er al., 2004; Belkin and Niyogi, 2004;
Wang and Zhang, 2008; Karlen et al., 2008], an inappropri-
ate graph can even cause a degenerated performance. How to
identify the quality of graph so as to avoid the hurt of using
unlabeled data in GSSL has not been deeply studied yet.

There are some discussions in literatures, e.g., [Cozman et
al., 2002; Ben-David et al., 2008; Balcan and Blum, 2010] on
the reasons about the decreased performance of general semi-
supervised learning. For example, Cozman et al. [2002] con-
jectured that the performance degradation on semi-supervised
learning is caused by incorrect model assumptions. How-
ever, without large amount of domain knowledge, it is dif-
ficult to make correct model assumptions. Ben-David et al.
[2008], from a theoretical perspective, pointed out that semi-
supervised learning is not necessarily able to achieve better
generalization performance when there is not sufficient do-
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main knowledge. Yet they did not give a feasible solution.
Balcan and Blum [2010] showed that when unlabeled data is
able to provide a good regularizer, a purely inductive super-
vised SVM on labeled data using such a regularizer guaran-
tees a good generalization. However, deriving such a good
regularizer is quite difficult.

Recently there are some efforts devoted to develop safe
semi-supervised learning approaches, e.g., [Li and Zhou,
2005; 2015; Li et al., 2016]. However, developing safe GSSL
approaches remains challenging. To our best knowledge, this
paper is the first proposal on this aspect.

3 The LEAD Method

To judge the quality of graph so as to alleviate the perfor-
mance degradation of GSSL methods, we present the LEAD
method with the use of large margin principle. As mentioned,
when a certain graph owns a high quality, its predictive results
on the unlabeled data may derive a large margin separation.
In other words, if one predictive result derived by a graph
has a small margin, then it may cause a higher risk of perfor-
mance degradation when using the graph. Therefore, given
multiple graphs with unknown quality, one should encourage
to use the graphs with large margin, rather than the graphs
with small margin, and consequently reduce the chances of
performance degradation. Based on the above assumption, by
treating the predictive results of multiple graphs as new input
training features, the proposed method constructs a large mar-
gin classifier for both the labeled and unlabeled data to derive
a relatively safe predictive result for GSSL.

Specifically, in GSSL, given a few labeled instances
{xi,y;}'_, and a large amount of unlabeled instances

{xj}é.jlﬂrl (I < u) where y € {+1, —1} is the output label
for input instance x. Let {G; = (V, &, W)}, denote mul-
tiple graphs where T refers to the number of graphs. Here V is
a set of /+u nodes each corresponds to one instance. £ is a set
of undirected edges between node pairs. W e R+ x(+w)
is a nonnegative and symmetric adjacency weighted matrix
associating with £ in G, i.e., the weight w;; on the edge
e;; € & reflects the similarity between x; and x;.

For each graph, GSSL aims to infer an optimal label as-
signment z = [z, . . ., 214+ ] such that the label inconsistency
with respect to the graph as well as the existing labeled in-



stances is minimized. This procedure is formulated as,

mzin Z wij||zi — 2| (1)
e;;€E
st. zi=y, t=1,...,1;

ziel[-11], j=1+1,....l+w

Eq.(1) is a convex quadratic optimization and could be
solved via many efficient GSSL algorithms, for example,
the Harmonic method by [Zhu er al., 2003]. Let z(!) =
[zit), ce zl(i)u} denote the optimal solution of Eq.(1) with
respect to the graph G, t = 1,...,T. Without sufficient
domain knowledge, it is difficult to distinguish the quality
of these solutions. If one chooses an inappropriate solution,
GSSL may cause a performance degradation. To this end, we
propose to use large margin principle to help distinguish the
quality of the solutions.

Specifically, let u; denote a vector where each entry cor-
responds to the predictive result of each graph on instance
X;, 1.e., u; [zi(l), ce, zi(T)]. We regenerate a new semi-
supervised training set where {u;, y; }!_, denotes the new la-
beled examples and {u; }é_: 1 the new unlabeled instances.
A large margin linear classifier is then build to separate both
the new labeled and unlabeled data. Intuitively, the large mar-
gin classifier is lateral to the use of large margin graphs, and
avoids the direct utilization of small margin graph, and there-
fore the chance of performance degradation can be reduced.

Formally, we seek to find a linear classifier f(u)
w'u + b and a label assignment of unlabeled data y =

[§141, - - - » Y1+o) that minimize the following optimization,
1 l I+u
s §HWH§ +Ch Zf(yif(ui)) + O Z £(9; f(uy))
Y i=1 j=i+1
S.t. gl+j S {+1,—1}7 1=1...,u
I+u 1
Dimi1 Ui i—1 Yi
Y Sm By g g 2)
u l
where £(v) = max{0,1 — v} is the hinge loss in large

margin separation and the last constraint is balanced con-
straint [Joachims, 1999] that enforces the class ratio on un-
labeled data to be closely related to that of labeled data (3 is
a small constant). C; and C5 are parameters trading off the
losses on the labeled and unlabeled data, respectively.

Eq.(2) is no more than the classical semi-supervised SVM
(S3VM) [Vapnik, 1998; Joachims, 1999]. That is, safe GSSL
is posed as S3VM optimization. To our best knowledge this
is the first time to connect safe GSSL to S3VM.

To solve the optimization in Eq.(2), one direct solution
is the use of traditional S3VM algorithms [Joachims, 1999;
Chapelle et al., 2008; Li et al., 2013]. However, these algo-
rithms do not fully exploit the structure in our setting, and
may be not efficient. For example, here linear kernel is used
while traditional S3VMs often consider the use of non-linear
kernels. To this end, we present an efficient alternating opti-
mization algorithm for the solving of Eq.(2).

It alternatively optimizes w (or y) by fixing the y (or w) as
constants. Specifically, when y is fixed, Eq.(2) is a standard

Algorithm 1 The LEAD Method

Input: labeled instances {(x;,y;)}!_,, unlabeled instances
{x; }gj; 1> Tegularization coefficients C; and C3, a set of
candidate graphs {G; = (V, &, W;)}L_,, the label assign-
ment y° = [§7,,...,97,,] of a direct supervised learning
method using only labeled instances {(x;, v:)}}_,

Output: a label assignment on the unlabeled instances y =
[gl-‘rl? ceey yH—u]

1: Perform a GSSL algorithm (in this paper the methods
in [Zhu et al., 2003] and [Zhou et al., 2004] are both im-
plemented for comparison) on a set of graphs {G;}Z_;;

record z(!) = [zgt), . ,zl(i)u] as the optimal solution
with respect to the graph G, t =1,...,T

: Regenerate a new training data set. {u;,y;}!_, denotes
the new labeled instances and {u;}\T% . the unlabeled

Jj=l+1
[251),... Z(T)],i: 1,...,04+u

instances, where u; ) %
 Initialize § = sign(+ >°/_, 2() and Cy = 10760y
: repeat
repeat

Fix y and update the solution of w via a linear SVM

solver like LIBLINEAR [Fan et al., 2008]

Fix w and update the solution of y via Eq.(3)
until the objective of Eq.(2) does not decrease
Cy =20,
: until CQ > 02
DI G (Wi +b) < L then gy =37 55 =1, ,u
return ¥ = [Gig1, - Uit

linear SVM form and w can be solved by a linear SVM pack-
age like LIBLINEAR [Fan et al., 2008] efficiently. When w
is fixed, it has been proved that the rank of the elements of
the optimal y will be consistent with that of the prediction
w’'u + b on unlabeled data [Zhang et al., 2007]. Therefore,
the optimal y can be derived by the following closed-form
solution.

i
+1 ifr; < (72 Zlfl Y~ Bu
A . 230y
Yi+j =y -1 ifr; > (727/1,19 —|—ﬁ)u 3)
sign(w'u;y; +b) otherwise
where {r1,...,r,} are the ranks of the predictions on the un-
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labeled data {u; 41, ..., w4} (sorted in a descending order).
The larger prediction, the smaller rank. To further improve
the quality of the solution, inspired by [Joachims, 19991, we
first assign a small importance for the unlabeled data (i.e., Cs
is initialized as a very small constant), and then gradually in-
crease the importance of the unlabeled data (i.e., the value of
C5) until it reaches an upper bound. Finally, the unlabeled in-
stances lying within the margin remain risky to use and thus
their labels are assigned with the direct supervised learning
method. The pseudocode of the proposed LEAD method is
given in Algorithm 1.



4 Experiment
4.1 Setting

To evaluate the effectiveness of our proposal, we conduct ex-
perimental comparison on a number of binary data sets! that
cover a wide range of properties (Table 2). The sample size
ranges from 294 to more than 1,5000. The feature dimension-
ality ranges from 5 to more than 10,000. The proportion of
classes (i.e., ratio of the number of positive samples to that of
negative samples) ranges from less than 0.2 to more than 1.5.
LEAD is compared with the following methods.

e INN: The baseline supervised learning method. Each
unlabeled instance is assigned with the label of its near-

est labeled instance.

Harmonic?: The classical harmonic function method
proposed in [Zhu er al., 2003]. Without sufficient do-
main knowledge of graph construction, k-nearest neigh-
bor graph is recognized as a good candidate graph [Zhu,
2007]. Therefore, three types of nearest neighbor graphs
(namely 3, 5 and 7 nearest neighbor graphs) are consid-
ered for the Harmonic method.

LLGC: The classical LLGC (local and global consis-
tency) method proposed in [Zhou et al., 2004]. Similar
to the Harmonic method, 3, 5 and 7 nearest neighbor
graphs are employed.

CGL?: This is a GSSL method [Argyriou et al., 2005]
that learns a graph from multiple candidate graphs
through worst-case.

Majority Voting: We also compare with the majority
voting method which is known as a popular approach
in dealing with multiple predictive results and has been
found useful in many situations [Zhou, 2012].

GSSL-CV: We further compare with the cross-
validation method which is widely accepted as a pop-
ular method to perform model selection. Here the cross-
validation method is performed to select a graph from a
set of candidate graphs via the cross-validation result.

The distance metric used to determine nearest neighbors
about the above compared methods is set as the Euclidean
distance. For the Harmonic and CGL method, the parame-
ters are set to the recommended ones in the package. For
the LLGC method, since the authors do not share the code,
it is implemented by ourselves and the parameter « is set
to 0.99 recommended in the paper. For the Majority Voting
method, the discrete label assignments from a set of candidate
graphs are integrated and the label ratio of unlabeled data is
enforced to be similar to that of labeled data. For the GSSL-
CV method, 5-fold cross-validation is conducted (we have
conducted other types of cross-validation method, like 2-fold
and 10-fold cross-validation, and 5-fold cross-validation per-
forms the best). For the LEAD method, the parameters C',

"Downloaded from http://olivier.chapelle.cc/ssl-book/
benchmarks.html and http://archive.ics.uci.edu/ml/datasets.html

*http://pages.cs.wisc.edu/~jerryzhu/pub/harmonic_function.m

3http://cvn.ecp.fr/personnel/andreas/code/graph/index.html
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Table 2: Experimental Data Sets

[ Data # Dim #Pos # Neg # Total |
heart-hungarian 12 106 188 294
vertebral 6 100 210 310
ionosphere 33 225 126 351
horse 25 136 232 368
musk-1 166 207 269 476
credit 15 383 307 690
breast-cancer 9 241 458 699
mammographic 5 445 516 961
coil 241 750 750 1,500
digitl 241 734 766 1,500
text 11,960 750 750 1,500
usps 241 300 1,200 1,500
spambase 57 1,813 2,788 4,601
musk-2 166 1,017 5,581 6,598
twonorm 20 3,697 3,703 7,400
mushroom 21 3916 4,208 8,124
mnist4vs9 629 6,824 6,958 13,782
mnist3vs8 631 7,141 6,825 13,966
mnist7vs9 600 7,293 6,958 14,251
mnist1vs7 652 7,877 7,293 15,170

C5 and S are set to 1, 0.01 and 0.02 for all the experimen-
tal settings in this paper. 9 candidate graphs from 3, 5 and
7 nearest neighbor graphs based on 3 distance metrics (i.e.,
Euclidean, Manhattan and Cosine distance) [Zhu, 2007] are
exploited, and correspondingly the GSSL predictive results
of LEAD are from the output of classical GSSL methods (i.e.,
the Harmonic and LLGC methods) on the above graphs. For
each data set, 10 instances are labeled and the rest are unla-
beled. The class ratio is maintained on both sets. Each exper-
iment is repeated 20 times, and the average accuracy (mean
= std) on the unlabeled data is reported.

4.2 Performance Results

Table 3 shows the comparison result. The proposed LEAD
method obtains highly competitive accuracy with compared
GSSL methods in the ability of performance improvement.
Firstly, in terms of the average accuracy, the proposed LEAD
method obtains competitive performance when exploiting
both the Harmonic and the LLGC method. Secondly, in terms
of the frequency of the performance improvement, LEAD
obtains quite good performance (It achieves significant im-
provement in 9 and 12 cases, which are the most among all
the compared methods using the Harmonic and the LLGC
method, respectively).

More importantly, unlike the compared GSSL methods that
will significantly cause a decreased performance in many
cases (regardless of the use of the Harmonic method or the
LLGC method), the proposed LEAD method does not de-
crease the performance significantly. Such a advantage, will
help GSSL to play a role in more applications, especially
those which require a high reliability for the exploitation of
unlabeled data.

Both the Majority Voting method and the GSSL-CV
method are to some extent capable of reducing the chance
of the performance degradation and improving the accuracy,
however they still decrease the performance in some cases,



Table 3: Accuracy (mean = std) for the compared methods and our LEAD method with 10 labeled instances. If the performance
is significantly better/worse than 1NN (paired t-tests at 95% significance level), the corresponding entries are bolded/underlined.
The average accuracy over 20 data sets is listed for comparison. The win/tie/loss counts against INN are summarized and the

3]

method with the smallest number of losses is bolded.

means there are some data sets where CGL method could not be

terminated within 24 hours and thus the average accuracy is not available (denoted by ‘N/A’) for comparison.

Data sets INN Harmonic CGL Majority Voting GSSL-CV LEAD
3NN Graph SNN Graph 7NN Graph

breast-cancer 94.0 £2.6 95.7 £ 2.1 95.6 + 1.1 953+ 14 94.7 £ 2.7 922408 95.8 + 2.1 94.1+25
coil 604 £52 67.7 £ 8.0 64.2 £59 62.8 £ 6.9 65.6 + 6.3 65.3 + 6.9 67.6 + 7.1 63.5+ 6.9
credit 720 £ 6.1 70.2 £ 6.0 70.3 8.4 679496 68.0 + 6.7 715+ 69 70.1 £ 6.8 722+58
digitl 733 +39 874+ 49 874+ 5.6 86.1 + 6.7 93.6 +2.3 92.4 +2.7 90.8 £+ 4.5 79.1 +3.8
heart-hungarian 762 +73 73.9+58 749 £ 4.5 76255 75.7 £ 10.0 762 + 6.4 754 5.7 76.3+£72
horse 629 +5.0 64.5+7.6 63.6 =84 64.3 6.7 60.6 + 8.1 64.6 +5.0 65.3+7.0 629 +5.1
ionosphere 734 +68 720+ 6.3 727+ 86 72.8 +89 69.9+29 75.1 £5.7 75.1+£7.0 740 £ 69
mammographic 735+£59 66.6 +5.8 678 +5.1 693+52 71.7+62 70.5 + 6.1 660456 742+ 49
mnist1vs7 923+33 97.7 £ 4.7 97.6 £ 4.3 954495 - 974+ 03 97.8 +4.7 96.8 + 1.1
mnist3vs8 79.1 £38 63.5 4+ 18.2 67.7+21.0 62.1 +18.2 - 843+ 19.5 77.8 £21.0 80.5 + 3.8
mnist4vs9 67.0 £ 6.2 67.8 £ 16.5 62.7 £ 14.5 586+ 11.8 - 76.6 £ 13.7 724 £ 158 674+ 63
mnist7vs9 76.0 £3.7 70.2 +20.0 63.7 £ 185 594 + 14.1 - 793 £ 153 809 £ 15.2 77.9 £43
mushroom 793+79 793+79 793+£79 793+79 - 79.1+79 80.4 +7.0 80.1+7.3
musk-1 60.5 £ 4.0 61.1 £58 60.3 6.0 60.6 £ 5.4 603 £53 61.8+5.0 61.0 £ 6.6 60.5 £ 4.1
musk-2 739 +£6.7 76.2 £ 5.9 78.5 £ 5.9 78.7 £ 6.4 573+57 772+ 4.6 80.0 +5.4 752 +£56
spambase 71.9+£55 624 +63 625456 61.8 7.6 - 62.7 £10.3 62.8 +6.5 725 +£5.0
text 592+£56 549 £ 4.0 532430 539454 63.1+6.3 56.0 + 4.6 543+ 4.0 592+56
twonorm 892+ 3.6 60.3 + 18.2 575+153 62.6 +19.0 96.8 + 0.2 90.5 +13.8 88.3 + 14.8 89.2 + 3.6
usps 813 +28 80.8 + 0.9 80.5 £ 0.8 80.3 £ 0.7 62.6 + 6.8 70.7 £33 80.8 + 0.9 813+28
vertebral 703 £7.5 71.0 £ 34 72.1 £26 71.9 £3.1 68.0 9.0 71.0 +49 724 +5.0 704 £ 7.5
Ave. Accuracy 743 £99 722+ 114 71.6 £12.0 71.0 £ 119 N/A 757+ 11.3 75.7 £ 11.6 75.4 +10.2
Win/Tie/Loss 5/10/5 5/9/6 3/9/8 4/6/4 5/10/5 6/11/3 9/11/0

Data sets INN LLGC CGL Majority Voting GSSL-CV LEAD

3NN Graph SNN Graph 7NN Graph

breast-cancer 94.0 £2.6 95.9 £ 0.7 954 + 1.1 947+ 15 94.7 £ 2.7 927+ 0.6 96.1 + 0.7 94.1+25
coil 604 +£52 66.8 + 6.5 63.6 + 6.2 61.7+64 65.6 + 6.3 64.0 + 6.1 67.4 + 6.7 64.3 + 6.6
credit 720+ 6.1 723+53 69.7 £7.6 66.1 =82 68.0 + 6.7 733+62 726 +7.1 725+55
digitl 73.3+£39 904 + 3.5 90.4 + 3.3 90.2 + 3.7 93.6 +2.3 915+ 3.1 91.2+3.7 84.2 +3.7
heart-hungarian 762 +73 75.7+£49 73.8£42 727+ 6.0 75.7 £ 10.0 749 +72 75754 764 +72
horse 629 +5.0 652+ 6.1 64.4 +5.7 629153 60.6 + 8.1 633 +5.1 653162 629 +5.1
ionosphere 734 +6.8 70.6 +£7.7 682470 672+64 69.9+29 71.5+76 71.1+£72 73.3+69
mammographic 735+£59 67.7+£59 69.8 +4.3 715+ 48 71.7+62 71.7+ 4.8 673+57 74.1 £4.7
mnist1vs7 923 £33 98.6 + 1.5 98.8 + 0.8 98.8 + 0.7 - 974+ 04 98.4 + 1.7 98.7 £ 1.1
mnist3vs8 79.1 £3.8 955+ 1.7 95.5+2.0 954 + 2.1 - 958+ 1.8 95.8 +2.0 93.6 + 2.1
mnist4vs9 67.0£6.2 88.8 +7.7 87.8+74 87.1+17.7 - 88.3 + 7.7 88.8 + 7.6 84.6 +7.4
mnist7vs9 76.0 £3.7 94.7 £ 3.9 93.7+45 93.5 44 - 94.1 +4.1 93.8 +4.2 91.5+4.3
mushroom 793 +79 793 +79 793 +79 793 +£79 - 79.1+£79 80.4 +7.0 80.2 7.1
musk-1 60.5 £ 4.0 61.4+52 594 +52 60.0 4.6 60.3+53 60.7 £ 5.1 61.4+5.1 60.2 + 4.1
musk-2 739+ 6.7 747 £ 6.3 77.3 £ 4.6 78.6 + 4.9 573457 777+ 38 779 £ 5.6 759 £ 5.1
spambase 71.9+£55 72.1£53 732 +48 72.7+6.3 - 794 £ 5.1 71.3+£57 78.1+£29
text 592456 58.7+£4.0 580+ 4.6 57.8+£58 63.1+6.3 60.1 +5.3 579452 592+56
twonorm 892+ 3.6 96.0 + 0.5 96.3 + 0.6 96.5 + 0.7 96.8 + 0.2 97.1+0.3 96.6 + 0.5 94.6 + 1.0
usps 813 +28 829 +22 818+ 19 81.0 £ 14 62.6 + 6.8 76.1 4.6 83.0 +2.2 81.5+28
vertebral 703 +£7.5 69.6 22 684 +22 68.0+ 1.3 68.0 +9.0 649 +7.1 71.3 £ 4.0 70.7 £7.2
Ave. Accuracy 743 +£9.9 78.8 £ 13.0 782+ 134 77.8 £ 13.6 N/A 78.7 £ 12.8 79.2 £13.0 78.5 £ 119
Win/Tie/Loss 9/9/2 9/9/2 7/10/3 4/6/4 9/9/2 11/8/1 12/8/0

especially when the accuracies of 3, 5 and 7 nearest neighbor
graphs are worse than that of the baseline 1NN method.

Table 4 further gives the results of the compared methods
and our proposed method on 30 labeled instances. As can be
seen, similar to the situations in Table 3, our proposal method
effectively improves the safeness of GSSL methods, in addi-
tion achieves a highly competitive accuracy in comparison to
the state-of-the-art GSSL methods.

Previous discussions are all based on the use of Euclidean
distance.To further study the influence of the distance metric,
Figure 1 shows the accuracy improvement results of the com-
pared methods against baseline 1NN method with the use of
the Manhattan and Cosine distance, respectively. Similarly,
unlike the compared methods that may seriously decrease the
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accuracy in many cases, our LEAD method can often robustly
improve the accuracy (the paired t-tests at 95% significance
level shows that LEAD will not significantly decrease the ac-
curacy in all the cases).

4.3 Ability in Judging the Graph Quality

We study the ability of our proposed method in judging
the quality of the graphs. Specifically, let w!,w), w} and
wi, w3, w3 denote the largest 3 and the smallest 3 coefficients
of the learned w in our proposed method. Suppose acc!, acc®
and acc®® are the average accuracies of the graphs corre-
sponding to {w!,wh, wh}, {w], w3, wi} and all the coeffi-
cients in w, respectively. Figure 2 shows the average result
of acc! —acc®™¢ and acc® — acc®* on 20 random splits for all



Table 4: Accuracy (mean = std) for the compared methods and our LEAD method with 30 labeled instances.

Method INN Harmonic Majority Voting GSSL-CV LEAD
3NN Graph 5NN Graph 7NN Graph
| Ave. Accuracy | 80.0£87 | 8204109 81.5 £+ 10.4 809 £ 10.6 | 83.6 + 109 83.94+11.1 | 822+94 |
[ Win/Tie/Loss | | 10/5/5 10/5/5 10/6/4 | 13/5/2 14/472 | 18/2/0 |
Method INN LLGC Majority Voting GSSL-CV LEAD
3NN Graph 5NN Graph 7NN Graph
| Ave Accuracy | 80.0£87 | 8234122 81.4 £ 13.1 809+ 134 | 82.6 £ 12.1 825+ 123 | 832+102 |
[ Win/Tie/Loss [ [ 9/516 9/5/6 9/5/6 [ 10/5/5 10/5/5 [ 16/4/0 |

Figure 1: The performance improvement against INN on 10
labeled instances with different distance metrics, i.e., Man-
hattan distance (a) and Cosine distance (b), respectively.

7 3\~ -Manh Y 5NN-Manh = 7NN-Manh [ Majority Voting IS GSSL-CV [_JLEAD|

e

e
3

S
o

Improvement against INN with Manhattan Distance

b-a coi cre dig h-h hor ion mam Iv7 3v8 4v8 7v9 mus m-1 m-2 spa tex two usp ver

Data Sets
a) Based on Manhattan distance metric
Z N-Cos =] 7NN-Cos [ Majority Voting BN GSSL-CV [ LEAD]

)

Improvement against INN with Cosine Distance

ba coi cre dig h-h hor ion mam Iv7 3v8 4v8 7v9 mus m-1 m-2 spa fex two usp ver

Data Sets

b) Based on Cosine distance metric

the experimental data sets. From the figure, it can be observed
that in most cases the performance of the largest 3 coefficients
is much better than that of the smallest ones. This result in-
dicates that large margin principle can indeed be helpful to
judge the quality of the graphs.

5 Conclusion

In this paper we study to judge the graph quality in GSSL, a
key factor for GSSL performance, and develop a safe GSSL
method LEAD that does not deteriorate the performance when
using unlabeled data. Our main contribution is to propose a
large margin assumption for the graph quality. Specifically,
when a graph owns a high quality, its prediction on unla-
beled data may have a large margin separation. Intuitively,
one should exploit the large margin graphs and rarely use
the small margin graphs (which might be risky), and there-
fore reduce the chance of performance degeneration when
using unlabeled data. We consequently formulate safe GSSL

Figure 2: The improved accuracy against the average accu-
racy of the candidate graphs, for the graphs with the largest
3 and the smallest 3 coefficients of the learned coefficients in
the large margin classifier w, respetively.
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as the classical Semi-Supervised SVM (S3VM) optimization.
Extensive experimental results demonstrate that large margin
principle is helpful in judging the graph quality and improv-
ing the safeness of GSSL.
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